Geometry Notes G.3 (2.6, 2.7) Segment, Angle, and Angle Pair Proofs Mrs. Grieser Name: ____________________________________________ Date: _____________ Block: _______ Segment and Angle Proofs Theorems: Statements (conjectures) that have been proven. Once we have proven a theorem, we can use it in other proofs. Congruence of Segments Theorems Segment congruence is reflexive, symmetric, and transitive. For any segment AB , AB AB Congruence of Angles Theorems Angle congruence is reflexive, symmetric, and transitive. Reflexive: For any angle A, _____________ Symmetric: If AB CD then CD AB Symmetric: If A B , then ___________ Transitive: If AB CD and CD EF then Transitive: If A B and B C then Reflexive: AB EF Reflexive Theorem of Segment Congruence: Given: AB is a line segment. Prove: AB AB Statement Reasons 1) Given 1) AB is a line segment 2) AB AB 3) AB AB 2) Reflexive property of = 3) Definition of segments Symmetric Theorem of Segment Congruence: Given: AB CD Prove: CD AB Statement Reasons 1 Given 1) AB CD ___________ Reflexive Theorem of Angle Congruence: Given: A is an angle. Prove: A A Statement Reasons 1) A is an angle 1) Given 2) mA mA 2) Reflexive property of = 3) A A 3) Definition of angles Symmetric Theorem of Angle Congruence: Given: A B Prove: B A Statement Reasons 1) Given 1) A B 2) AB CD 2)______________________ 2) mA mB 2)_______________________ 3) CD AB 3)______________________ 3) mB mA 3)_______________________ 4) CD AB 4)______________________ 4) B A 4)_______________________ Transitive Theorem of Segment Congruence: Given: AB CD and CD EF Prove: AB EF Statement Reasons 1) Given 1) AB CD CD EF 2) AB CD CD EF 2) Definition of segments 3) AB EF 3)________________________ 4) AB EF 4)________________________ Transitive Theorem of Angle Congruence: Given: A B and B C Prove: A C Statement Reasons 1) Given 1) A B B C 2) _____________ 2) ___________________ _____________ 3) ____________ 4) A C 3) ___________________ 4) ___________________ Geometry Notes G.3 (2.6, 2.7) Segment, Angle, and Angle Pair Proofs Mrs. Grieser Page 2 Complete the proofs: Given: AD = 8, BC = 8; Given: AD = 12, AB = 12, BC CD BC CD , AD CD Prove: AD CD Statement 1) AD = 8 BC = 8 2) AD = BC Reasons 1) Given 3) AD BC 3) ________________________ 4) BC CD 4) ________________________ 5) AD CD 5)________________________ 2) ________________________ Given: ABC CBD , mCBD 50 , Reasons 1) Given 2) ____+_____ = mCBE 2)____________________ mCBE 100 ________________ 7) ABC DBE 2) _______________________ 3) ________________________ 4) _______________________ AD CD 5) BC AD 5) _______________________ 6) BC AB 6) _______________________ CD AD Prove: Perimeter of ABCD = 4AB Statement 1) ABC CBD , mCBD 50 , 50 mDBE 100 mDBE 50 mCBD = ________ 3) AD AB 4) BC CD Reasons 1) Given Given: AB BC , BC CD , mCBE 100 Prove: ABC DBE 3) 4) 5) 6) Prove: BC AB Statement 1) AD = 12 AB = 12 2) AD = AB 3) ___________________ 4) ____________________ 5) __________________ 6) __________________ 7) ____________________ Statement 1) AB BC , BC CD , Reasons 1) ____________________ CD AD 2) AB BC , BC CD , CD AD 3) AB CD , AB AD 4) Perimeter ABCD = AB + BC + CD + AD 5) _____________________ 6) _____________________ 2) ____________________ 3) ____________________ 4) ____________________ 5) __________________ 6) __________________ Solve for x. Explain your steps. Given: D DEG , EG bisects DEF Angle Pair Proofs New Postulate: o Linear Pair Postulate: If two angles form a linear pair, then they are supplementary. o 1 and 2 form a linear pair, so 1 and 2 are supplementary and m1 m 2 __________ . Geometry Notes G.3 (2.6, 2.7) Segment, Angle, and Angle Pair Proofs Mrs. Grieser Page 3 New Theorems: Right Angle Congruence Theorem All right angles are congruent. Proof: Given: 1 and 2 are right angles Prove: 1 2 Statements Reasons 1) __________________ 1 2 1) and are right angles 2) m1 90 ; 2) ___________________ m2 90 3) m1 m2 3) ___________________ 4) 1 2 4) ___________________ Proof: Given: 1 and 2 are supplements; 3 and 2 are supplements Prove: 1 3 Statements Reasons 1) _______________ 1 2 1) and are supplements 3 and 2 are supplements 2)________________ 2) m1 m2 180 m3 m2 180 3) m1 m2 m3 m2 3)________________ 4)________________ 4) m1 m3 5)________________ 5) 1 3 Congruent Complements Theorem If 2 angles are complementary to the same angle (or to congruent angles), then they are . Proof: Given: 1 and 2 are complements 1 and 3 are complements Prove: 2 3 Statements Reasons 1)______________ 1) 1 and 2 are complements 1 and 3 are complements 2)______________ 2) m1 m2 90 m1 m3 90 3) m1 m2 m1 m3 4) m2 m3 5) 2 3 Congruent Supplements Theorem If 2 angles are supplementary to the same angle (or to congruent angles), then they are congruent. 3)______________ 4)______________ 5)_____________ Vertical Angles Congruence Theorem Vertical angles are congruent. Proof: Given: 1 and 3 are vertical angles Prove: 1 3 Statements Reasons 1)_______________ 1) 1 and 3 are vertical angles 2) 1 and 2 are a 2)________________ linear pair; 2 and 3 are a linear pair 3) Linear pair 3) 1 and 2 are postulate supplementary; 2 and 3 are supplementary 4) Congruent 4) 1 3 supplements theorem Applications of the Theorems/Postulate Example 1: Find the angles; what postulates/theorems are used? a) If m1 112 , find m2 , m3 , and m4 b) If m2 67 , find m1, m3 , and m4 c) If m4 71 , find m1, m2 , and m3 Geometry Notes G.3 (2.6, 2.7) Segment, Angle, and Angle Pair Proofs Mrs. Grieser Page 4 Example 2: Given: 1 and 2 are complementary; 2 and 3 are complementary; 1 and 4 are complementary Identify pairs of congruent angles. Example 3: Find the value of the variables in the figure. Example 4: Given: S is a right angle; mRTS 40 , mRTU 50 Prove: S STU Statements 1) S is a right angle; mRTS 40 , mRTU 50 2) _____= mRTS mRTU Reasons 1) ________________________________ 3) mSTU = _____ + _______ 3) Substitution property of = 4) mSTU = _____ 5) STU is a right angle. 4) Simplify 5)_________________________________ 6) ____________________ 6) Right angle congruence theorem 2)_________________________________ Example 5: The figure shows the side view of a picnic table. Given: 1 4 Prove: 2 3 Statements 1) 1 4 2) 1 and _______ are a linear pair 3 and _______ are a linear pair 3) ________________________ ________________________ 4) 2 3 Reasons 1) _________________________ 2) _________________________ 3) Linear pair postulate 4) _________________________ You Try... a) Find mAEB b) Given: 4 is a right angle Prove: 2 and 4 are supplementary Statements 1) 4 is a right angle 2) __________________________ 3) 2 4 4) __________________________ 5) m2 90 6) __________________________ Reasons 1) _________________________ 2) Def. of a rt. angle 3) _________________________ 4) Def. of angles 5) _________________________ 6) m2 m4 180
© Copyright 2026 Paperzz