Energy calibration Dong Liu, Liang Yan, Guangshun Huang University of Science and Technology of China 2014-11-21 1 Introduction • 104 energy points taken from 3.850 GeV to 4.590 GeV with steps cover from 2 MeV to 20 MeV. There are various energies, like requested or nominal, BEPCII set, displayed, BEMS measured, but all of them are not consistent with each other. • Using multi-prong events based on the well calibrated momentum, the total energy can be reconstructed, e.g. the CLEO-c case as shown. ( PhysRevLeZ.95.062001) 2 Data samples • Data samples: 104 energy points from 3.85 GeV – 4.59 GeV • Boss version: 6.6.4 p01 • Channel: ψ’ ⟶ π- π+ J/ψ J/ψ ⟶ e- e+ J/ψ ⟶ μ- μ+ ϕ ⟶ K- K+ 3 Method • Maximum Likelihood Method single event pdf : f(X|θ) likelihood function for a sample: ( ) ( L X |q = L X1 ,..., X n | q ) = Õ f ( X |q ) n i i=1 the purpose is to select a suitable θ to maximize the function. • In general, the upper form is hard to deal with, we use the logarithmic form function. They have the same maximum value. 4 Method • PDF 2 f (x| m ,s )= 1 2ps ( x-m ) e 2s 2 2 • Likelihood function x m ( ) 1 l(x| m ,s )= Õ f (x | m ,s ) = Õ e 2s 2 2ps • Logarithmic likelihood function n i=1 i n i i=1 n ll(x| m ,s )= -2lnl(x| m ,s )= -2å ln i=1 1 e 2ps 2 x -m ) ( i 2s 2 5 Our case • Calculate invariant mass E1 = m12 + p12 E2 = m22 + p22 • The mass distribution f (minv ) = Gaus(minv | m, s ) In experiment, μ is not equal to pdg value. • Purpose try to find a correction factor for momentum, so the mean value μ is equal to pdg value. p®k×p 6 Our case • Calculate invariant mass E1 = m12 + (kp1 )2 E2 = m22 + (kp2 )2 • The mass distribution f (minv | k) = Gaus(minv | m, s ) if the factor k is suitable, μ will be equal to pdg value. • Modification f (minv | k, w) = w×Gaus(minv | m, s ) + (1- w) / t Consider background, w: signal weight, t: width of background 7 Decay channel • Before correction J / y ® e+ e- mean = 3.09570 ± 0.00216 s = 0.018 ± 0.002 signal = 94 ±11 back = 17 ± 7 Events / ( 0.005 GeV ) fit e 18 16 14 12 10 8 6 4 2 mJ /y = 3.096916 ± 0.000011 0 3 3.02 3.04 3.06 3.08 3.1 3.12 3.14 3.16 3.18 3.2 energy (GeV) 8 Decay channel J / y ® e+ e- • Likelihood function -20 -30 400 -40 200 0 -50 -200 -60 -400 -70 -80 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.95 0.98 0.96 0.97 1.01 0.99 1 1.04 1.02 1.03 1.05 X direction: factor Y direction: signal weight Z direction: log likelihood function value Minimum point: factor=1.00053 , weight=81.8% -90 -100 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 X direction: factor Y direction: log likelihood function value Minimum point: factor=1.00053±0.00066 9 Decay channel • After correction J / y ® e+ e- mean = 3.09724 ± 0.00211 s = 0.018 ± 0.002 signal = 93 ±11 back = 19 ± 7 Events / ( 0.005 GeV ) fit e 20 18 16 14 12 10 8 6 4 2 mJ /y = 3.096916 ± 0.000011 0 3 3.02 3.04 3.06 3.08 3.1 3.12 3.14 3.16 3.18 3.2 energy (GeV) 10 Decay channel • Before correction J /y ® m + m - mean = 3.09598 ± 0.00138 s = 0.016 ± 0.001 signal = 143 ±12 back = 11± 5 Events / ( 0.005 GeV ) fit mu 25 20 15 10 5 mJ /y = 3.096916 ± 0.000011 0 3 3.02 3.04 3.06 3.08 3.1 3.12 3.14 3.2 3.16 3.18 energy (GeV) 11 Decay channel • Likelihood function J /y ® m + m - 200 600 0 400 200 -200 0 -200 -400 -400 -600 -800 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 -600 0.1 1.01 1.02 0.99 1 0.98 0.97 0.95 0.96 1.03 1.04 1.05 X direction: factor Y direction: signal weight Z direction: log likelihood function value Minimum point: factor=1.00034 , weight=91.4% -800 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 X direction: factor Y direction: log likelihood function value Minimum point: factor=1.00034+0.00764 -0.00752 12 Decay channel • After correction J /y ® m + m - mean = 3.09696 ± 0.00142 s = 0.016 ± 0.001 signal = 144 ±12 back = 10 ± 5 Events / ( 0.005 GeV ) fit mu 25 20 15 10 5 mJ /y = 3.096916 ± 0.000011 0 3 3.02 3.04 3.06 3.08 3.1 3.12 3.14 3.16 3.18 3.2 energy (GeV) 13 Decay channel • Before correction J / y ® p +p -l +l - mean = 3.68571± 0.00022 s = 0.00284 ± 0.00002 signal = 219 ±15 back = 22 ± 6 Events / ( 0.002 GeV ) fit pi 90 80 70 60 50 40 30 20 my ' = 3.686109 +0.000012 -0.000014 10 0 3.65 3.66 3.67 3.68 3.69 3.7 3.71 3.72 3.73 energy (GeV) 14 Decay channel -1200 -2000 0.5 0.4 0.3 0.2 0.1 0.95 0.96 0.97 1.02 1 1.01 0.98 0.99 1.03 1.04 X direction: factor Y direction: signal weight Z direction: log likelihood function value Minimum point: factor=1.00134 , weight=76.4% 1.05 1.01 1.02 1.03 1.04 1.05 -1500 0.9 0.8 0.7 0.6 -1400 1 -1000 -1600 -500 -1800 0.95 0.96 0.97 0.98 0.99 0 -2000 • Likelihood function J / y ® p +p -l +l - X direction: factor Y direction: log likelihood function value Minimum point: factor=1.00134+0.00838 -0.00839 15 Decay channel • After correction J / y ® p +p -l +l - mean = 3.68623 ± 0.00219 s = 0.00283± 0.00003 signal = 218 ±15 back = 23 ± 6 Events / ( 0.002 GeV ) fit pi 70 60 50 40 30 20 10 my ' = 3.686109 +0.000012 -0.000014 0 3.65 3.66 3.67 3.68 3.69 3.7 3.71 3.72 3.73 energy (GeV) 16 Decay channel f ® K +K - • Before correction mean = 1.01921± 0.00021 s = 0.00250 ± 0.00021 signal = 345 ± 28 back = 942 ± 37 Events / ( 0.0005 GeV ) fit kaon 50 40 30 20 10 mf = 1.019455 ± 0.000020 0 1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04 1.045 1.05 energy (GeV) 17 Decay channel f ® K +K - • Likelihood function -6180 -6200 -4800 -6220 -5000 -5200 -6240 -5400 -5600 -6260 -5800 -6000 -6280 -6200 -6400 -6300 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 -6320 0.1 0.95 0.98 0.96 0.97 1.01 0.99 1 1.04 1.02 1.03 1.05 X direction: factor Y direction: signal weight Z direction: log likelihood function value Minimum point: factor=0.997482 , weight=40.5% -6340 -6360 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 X direction: factor Y direction: log likelihood function value Minimum point: factor= 0.99748+0.00368 -0.00367 18 Decay channel • After correction f ® K +K - mean =1.01909 ± 0.00021 s = 0.00250 ± 0.00021 Events / ( 0.0005 GeV ) fit kaon 50 40 signal = 343 ± 28 30 back = 945 ± 37 20 10 mf = 1.019455 ± 0.000020 0 1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04 1.045 1.05 energy (GeV) | mean - mf |> d mean ? 19 problem • For f ® K + K • The correction factor will cause that the invariant mass of 2 kaon a little small than the pdg value of f , it is not in the range of error. • It is caused by background? Toy MC shows it is not the case. 20 Toy Monte Carlo • Generate sample distribution: gaus(m,sigma), no background events: 3000 mean = 1.01946 ± 0.00005 s = 0.00249 ± 0.00003 signal = 3000 ± 55 back = 0 +1 Events / ( 0.0005 GeV ) fit kaon 250 200 150 100 50 0 1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04 1.045 1.05 energy (GeV) 21 Toy Monte Carlo • Likelihood function f ® K +K - -22000 X direction: factor Y direction: log likelihood function value Minimum point: factor=0.99692±0.00072 -23000 -24000 -25000 -26000 -27000 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 22 Toy Monte Carlo • After correction mean = 1.01926 ± 0.00005 s = 0.00247 ± 0.00003 signal = 3000 ± 55 +2 back = 0 Events / ( 0.0005 GeV ) fit kaon 250 200 150 100 50 0 1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04 1.045 1.05 energy (GeV) 23 backup • Single event in mc fit kaon Events / ( 0.0005 GeV ) Events / ( 0.0005 GeV ) fit kaon 3 2.5 2 3 2.5 2 1.5 1.5 1 1 0.5 0.5 0 1 1.005 1.01 1.015 1.02 1.025 1.03 Before correction mass=1.01733 factor=1.0354+/-0.0016 1.035 1.04 1.045 1.05 energy (GeV) 0 1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04 1.045 1.05 energy (GeV) After correction Mass=1.01945 24 backup • 2 events in mc, 10 times Mean before correct factor Mean after correct 1.02123 0.972597 1.01943 1.02045 0.984074 1.01942 1.01898 1.00758 1.01945 1.01882 1.00864 1.01936 1.02189 0.962710 1.01940 1.02096 0.975424 1.01936 1.02202 0.961676 1.01945 1.02135 0.970480 1.01941 1.07151 1.02608 1.01908 1.01817 1.02026 1.01942 25 backup • Invariant mass change with factor 1.1 1.05 1 0.95 0.9 0.9 0.95 Graph 1 1.05 1.1 Black line refer to factor multiply momentum Red line refer to factor multiply invariant mass directly 26 Event Cuts • Global cut: Good Charged track number: 4 Total Net Charge: 0 • Pion cut: p < 0.5 GeV/c • Electron cut: p > 1.0 GeV/c & E/p > 0.7 • Muon cut: p > 1.0 GeV/c & emc shower energy < 0.35 GeV 27
© Copyright 2026 Paperzz