The Oxford Handbook of Random Matrix Theory Editors Gemot Akemann, Jinho Balk and Philippe w OXFORD UNIVERSITY PRESS Di Francesco Detailed Contents xxvii List of Contributors Introduction Part I 1 Introduction and G. Akemann.J. guide to the handbook 3 Abstract 2 3 Baik and P. Di Francesco 1.1 Random matrix 1.2 What is random matrix theory about? 5 1.3 Why is random matrix theory so successful? Guide through this handbook 7 1.4 1.5 What is 1.6 Some a nutshell covered in detail? existing 3 8 11 introductory literature 12 Acknowledgements 13 References 14 History O. not theory in - an 15 overview Bohigas and H. A. Weidenmuller Abstract 15 15 2.1 Preface 2.2 Bohr's concept of the 2.3 Spectral properties 16 2.4 Data 21 2.5 Many-body theory 22 2.6 Chaos 23 2.7 Number compound nucleus 15 theory Scattering theory 25 2.8 2.9 Replica trick and supersymmetry 29 25 2.10 Disordered solids 33 2.11 34 Interacting fermions and field theory Acknowledgements 35 References 35 Detailed Contents xvi Part II 3 Properties of random matrix theory Symmetry Classes 43 M. R. Zirnbawr Abstract 3.1 4 43 43 Introduction threefold way 45 3.2 Dyson's 3.3 Symmetry classes of disordered fermions 52 3.4 Discussion 62 References 64 Spectral statistics of unitary ensembles 66 G. W. Anderson 5 Abstract 66 4.1 Introduction 66 4.2 The orthogonal polynomial method: the setup Examples: classical orthogonal polynomials 68 4.3 4.4 The 71 4.5 Cluster functions fc-point correlation function 69 74 and Fredholm determinants 76 4.6 Gap probabilities 4.7 Resolvent kernels and 4.8 Spacings 83 References 84 Spectral statistics Janossy densities of orthogonal and 79 symplectic ensembles 86 M. Adler Abstract 86 5.1 Introduction 86 5.2 Direct 5.3 Relations between approach to the kernel K# and xjj', polynomials 6 88 via skew-orthogonal 96 References 101 Universality A. B. J. Kuijlaars 103 Abstract 103 meaning of universality Precise statement of universality 103 110 6.4 Unitary random matrix ensembles Riemann-Hilbert method 6.5 Non-standard universality classes 126 Acknowledgements 130 References 131 6.1 6.2 6.3 Heuristic 105 115 Detailed, Contents 7 xvii 135 Supersymmetry T. Guhr 8 Abstract 135 7.1 Generating functions 135 7.2 Supermathematics 137 7.3 Supersymmetric representation 142 7.4 Evaluation and structural 7.5 Circular ensembles and Colour-Flavour transformation 151 7.6 Concluding remarks Acknowledgements 152 References 153 insights 148 153 Replica approach in random matrix theory E. Kanzieper Abstract 155 8.1 Introduction 155 8.2 Early studies: heuristic approach Integrable theory of replicas Concluding remarks Acknowledgements 8.3 8.4 to replicas 159 165 173 174 References 9 155 174 Painleve transcendents 176 A. R. Its Abstract 9.1 9.2 176 Introduction 176 Riemann-Hilbert representation of the Painleve functions 9.3 9.4 Asymptotic analysis The Airy and the Sine kernels and the Painleve functions 182 185 Acknowledgements 196 References 196 10 Random matrix P. 178 of the Painleve functions van theory and integrable systems 198 Moerbeke Abstract 10.1 Matrix 198 models, orthogonal polynomials, and Kadomtsev-Petviashvili 198 10.2 (KP) Multiple orthogonal polynomials 204 10.3 Critical diffusions 214 10.4 The Tacnode process 10.5 Kernels and ^-reduced KP 222 224 Detailed Contents xviii Acknowledgements 227 References 227 231 11 Determinantal point processes A. Borodin Abstract 231 11.1 Introduction 231 11.2 Generalities 232 Loop-free Markov chains 234 11.4 Measures given by products of determinants 