Supplementary material Chance and necessity in the - LINK

Supplementary material
Chance and necessity in the evolution of minimal metabolic networks
Csaba Pál, Balázs Papp, Martin J. Lercher, Péter Csermely, Stephen G. Oliver and Laurence D. Hurst
Table of Contents
Supplementary Methods...........................................................................................................................2
I. Finding homologues across species. ................................................................................................2
II. Identification of horizontally transferred genes..............................................................................3
III. Impact of block deletions on minimal reaction sets .......................................................................5
IV. Receiver Operating Characteristic Curve (ROC) method .............................................................6
V. Systematic identification of cofactors synthesized by Wigglesworthia...........................................7
Modelling conditions used for simulations of minimal metabolic networks under nutrient-rich
conditions .................................................................................................................................................8
Supplementary Table 1.a List of major biosynthetic components and their contributions to the
biomass of E. coli.................................................................................................................................8
Supplementary Table 1.b List of metabolites available for uptake ......................................................9
Modelling conditions used in the simulations of Buchnera gene content evolution ..............................10
Supplementary Table 2.List of major biosynthetic components and their contributions to the biomass
of Buchnera........................................................................................................................................10
Metabolites available for uptake .......................................................................................................11
Modelling conditions used in the simulations of Wigglesworthia gene content evolution.....................12
Supplementary Table 3a.List of major biosynthetic components and their contributions to the
biomass of Wigglesworthia................................................................................................................12
Supplementary Table 3b List of metabolites available for uptake .....................................................14
Supplementary Figure 2. Comparison of reaction content of simulated and Wigglesworthia glossinidia
metabolic networks.................................................................................................................................15
Supplementary Table 4. The impact of block deletions on the properties of minimal minimal networks
................................................................................................................................................................17
Supplementary Table 5. Accuracy of reaction content predictions ........................................................18
Supplementary Table 6. Accuracy of reaction content prediction in different metabolic subsystems ...19
Table 6a Buchnera.............................................................................................................................19
Table 6b Wigglesworthia...................................................................................................................20
Metabolic pathways showing variability in retention across simulations...............................................21
Supplementary Table 7. .....................................................................................................................21
Supplementary Table 8. Examples of alternative metabolic solutions during reductive evolution of
Buchnera ................................................................................................................................................22
Supplementary Table 9. Cross comparison of Buchnera and Wigglesworthia reaction content
predictions ..............................................................................................................................................23
Supplementary Table 10. Physiologically coupled reactions are frequently lost together in
endosymbionts........................................................................................................................................24
Supplementary Table 11. List of 140 bacterial species investigated and their lifestyles........................26
Supplementary Table 12. Endosymbiont genes without orthologues in E. coli K-12 ............................28
References ..............................................................................................................................................32
1
Supplementary Methods
I. Finding homologues across species.
Homologues of E. coli genes present in the metabolic network were identified for 140 completely
sequenced bacterial species using STRING1. Lifestyle information was compiled from
http://www.genomenewsnetwork.org/resources/sequenced_genomes/genome_guide_index.shtml and
from the corresponding genome articles (Supplementary Table 11). For detailed comparisons of model
predictions with gene content of endosymbiotic genomes, we identified orthologues by reciprocal best
Blast hits between each endosymbiont and E. coli. This resulted in orthology assignments to all but a
handful of endosymbiont genes. Of the genes without orthology assignment, most had no gene with
significant sequence similarity in E. coli K-12 (mostly hypothetical proteins), while a few were
apparent duplicates (Supplementary Table 12). The presence of reactions in endosymbionts is inferred
from gene orthology in combination with known enzymatic functions in E.coli. Detailed results of all
simulations are in Supplementary Table 13.
2
II. Identification of horizontally transferred genes
Here we briefly describe how horizontally transferred genes were identified. For more details, see 2.
Inference of phylogenetic genome tree
Putative orthologous as well as paralogous proteins were identified for 56 completely sequenced
proteobacteria species (Supplementary figure 1) using STRING3, a database that integrates and extends
the widely used clusters of orthologous groups (COG)4. To exclude paralogues, only genes present as a
single copy in all investigated genomes were retained. Each of the remaining 47 protein families was
aligned using MUSCLE5 with default settings. Highly variable parts were excluded from the
alignments through GBLOCKS6. We constructed maximum-likelihood phylogenies from the
concatenated protein sequences with PHYML7 under an empirical substitution matrix8 and with a Γmodel to account for among-site variation in evolutionary rates. Comparison with independent
phylogenetic studies9-12 confirmed the branching order of all previously investigated species sets.
