Lecture 05 Analysis (I) Time Response and State Transition Matrix 5.1 State Transition Matrix 5.2 Modal decomposition --Diagonalization 5.3 Cayley-Hamilton Theorem Modern Control Systems 1 d x(t ) Ax(t ) Bu (t ) dt y(t ) Cx(t ) Du (t ) The behavior of x(t) et y(t) : 1. Homogeneous solution of x(t) 2. Non-homogeneous solution of x(t) Modern Control Systems 2 Homogeneous solution x (t ) Ax(t ) 1 sX ( s) x(0) AX ( s) 1 x(t ) L [( sI A) ]x(0) e At x(0) X ( s) ( sI A) 1 x(0) State transition matrix (t ) e At L1[( sI A) 1 ] x(t0 ) e At0 x(0) x(0) e At0 x(t0 ) At At0 x(t ) e e x(t0 ) e A ( t t 0 ) x(t0 ) (t t0 ) x(t0 ) Modern Control Systems 3 Properties 1. 1 1 (t ) e L [( sI A) ] At (0) I 1 2. (t ) (t ) 3. x(0) (t ) x(t ) 4. (t 2 t1 ) (t1 t0 ) (t 2 t0 ) 5. (t ) (kt) k Modern Control Systems 4 Non-homogeneous solution d x(t ) Ax(t ) Bu (t ) dt y(t ) Cx(t ) Du (t ) sX ( s ) x(0) AX ( s ) BU ( s ) ( sI A) X ( s ) x(0) BU ( s ) 1 1 X ( s ) ( sI A) x(0) ( sI A) BU ( s ) x(t ) L1[( sI A) 1 ]x(0) L1[( sI A) 1 BU ( s )] t x(t ) (t ) x(0) (t ) Bu ( )d 0 Convolution Homogeneous Modern Control Systems 5 t x(t ) (t ) x(0) (t ) Bu ( )d 0 t x(t ) (t t0 ) x(t0 ) (t ) Bu ( )d t0 t y (t ) C(t t0 ) x(t0 ) C(t ) Bu ( )d Du (t ) t0 Zero-input response Zero-state response Modern Control Systems 6 Example 1 1 x1 0 x1 0 x 2 3 x 1u (t ) 2 2 let x(0) 0 0 T t 2t 2 e e (t ) L1[( sI A) 1 ] e At t 2t 2 e 2 e e 1 e 2t e t 2e 2t t x(t ) (t ) x(0) (t ) Bu ( )d 0 Ans: 1 3 x1 2e t e 2t 2 x 2 t 2 2e 2e 2t Modern Control Systems L1[( sI A) 1 BU (s)] 7 1 x1 0 x1 0 x 2 3 x 1u (t ) 2 2 let x2 (0) s x1 (0) s x(0) 0 0 T 1 u s 1 x2 s 1 x1 1 y 3 Using Maison’s gain formula 2 1 3s 1 2 s 2 s 1 (1 3s 1 ) s 2 s 2 x1 ( s ) x1 (0) x 2 ( 0) U (s) 2s 2 s 1 s 1 x2 ( s ) x1 (0) x 2 ( 0) U (s) Modern Control Systems 8 How to find State transition matrix 1 1 (t ) e L [( sI A) ] Methode 1: Methode 2: At (t ) L1[( sI A) 1 ] (t ) e At Methode 3: Cayley-Hamilton Theorem Modern Control Systems 9 Methode 1: 1 1 (t ) L [( sI A) ] 1 0 x1 0 0 x1 0 x 0 4 3 x 1 0 u1 2 2 u x3 1 1 2 x3 0 1 2 x1 y1 (t ) 1 0 0 y (t ) 0 0 1 x2 x 2 3 ( sI A) 1 adj ( sI A) sI A s 2 6 s 11 s 2 3 1 2 3 s 2 3 s s ( s 4)( s 2) 3 3s 2 s4 s 1 s 4 s Modern Control Systems 10 Method 2: Diagonalization Example 4.5 0 x1 1 x1 1 0 x 0 2 0 x 1u 2 2 0 3 x3 1 x3 0 x1 y 6 6 1 x2 x3 e t At Φ (t ) e 0 0 0 e 2 t 0 Modern Control Systems diagonal matrix 0 0 e 3t 11 Diagonalization via Coordinate Transformation Plant: A R nn x Ax Bu y Cx Du Eigenvalue of A: i , satisfying Avi i vi , i 1,,n Assume that all the eigenvalues of A are distinct, i.e. 1 2 3 n Then eigenvectors, v1, v2 , ,vn Coordinate transformation matrix are independent. T [v1, v2 , ,vn ] Λ T 1 AT is a diagonal matrix. Modern Control Systems 12 0 1 2 T 1 AT 0 n where e At Te ΛtT 1 e1t e Λt 0 e2t 0 λ nt e Modern Control Systems 13 New coordinate: T 1 AT 1 1 2 0 n 0 ξ T -1x 0 0 2 0 0 0 0 1 0 2 n n A T 1 AT B T 1 B (4.1) C CT i (t ) ii (t ), i 1,,n Solution of (4.1): i (t ) e ti (0), i 1, ,n i 1 x(t ) T (t ) v1e1t ξ1 (0) v2e2t ξ 2 (0) vn