235 11.5 L-ensembles 240 11.6 Fock space 241 11.7 Dimer models 244 11.8 Uniform 244 11.9 Hermitian correlation kernels 245 Pfaffian point processes 246 Acknowledgements 247 References 247 11.3 11.10 12 Random matrix spanning trees representations of critical statistics 250 V. E. Kravtsov 250 Abstract 250 12.1 Introduction 12.2 Non-invariant Gaussian random matrix multifractal 12.3 theory with 252 eigenvectors Invariant random matrix theory (RMT) with log-square confinement 12.4 12.5 12.6 12.7 12.8 12.9 13 254 and self-unfolding Self-unfolding Unfolding and the spectral correlations Ghost correlation dip in RMT and Hawking radiation Invariant-noninvariant correspondence Normalization anomaly, Luttinger liquid analogy 255 and the 263 in invariant RMT not Hawking temperature 258 259 261 Conclusions 267 Acknowledgements 268 References 268 270 Heavy-tailed random matrices Z. Burda and J. Jurkiewicz Abstract 270 13.1 Introduction 270 13.2 Wigner-Levy matrices 13.3 Free random variables and free 272 Levy matrices 278 Detailed Contents xix 13.4 Heavy-tailed deformations 284 13.5 Summary 288 Acknowledgements 288 References 288 290 14 Phase transitions G. M. Cicuta and L. G. Molinari Abstract 290 14.1 Introduction 290 14.2 One-matrix models with 14.3 297 14.4 Eigenvalue matrix models Complex matrix ensembles 14.5 Multi-matrix models 302 14.6 Matrix ensembles with preferred basis 303 References 306 polynomial potential 15 Two-matrix models and biorthogonal 292 300 polynomials 310 M. Bertola Abstract 310 15.1 Introduction: chain-matrix models 310 15.2 The Itzykson-Zuber Hermitian two-matrix model Biorthogonal polynomials: Christoffel-Darboux identities The spectral curve Cauchy two-matrix models 311 References 327 15.3 15.4 15.5 16 Chain of matrices, loop equations, and topological recursion 314 320 324 329 N. Orantin 329 Abstract 16.1 17 Introduction: what is a matrix integral? formal matrix integral 16.2 Convergent versus 16.3 Loop equations 16.4 Solution of the loop 329 330 334 equations in the one-matrix model 337 16.5 Matrices coupled in a chain plus external field topological recursion Acknowledgements 346 16.6 Generalization: 351 References 352 Unitary integrals and related matrix models 352 353 A. Morozov 353 Abstract 17.1 17.2 353 Introduction Unitary integrals and the Brezin-Gross-Witten model 355 Detailed XX 17.3 Contents Theory of the Harish-Chandxa-Itzykson-Zuber integral Acknowledgements 361 References 373 376 18 Non-Hermitian ensembles B. A. Khoruzhenko and H.-J. 373 Sommers Abstract 376 18.1 Introduction 376 18.2 Complex Ginibre ensemble 377 18.3 Random contractions 381 18.4 Complex elliptic ensemble 18.5 Real and 18.6 383 quaternion-real Real and quaternion-real elliptic ensembles Acknowledgements 386 References 396 Ginibre ensembles 393 396 398 19 Characteristic polynomials £. Brezin and S. Hikami Abstract 398 19.1 Introduction 398 19.2 Products of characteristic 19.3 Ratio of characteristic polynomials polynomials formula for an external 19.4 Duality 19.5 Fourier transform source U(s\, ...,Sk) 403 405 406 408 method 19.6 Replica 19.7 Intersection numbers of moduli space of curves 409 References 4-12 415 20 Beta ensembles P. J. Forrester Abstract. 