Below, we investigate 51 enterobacteria species, using the Helicobacter/Wolinella/Campylobacter
clade as outgroups (see Supplementary Figure 1).
Parsimony analysis of gene acquisition and loss
Presence and absence calls for gene families across all 51 proteobacterial species were obtained from
STRING3. Using the protocol of Bousseau and colleagues9, the most parsimonious scenarios for geneloss and horizontal transfer events (gene gains) on the rooted phylogeny were reconstructed from these
data using generalized parsimony. We estimated gains and losses under both ACCTRAN (accelerated
transformation) and DELTRAN (delayed transformation) algorithms as implemented in PAUP*
(version 4.0). All results are obtained using relative penalties for horizontal gene transfer and deletions
of 2:1 and the DELTRAN algorithm. The relative penalty value of 2:1 was previously shown to be
biologically realistic13. We found 101 metabolic genes that were putatively transferred since the
separation of the two lineages. Only 2 of them have a significant fitness contribution under the
investigated conditions, confirming the reliability of the method. The transferred genes were excluded
from the statistical analyses as indicated in the main text and in Supplementary Tables 3. Because all
Buchnera genes have unquestionable E. coli orthologues, this reduced network represents a
reconstruction of that part of the ancestral metabolic network that is relevant to the evolution of
Buchnera lineages.
3
2
1
3
4
5
6
100
100
100
100
100
76
100
100
100
100
100
Escherichia coli K12
Shigella flexneri 2a 2457T
100 Escherichia coli EDL933
Escherichia coli O6
100
Salmonella typhimurium
100
100
Salmonella enterica
Yersinia pestis Medievalis
100
Photorhabdus luminescens
Buchnera aphidicola Sg
100
100 Buchnera aphidicola APS
Buchnera aphidicola Bp
100
Wigglesworthia brevipalpis
99
Blochmannia floridanus
Pasteurella multocida
95
100 Haemophilus influenzae
Haemophilus ducreyi
Vibrio vulnificus CMCP6
100
95 Vibrio vulnificus YJ016
100 Vibrio parahaemolyticus
100
Vibrio cholerae
Photobacterium profundum
Shewanella oneidensis
Pseudomonas syringae
100
100 Pseudomonas putida
Pseudomonas aeruginosa
Coxiella burnetii
Xanthomonas axonopodis
100
Xanthomonas campestris
100
Xylella fastidiosa 9a5c
100
Xylella fastidiosa 700964
Neisseria meningitidis A
100
100 Neisseria meningitidis B
Chromobacterium violaceum
98
Bordetella bronchiseptica
100
100 Bordetella parapertussis
100
Ralstonia solanacearum
Nitrosomonas europaea
Brucella suis
100
100 Brucella melitensis
Rhizobium loti
100
Rhizobium meliloti
100
100
Agrobacterium tumefaciens Cereon
Bradyrhizobium japonicum
100
100
Rhodopseudomonas palustris
Caulobacter crescentus
Rickettsia prowazekii
100
100 Rickettsia conorii
Wolbachia sp. wMel
Desulfovibrio vulgaris
95
94 Geobacter sulfurreducens
Bdellovibrio bacteriovorus
Helicobacter pylori 26695
100
100 Helicobacter pylori J99
Outgroup
100 Helicobacter hepaticus
Wolinella succinogenes
Campylobacter jejuni
99
99
}
Supplementary Figure 1. Phylogenetic tree of 56 proteobacterial species
Numbers with arrows indicate the branches on which horizontal gene transfer events leading to E. coli
K12 were considered in the paper. Numbers to the right of internal branches give bootstrap proportions
supporting each branch.
4
III. Impact of block deletions on minimal reaction sets
Deletions may frequently affect genomic regions larger than single genes (especially in the initial stage
of genome reduction)14. To systematically explore the impact of block deletions on minimal reaction
sets, we further developed the basic evolutionary model described in the main text. Specifically, we
examined the effect of block deletions on: i) the size of minimal reaction sets and ii) the similarity in
reaction content across simulations. The annotated E. coli K12 genome was used as a starting point15
(we did not attempt to reconstruct the gene order of ancestral species). The modified algorithm is as
follows:
1) We remove a randomly chosen block of contiguous genes in the genome. Under the
reasonable assumption that deletion size follows an exponential distribution, the probability of
deleting a block with n genes is P(n) = qn, where q (0<q<1) specifies the exact shape of the
distribution.