ent ξ n (0), ξ (0) T x(0) The above expansion of x(t) is called modal decomposition. Hence, system asy. stable ⇔ all the eigenvales of A lie in LHP Modern Control Systems 14 Example i distinct 2 1 1 x x , x ( 0 ) 2 1 2 1 1, 2 3 Find eigenvector 1 v11 1 2 (1I A)v1 0 1 2 v12 1 v11 1 v12 1 1 v21 3 2 (2 I A)v2 0 3 2 v22 1 v1 1 v2 1 T v1 1 1 v2 1 1 T 1 1 1 1 2 1 1 T 1 AT 1 0 0 3 ξ T 1 x Modern Control Systems 15 1 0 ξ ξ 0 3 1 11 2 3 2 (4.2) 1 (0) (0) T x(0), (0) ( 0 ) 2 1 Solution of (4.1): x(t ) Tξ (t ) v1e1t ξ1 (0) v2e2t ξ2 (0) 3 2 1 ξ (0) T x (0) ξ (0) 1 2 3 t 1 3t 2 e 2 e 3 t 1 1 3t 1 x(t ) e e 3 1 t 3 t 1 2 1 2 e e 2 2 Modern Control Systems 16 In the case of A matrix is phase-variable form and 1 2 3 n P v1 v2 1 1 1 2 n vn 1 n 1 n 1 n 1 2 n 1 1 2 1 P AP t e Pe P At 3 Vandermonde matrix for phase-variable form 4 1 Modern Control Systems 17 Example: i distinct 1 0 1 A 0 1 0 0 0 2 Repeated eigenvalue case, i.e. i is not distinct I A 1 0 1 0 1 0 0 0 2 ( 1)( 1)( 2) 1 2 0 0 1 v1 (1 I A)V1 0 0 0 v2 0 0 0 1 v3 v1 1 0v1 0v2 v3 0 v2 0 v3 0 depend v1 0 0v1 0v2 v3 0 v2 1 v3 0 V1 V2 Modern Control Systems 18 3 2 1 0 1 v1 (3 I A)V3 0 1 0 v2 0 0 0 0 v3 v1 1 v1 0v2 v3 0 v2 0 v3 1 P V1 V2 1 0 1 1 0 0 V3 0 1 0 P 1 AP 0 1 0 0 0 1 0 0 2 Modern Control Systems 19 Case 3: i distinct Jordan form 1 2 3 P v1 v2 v3 P AP Jordan 1 form Generalized eigenvectors (1 I A)v1 0 (1 I A)v2 v1 (1 I A)v3 v2 e Aˆ t e 1t 1 1 1 ˆ P AP A 1 1 1 te 1t e 1t e 1t 1t te e 1t t2 2 Modern Control Systems 20 Example: 3 1 A 1 1 3 1 1 1 ( 2) 2 1 1 v11 (1I A)V1 0 1 1 v12 v11 1 v12 1 1 1 v21 1 (1I A)V2 1 1 v22 1 P V1 v21 1 v22 0 1 1 2 1 1 ˆ V2 P AP A 1 0 0 2 e 2t e Aˆ t te2t At Aˆ t 1 e Pe P 2t e Modern Control Systems 21 Method 3: Cayley-Hamilton Theorem Theorem: Every square matrix satisfies its char. equation. Given a square matrix A, A R nn. Let f(λ) be the char. polynomial of A. Char. Equation: f ( ) n an 1n 1 a1 a0 0 By Caley-Hamilton Theorem f ( A) An an 1 An 1 a1 A a0 I 0 Modern Control Systems 22 An an 1 An 1 a1 A a0 I 0 An an 1 An 1 a1 A a0 I An 1 an 1 An a1 A2 a0 A an 1 (an 1 An 1 a1 A a0 I ) a1 A2 a0 A any f ( A) k0 I k1 A k 2 A k n A 2 n f ( A) 0 I 1 A 2 A n 1 A 2 n 1 n 1 k 0 k A k Modern Control Systems 23 Example: 100 A ? 1 2 A 0 1 f ( A) A100 0 I 1 A let 1 2 0 2 ( 1)( 2) 0 , 1 1, 2 2 f (1 ) 1 100 0 11 1100 0 2 2100 100 2 f (2 ) 0 12 2 1 2100 1 100 101 1 0 1 2 1 2 2 100 100 100 f ( A) A (2 2 ) (2 1) 0 1 0 1 1 0 Modern Control Systems 24 Example: 3 1 A 2 0 e ? At 3 1 0 , 1 1, 2 2 2 f (1) e t 0 11 0 1 0 2e t e 2t f (2) e 2t 0 12 0 1 2 1 e 2t e t t e 2e e At 2t 1 1 0 2t t 3 0 1 ( e e ) 2 0 2e 2 t e t 2t t 2 e 2 e e 2 t e t 2t t e 2e Modern Control Systems 25 Modern Control Systems 26 Modern Control Systems 27 Modern Control Systems 28 Modern Control Systems 29 Modern Control Systems 30 Modern Control Systems 31 Example: 2 0 1 1 x Ax bu 4 1 4 x 1u 2 0 1 0 y 1 0 1x 0,1,1 1 1 0 v1 4, v 2 0, 1 2 1 0 Modern Control Systems 32 Example: 0 1 0 0 x Ax bu 0 0 1 x 0u 2 1 2 1 y 1 0 0x Modern Control Systems 33
© Copyright 2026 Paperzz