GEOMETRY STUDY GUIDE FOR CH 4 TEST Find the value of x

GEOMETRY STUDY GUIDE FOR CH 4 TEST
Find the value of x. Justify your first line of work.
1.
2.
3.
4.
What postulate or theorem proves the triangles congruent, if any?
5.
6.
7.
7.
8.
9.
PROOFS
10. Given: QP bisects RQS. QR  QS
Prove: ∆RQP  ∆SQP
STATEMENTS
REASONS
11. Given: JL bisects KLM, K  M
Prove: JKL  JML
STATEMENTS
REASONS
12.
Given: PR bisects QPS and QRS.
Prove: PQ  PS
STATEMENTS
REASONS
13.
Given: NO || MP, N  P
Prove: MN ≅ OP
STATEMENTS
REASONS
For some more practice with congruent triangle proofs, go to
http://www.letspracticegeometry.com/wp-content/uploads/2011/11/proofs-involving-congruenttriangles.pdf
http://www.regentsprep.org/regents/math/geometry/gp4/preprooftriangles.htm
Fore practice with CPCTC proofs, go to
http://www.letspracticegeometry.com/wp-content/uploads/2011/11/proofs-involving-CPCTC.pdf
http://www.ixl.com/math/geometry/proofs-involving-corresponding-parts-of-congruent-triangles
ANSWERS TO STUDY GUIDE
GEOMETRY STUDY GUIDE FOR CH 4 TEST
Find the value of x. Justify your first line of work.
1.
2.
3.
4.
What postulate or theorem proves the triangles congruent, if any?
5.
6.
7.
7.
8.
9.
PROOFS
10. Given: QP bisects RQS. QR  QS
Prove: ∆RQP  ∆SQP
STATEMENTS
QP bisects RQS, QR congruent to QS
Angle RQP congruent to Angle SQP
QP congruent to QP
Triangle RQP congruent to Triangle SQP
REASONS
Given
Defn of bisect
Reflexive Property
SAS
11. Given: JL bisects KLM, K  M
Prove: JKL  JML
STATEMENTS
JL bisects KLM, Angle K congruent to Angle M
Angle KLJ congruent to Angle MLJ
JL congruent to JL
Triangle JKL congruent to Triangle JML
REASONS
Given
Defn of bisect
Reflexive Property
AAS
12.
Given: PR bisects QPS and QRS.
Prove: PQ  PS
STATEMENTS
PR bisects QPS and QRS
Angle QPR congruent to Angle SPR
Angle QRP congruent to Angle SRP
PR congruent to PR
Triangle QPR congruent to Triangle SPR
PQ congruent to PS
REASONS
Given
Defn of bisect
Defn of bisect
Reflexive Property
ASA
CPCTC
13.
Given: NO || MP, N  P
Prove: MN ≅ OP
STATEMENTS
NO is parallel to MP, Angle N congruent to Angle P
Angle NOM congruent to Angle PMO
OM congruent to OM
Triangle NMO congruent to Triangle PMO
MN congruent to OP
REASONS
Given
Alt Interior Angle Theorem
Reflexive Property
AAS
CPCTC