2) We calculate the impact of deleting these genes on the production rate of major biosynthetic
components. Deletion of genes not present in the reconstructed E. coli metabolic network16
was assumed to have no effect on growth. While this is clearly not the case, this method
allows us not only to ignore unknown genetic interactions among non-metabolic genes, but
(more importantly) it overestimates the possible sizes of deleted blocks.
3) If growth rate is nearly unaffected (in this case less than 1% effect), the deletion is assumed to
be viable, and the genes are considered to be permanently lost (see Methods). Otherwise, the
genes are restored to the genome. This procedure is repeated until no further enzymes in the
metabolic network can be deleted; i.e. all remaining genes are essential for survival of the cell.
4) This simulation is repeated 500 times, with each run providing an independent evolutionary
outcome.
The results of simulations are summarized in Supplementary Table 4.
5
IV. Receiver Operating Characteristic Curve (ROC) method
Two values were assigned to each E. coli metabolic gene: a binary variable representing presence or
absence of the gene in a given Buchnera genome, and the number of occurrences of the gene in 500
simulated reduced genomes. For each cut-off (c) between 1 and 500, we took those genes that are
present in at least c of the simulated genomes as those predicted to be also present in each of the
Buchnera strains. Figure 2a plots the number of true-positive predictions against the number of falsepositive predictions for each cut-off. The empirical area under this ROC curve was then calculated as in
ref 17. The area under the curve gives the probability that a reaction preserved in Buchnera is present in
more simulated reduced networks than a reaction lost since divergence from E. coli. As this statistic is
equivalent to the quantity calculated in Mann-Whitney statistical tests17, we used the Mann-Whitney U
test for the null hypothesis that the area under the ROC curve is 0.5 (i.e. the method has no
discriminatory value).
6
V. Systematic identification of cofactors synthesized by Wigglesworthia
Although physiological studies indicate that Wigglesworthia most likely provides thiamine, pantothenic
acid, pyridoxine, biotin and folic acid to its host18, genomic data suggest that it has also retained the
ability to synthesize some additional cofactors (e.g. protohaeme19, 20, ubiquinone20). To explore
systematically the set of cofactors most likely synthesized by Wigglesworthia, given its gene content,
we sought the biomass composition that maximised the accuracy of the evolutionary simulation.
First, we compiled a list of potentially relevant metabolites from the ‘Cofactor and Prosthetic
Group Biosynthesis’ sub-system of the metabolic network16 (see table below). Note that compounds
already included in the biomass equation of E. coli (NAD, FAD) and the five cofactors known to be
provided to the host18 were treated as fixed components of the biomass equation and not listed here.
Next, we added each of these candidate metabolites to the biomass equation one at a time and repeated
the evolutionary simulations. The metabolite resulting in the best prediction was kept and a new round
of simulations was started, adding again each of the remaining compounds to the biomass one at a time
(greedy algorithm). This iterative procedure resulted in a considerable increase of prediction accuracy
from 0.758 to 0.844 (as measured by the area under the ROC curve) by complementing the biomass
with haeme O, ubiquinone and glutathione (see table below).
Importantly, these results, while showing partial agreement with previous suggestions, shed
some new light on the metabolic capability of Wigglesworthia: Although synthesis of ubiquinone had
been proposed previously20, we report that synthesis of haeme O in addition to protohaeme19, 20
substantially improves the prediction. Haeme O is a prosthetic group of cytochrome o terminal
oxidase21 and is synthesized by transferring of a farnesyl group to protoheme by haeme O synthase22
(protohaeme + farnesyl diphosphate + H2O → haeme O + pyrophosphate). Simulations run by
including haeme O in the biomass equation correctly predict not only the presence of haeme O
synthase in Wigglesworthia, but also the retention of the pathway leading to farnesyl diphosphate.
Furthermore, our evolutionary simulations predict that the ability to synthesise glutathione is also
retained by the symbiont. Moreover, we found that addition of cobalamin, sirohaeme or menaquinone
to the biomass decreased the accuracy of prediction, suggesting that these compounds cannot be
produced by Wigglesworthia.
