Calc BC 10.7 pt 4 Absolute Convergence

Section 10.7
Absolute Convergence
Definition of Absolute
verses
Conditional Convergence.
If
If
๐‘Ž๐‘› converges then we say that
๐‘Ž๐‘› converges absolutely.
๐‘Ž๐‘› converges, but ๐‘Ž๐‘› does not converge, then we say that
๐‘Ž๐‘› converges conditionally.
(โˆ’1)๐‘›
๐‘›
For example:
converges conditionally.
It needs the โ€œconditionโ€ of alternating to converge.
(โˆ’1)๐‘›
2๐‘›
For example:
converges absolutely.
It does NOT need the โ€œconditionโ€ of alternating to converge.
โˆž
Ex: #22 (read the directions)
๐‘›=1
1
๐‘›2 + 1
What do you think?
By comparison to the p-series where ๐‘› = 2, this series converges.
It does not alternate, so
|๐‘Ž๐‘› | =
๐‘Ž๐‘› .
Therefore, the series converges absolutely.
โˆž
Ex: #28
๐‘›=1
(โˆ’1)๐‘› ๐‘›!
๐‘›๐‘›
Do the terms go to zero?
1
๐‘›! ๐‘› ๐‘› โˆ’ 1 ๐‘› โˆ’ 2 โˆ™โˆ™โˆ™ 3 โˆ™ 2 โˆ™ 1
<
=
๐‘›
๐‘›
๐‘›
๐‘›โˆ™ ๐‘› โˆ™ ๐‘›โˆ™ โˆ™ โˆ™๐‘›โˆ™๐‘›โˆ™๐‘›
1
๐‘›!
๐‘†๐‘–๐‘›๐‘๐‘’ โ†’ 0, ๐‘ ๐‘œ ๐‘‘๐‘œ๐‘’๐‘  ๐‘›
๐‘›
๐‘›
This series converges
absolutely by the
Ratio Test.
This series converges by the A.S.T.
โ€ฆbut would it converge without the (โˆ’1)๐‘› ?
๐‘› + 1 ! ๐‘›๐‘›
๐‘› + 1 ! (๐‘› + 1)๐‘›+1
= lim
lim
๐‘›
๐‘›โ†’โˆž ๐‘›! (๐‘› + 1)๐‘›+1
๐‘›โ†’โˆž
๐‘›! ๐‘›
1
1
๐‘› + 1 ๐‘›! ๐‘›๐‘›
= <1
=
lim
= lim
1
๐‘’
๐‘›โ†’โˆž
๐‘›โ†’โˆž ๐‘›! ๐‘› + 1 ๐‘› (๐‘› + 1)
(1 + )๐‘›
๐‘›
โˆž
Ex: #32
๐‘›=1
(โˆ’1)๐‘› 23๐‘›
7๐‘›
โˆž
=
๐‘›=1
(โˆ’1)๐‘› 8๐‘›
7๐‘›
8๐‘›
lim ๐‘› โ‰  0
๐‘›โ†’โˆž 7
This series diverges by the nth Term Test.
โ€ฆand the crowd goes wild!
โˆž
Ex: #36
๐‘›=1
(๐‘›!)2
2๐‘› !
Canโ€™t fool meโ€ฆthis series
is NOT alternating!
๐‘› + 1 ! ๐‘› + 1 ! 2๐‘› !
( ๐‘› + 1 !)2 2 ๐‘› + 1 !
= lim
lim
2
๐‘›โ†’โˆž
๐‘›! ๐‘›! 2๐‘› + 2 !
๐‘›โ†’โˆž
๐‘›! / 2๐‘› !
๐‘›+1 ๐‘›+1
๐‘› + 1 ๐‘›! ๐‘› + 1 ๐‘›! 2๐‘› !
= lim
= lim
๐‘›โ†’โˆž 2 ๐‘› + 1 2๐‘› + 1
๐‘›โ†’โˆž ๐‘›! ๐‘›! 2๐‘› + 2 2๐‘› + 1 (2๐‘›)!
๐‘›+1
1
= lim
= <1
๐‘›โ†’โˆž 2 2๐‘› + 1
4
This series converges absolutely by the Ratio Test.
โˆž
Ex: #42
๐‘›=1
lim
๐‘›๐‘›
๐‘›โ†’โˆž 3๐‘›
2
(โˆ’1)๐‘›+1 ๐‘›๐‘›
Do the terms go to zero?
2
3๐‘›
Beats meโ€ฆ
=
Letโ€™s go straight to the Root Test.
lim
๐‘›โ†’โˆž
๐‘›
๐‘›๐‘›
2
3๐‘›
= lim
๐‘›โ†’โˆž
๐‘›๐‘›
3๐‘›
2
1/๐‘›
๐‘›
= lim ๐‘›
๐‘›โ†’โˆž 3
1
=0
= lim
๐‘›
๐‘›โ†’โˆž (ln 3) 3
This series converges absolutely by the Root Test.
โˆž
Ex: #46 (read the directions)
๐‘›=1
7
๐‘›=1
(โˆ’1)๐‘›+1
๐‘›๐‘›
(โˆ’1)๐‘›+1
1 1
1
1
1
1
=1โˆ’ +
โˆ’
+
โˆ’
+
๐‘›
๐‘›
4 27 256 3125 46656 823543
โ‰ˆ .7834305678
The error in an alternating series is less than the next term.
1
1
Namely: ๐‘Ž8 = 8 =
โ‰ˆ .0000000596046
8
16777216
So our answer is correct
to the 7th decimal place.
๐‘† โ‰ˆ .7834306
โˆž
Ex: #52 (read the directions)
cos 1 =
๐‘›=0
(โˆ’1)๐‘›
2๐‘› !
Five decimal places means the error must be less than .000005
๐‘›
2๐‘› !
2
2
3
6
โ‹ฎ
โ‹ฎ
8 40,320
9 362,880
8
cos 1 โ‰ˆ
๐‘›=0
1
Need
< .000005
2๐‘› !
โ€ฆ ๐‘œ๐‘Ÿ โ€ฆ 2๐‘› ! > 200,000
๐‘Ž9 is a small enough error.
(โˆ’1)๐‘›
1 1 1 1
1
1
1
1
=1โˆ’ + โˆ’ + โˆ’
+
โˆ’
+
2๐‘› !
2 4! 6! 8! 10! 12! 14! 16!
โ‰ˆ .5403023059 rounded to 5 decimal places โ‰ˆ .54030
cos 1 โ‰ˆ .5403023059, so we actually have
much greater accuracy than was requested.