415 Log-gas systems Fokker-Planck equation and Calogero-Sutherland system 415 20.2 20.3 Matrix realization of j3 ensembles 425 20.4 Stochastic differential 429 20.1 21 399 equations 419 Acknowledgements 432 References 432 Wigner matrices 433 G. Ben Arous and A. Guionnet Abstract 433 21.1 Introduction 433 21.2 Global 435 properties Detailed Contents xxi 21.3 Local properties in the bulk 441 21.4 Local properties at the edge Acknowledgements 446 References 450 probability theory Speicher 452 450 22 Free J?. Abstract 452 22.1 Introduction 452 22.2 The moment method for several random matrices and the 22.3 concept of freeness Basic definitions 22.4 Combinatorial 22.5 Free harmonic 22.6 Second-order freeness 45 2 456 theory of freeness analysis 457 458 463 free 22.7 22.8 22.9 Operator-valued probability theory Further free-probabilistic aspects of random matrices Operator algebraic aspects of free probability Acknowledgements 463 References 469 23 Random banded and sparse matrices T. 465 465 469 471 Spencer Abstract 471 23.1 Introduction 23.2 Definition of random banded matrix 23.3 Density 23.4 Statistical mechanics and RBM 477 23.5 Eigenvectors of RBM 479 23.6 Random sparse matrices Random Schrodinger on the Bethe lattice 484 Acknowledgments 486 References 486 23.7 24 Number J. P. 473 474 of random matrix 486 theory theory Keating (RBM) of states Applications Part III 471 ensembles 491 and N. C. Snaith Abstract 491 24.1 Introduction 491 24.2 The number theoretical 24.3 Zero statistics context 491 492 Detailed Contents xxii 24.4 Values of the Riemann zeta function 24.5 Values of I-functions 499 24.6 Further 502 areas of interest 495 Acknowledgements 507 References 507 25 Random permutations and related topics 510 G. Olshanski Abstract 510 25.1 Introduction 25.2 The Ewens 510 measures, virtual permutations, and the Poisson-Dirichlet distributions 511 25.3 The Plancherel 518 25.4 The measure z-measures and Schur measures 524 Acknowledgements 529 References 529 534 26 Enumeration of maps J. Bouttier 26.1 26.2 Abstract 534 Introduction 534 Maps: definitions integrals to maps degree distribution of planar maps 535 26.3 From matrix 538 26.4 The vertex 547 26.5 From matrix models to bijections 553 References 555 27 Knot theory and matrix integrals P. Zinn-Justin and J.-B. 557 Zuher Abstract 557 27.1 Introduction and basic definitions 557 27.2 Matrix 27.3 Virtual knots 564 27.4 Coloured links 567 Acknowledgements 576 References 576 integrals, alternating links, and tangles 28 Multivariate statistics 559 578 N. El Karoui Abstract 578 28.1 Introduction 578 28.2 Wishart distribution and normal 581 28.3 Extreme 584 theory eigenvalues, Tracy-Widom laws Detailed Contents 29 xxiii 28.4 Limiting spectral distribution results 590 28.5 Condusion 593 Acknowledgements 593 References 594 Algebraic geometry and matrix models 597 I. O. Chekhov Abstract 597 29.1 Introduction 597 29.2 Moduli spaces and matrix models 598 29.3 The planar term ^ and Witten-Dijkgraaf-Verlinde- Verlinde 29.4 605 Higher expansion terms T\ and symplectic invariants 615 Acknowledgements 617 References 617 30 Two-dimensional quantum gravity 619 I. Rostov Abstract 30.1 Introduction 30.2 Liouville scaling 30.3 gravity 619 and Knizhnik-Polyakov-Zamolodchikov relation 620 Discretization of the path integral gravity and the Ising model over metrics Pure lattice 30.5 The 30.6 The 30.7 The six-vertex model 637 30.8 The q-state Potts model (0 < q < 4) Solid-on-solid and ADE matrix models 637 References 638 0(n) model (-2 < one-matrix model 625 30.4 30.9 31 619 n < 626 630 2) String theory 632 638 641 M. Marino Abstract 641 Introduction: 641 31.3 strings and matrices A short survey of topological strings The Drjkgraaf-Vafa correspondence 31.4 Matrix models and mirror symmetry 655 31.5 String theory, matrix