The simplex method in matrix form EXAMPLE maximize 4x1 + 3x2 subject to x1 − x2 ≤ 1 2x1 − x2 ≤ 3 x2 ≤ 5 x1 , x2 ≥ 0. Form the initial dictionary: ζ = 4x1 + 3x2 x1 − x2 + w1 =1 2x1 − x2 + w2 =3 x2 + w3 = 5 The initial basic indices are B = (3, 4, 5) , the initial nonbasic indices are N = (1, 2). The coefficient matrices are: 1 −1 1 0 0 1 0 0 1 −1 A = 2 −1 0 1 0 , B = 0 1 0 , N = 2 −1 . 0 1 0 0 1 0 0 1 0 1 ∗ ∗ x3 1 z −4 ∗ ∗ ∗ . The primal basic entries are: xB = x4 = 3 . The dual basic entries are: zN = 1∗ = z −3 2 x∗5 5 Step 1 Primal side ∗ zN New basic index: j = 1 1 1 Step direction: ∆ = B −1 N = 2 0 0 n Step size: t = max−1 ∆3 x∗3 = 11 , ∆4 x∗4 = 23 , ∆5 x∗5 = 0 5 o =1 New nonbasic index: i = 3 1 1 0 x∗B − t∆ = 3 − 2 = 1 5 0 5 x∗1 1 ∗ ∗ Updated basic vector: xB = x4 = 1 x∗5 5 Updated index lists: B = (1, 4, 1 0 Updated matrices: B = 2 1 0 0 Dual side −4 = has negative entries −3 5) , N = (3, 2) 0 1 −1 0 , N = 0 −1 1 0 1 1 −1 > −> 0 = Step direction: ∆ = −N B 1 0 Step size: s = z1∗ ∆1 = −4 −1 =4 −4 1 0 − s∆ = −4 = −3 −1 −7 ∗ z 4 ∗ Updated basic vector: zN = 3∗ = z2 −7 ∗ zN Step 2 Primal side Dual side ∗ = zN New basic index: j = 2 −1 0 Step direction: ∆ = B −1 N = 1 1 1 n Step size: t = max−1 ∆1 x∗1 = −1 ∆4 1 , x∗4 = 11 , ∆5 x∗5 = 1 5 o Step size: s = ∗ zN New basic index: j = 3 −1 ∆2 2 , x∗2 = −2 ∆5 1 , x∗5 = New nonbasic index: i = 5 2 −1 4 x∗B − t∆ = 1 − 2 −2 = 5 4 2 0 ∗ 4 x1 Updated basic vector: x∗B = x∗2 = 5 x∗3 2 Updated index lists: B = (1, 2, 3) , N = (5, 4) ζmax = 4x∗1 + 3x∗2 = 4 × 4 + 3 × 5 = 31 2 4 o = −7 −1 =7 4 2 −10 − s∆ = −7 = −7 −1 0 ∗ z3 −10 ∗ Updated basic vector: zN = ∗ = z4 7 Primal side = z2∗ ∆2 ∗ zN Updated index lists: B = (1, 2, 5) , N = (3, 4) 1 −1 0 1 0 Updated matrices: B = 2 −1 0 , N = 0 1 0 1 1 0 0 Step 3 ∆1 x∗1 has negative entries 0 2 > −> Step direction: ∆ = −N B 1 = −1 0 1 −1 2 x∗B − t∆ = 1 − 1 = 0 5 1 4 x∗1 2 ∗ Updated basic vector: xB = x∗2 = 1 x∗5 4 Step size: t = max−1 4 −7 =1 New nonbasic index: i = 4 −1 1 Step direction: ∆ = B −1 N = −2 0 2 n Dual side −10 = has negative entries 7 =2 0 −2 > −> Step direction: ∆ = −N B 0 = 1 1 Step size: s = z3∗ ∆3 = −10 −2 =5 −10 −2 0 − s∆ = −5 = 7 1 2 ∗ ∗ = z5 = 5 Updated basic vector: zN z4∗ 2 ∗ zN ∗ ≥0 zN
© Copyright 2025 Paperzz