quantum mechanics, and 31.1 31.2 644 650 related models 657 References 658 Detailed Contents xxiv 32 661 Quantum chromodynamics J. J. M. Verbaarschot Abstract 661 Introduction 32.1 661 Quantum chromodynamics 32.2 and chiral random matrix theory 663 Chiral random matrix 32.3 theory at nonzero chemical potential 671 Applications to gauge degrees Concluding remarks Acknowledgments 32.4 32.5 of freedom 678 679 References 33 678 679 Quantum chaos and quantum graphs 683 S. Mutter and M. Sieher Abstract 683 33.1 Introduction 683 33.2 Classical chaos 684 33.3 Gutzwiller's trace formula and spectral statistics 686 unitarity-preserving semiclassical approximation Analogy to the sigma model Quantum graphs 33.4 A 33.5 33.6 References 34 Resonance scattering of waves in chaotic systems Introduction 34.2 Statistics 34.3 Correlation 34.4 Other characteristics and at matter 703 the fixed energy 705 properties 709 References W. 703 703 34.1 C. 695 V. Savin Abstract 35 Condensed 694 701 Fyodorov and D. Y. V. 690 applications 716 720 physics 723 J. Beenakker Abstract 723 35.1 Introduction 723 35.2 Quantum wires 724 35.3 dots Quantum 35.4 Superconductors 737 References 741 729 Detailed Contents 36 xxv Classical and quantum optics C. W. J. Beenakker 744 Abstract 744 36.1 Introduction 744 36.2 Classical 745 36.3 Quantum optics 753 References 757 optics eigenvalues of Wishart matrices: application 37 Extreme to entangled bipartite system S. N. Majumdar 759 Abstract 759 37.1 Introduction 37.2 Spectral properties of Wishart matrices: a brief summary 762 37.3 Entangled random pure state of a bipartite system Minimum Eigenvalue distribution for quadratic matrices 766 Summary and conclusion Acknowledgements 778 References 780 37.4 37.5 . 773 779 38 Random P. 759 growth models I. Ferrari and H. Spohn 782 Abstract 782 38.1 Growth models 38.2 How do random matrices 38.3 Multi-matrix models and line ensembles 786 38.4 Flat initial conditions 788 38.5 Growth models and last passage 791 38.6 Growth models and random 793 38.7 A guide to 782 appear? percolation tiling the literature 795 References 39 Random matrices and 784 797 Laplacian growth 802 A. Zabrodin Abstract 802 39.1 Introduction 39.2 Random matrices with 39.3 Exact relations at finite N N 802 complex eigenvalues limit 39.4 Large 39.5 The matrix model 804 808 811 as a growth problem 818 Acknowledgments 822 References 822 xxvi Detailed Contents 40 Financial applications of random matrix J.-P. 41 theory: a short review 824 Bouchaud and M. Potters Abstract 824 40.1 Introduction 824 40.2 Return statistics and 40.3 Random matrix theory: the bulk 833 40.4 Random matrix 839 40.5 Applications: cleaning correlation matrices 843 References 848 portfolio theory theory: the 827 edges Asymptotic singular value distributions in information theory 851 A. M. Tulino and S. Verdu Abstract 851 851 41.2 The role of singular values in channel capacity Transforms 41.3 Main results 856 References 868 41.1 42 Random matrix theory and ribonucleic acid (RNA) folding 855 873 G. Vernizzi and H. Orland 43 Abstract 873 42.1 Introduction 873 42.2 A model for 877 42.3 Physical interpretation of the RN A matrix model 880 42.4 Large-N expansion 882 42.5 The 884 42.6 Numerical comparison 893 References 895 Complex networks G. J. Rodgers and T. Nagao 898 RNA-folding pseudoknotted homopolymer chain Abstract 898 43.1 Introduction 898 43.2 Replica analysis 43.3 Local properties References Index of scale free networks 900 909 911 912
© Copyright 2026 Paperzz