Compound added to
biomass
Menaquinone 8
Ubiquinone-8
5,6,7,8-Tetrahydrofolate
Protohaeme
Sirohaeme
Haeme O
Riboflavin
Cob(I)alamin
Flavin mononucleotide
Reduced glutathione
Effect on prediction
accuracy
−
+
0
0
−
+
0
−
0
+
7
Modelling conditions used for simulations of minimal metabolic networks
under nutrient-rich conditions
Supplementary Table 1.a List of major biosynthetic components and their contributions to the biomass
of E. coli
Biochemical knowledge on the biomass composition of E. coli is represented in the model as a drain of
precursors and building blocks into biomass, that is a biochemical equation where the stoichiometric
coefficients of the metabolites reflect their cellular concentrations (mmol / g dry weight). The biomass
equation of the E. coli model can be found in the additional data file 1 of ref 16.
contribution
(mmol / g dry
weight)
0.05
5x10-5
0.488
0.0010
0.281
0.229
0.229
45.73
1.29x10-4
6.0x10-6
0.154
0.203
45.56
0.09
0.276
0.428
0.0084
0.326
0.146
0.00215
0.205
0.0070
3.0x10-6
0.241
0.402
component
contribution
(mmol / g dry
weight)
0.126
0.087
0.0247
0.0254
0.0254
0.0247
1.0x10-5
0.25
0.25
0.582
5.0x10-5
1.3x10-4
4.0x10-4
0.001935
0.0276
4.64x10-4
0.176
0.21
5.2x10-5
0.035
0.054
0.131
0.0030
0.136
5-Methyltetrahydrofolate
Acetyl-CoA
L-Alanine
AMP
L-Arginine
L-Asparagine
L-Aspartate
ATP
Cardiolipin
Coenzyme A
Glycogen
GTP
H2O
L-Histidine
L-Isoleucine
L-Leucine
Lipopolysaccharide
L-Lysine
L-Methionine
NAD
L-Serine
Spermidine
Succinyl-CoA
L-Threonine
L-Valine
8
component
CTP
L-Cysteine
dATP
dCTP
dGTP
dTTP
FAD
L-Glutamine
L-Glutamate
Glycine
NADH
NADP
NADPH
Phosphatidylethanolamine
Peptidoglycan
Phospatidylglycerol
L-Phenylalanine
L-Proline
Phosphatidylserine
Putrescine
L-Tryptophan
L-Tyrosine
UDPglucose
UTP
Supplementary Table 1.b List of metabolites available for uptake
The specific uptake rates of individual compounds were not constrained in these simulations, but the
total carbon influx was limited to 60 mmol/g/h.
component
(R)-Pantothenate
(S)-Propane-1,2-diol
1,5-Diaminopentane
2-Dehydro-3-deoxy-Dgluconate
2-Oxoglutarate
3-(3-hydroxyphenyl)propionate
3-hydroxycinnamic acid
4-Aminobutanoate
Acetaldehyde
Acetate
Acetoacetate
Adenine
Adenosine
Allantoin
Ammonium ion
AMP
Butyrate (n-C4:0)
Choline
Citrate
CO2
Cob(I)alamin
Cyanate
Cytidine
Cytosine
Deoxyadenosine
Deoxycytidine
Deoxyguanosine
Deoxyinosine
Deoxyuridine
D-Fructose
D-Galactarate
D-Galactonate
D-Galactose
D-Galacturonate
D-Glucarate
D-Gluconate
D-Glucosamine
D-Glucose
D-Glucose 6-phosphate
D-Glucuronate
D-Glyceraldehyde
Dihydroxyacetone
Dimethyl sulfide
Dimethyl sulfoxide
D-Lactate
D-Mannitol
component
D-Mannose
D-Mannose 6-phosphate
D-Ribose
D-Sorbitol
component
L-Serine
L-Tartrate
L-Threonine
L-Tryptophan
D-Xylose
Ethanol
L-Tyrosine
L-Valine
Fe2+
Formate
Fumarate
Galactitol
gamma-butyrobetaine
Glycerol
Glycerol 3-phosphate
Glycine
Glycine betaine
Glycolate
Guanine
Guanosine
H+
H2O
Hexadecanoate (n-C16:0)
Hypoxanthine
Indole
Inosine
K+
Lactose
L-Alanine
L-Arabinose
L-Arginine
L-Asparagine
L-Aspartate
L-Carnitine
L-Cysteine
L-Fucose
L-Fucose 1-phosphate
L-Glutamate
L-Glutamine
L-Histidine
L-Idonate
L-Isoleucine
L-Leucine
L-Lysine
L-Methionine
L-Phenylalanine
L-Proline
L-Rhamnose
Maltohexaose
Maltopentaose
Maltose
Maltotetraose
Maltotriose
Melibiose
Meso-2,6-Diaminoheptanedioate
N-Acetyl-D-glucosamine
N-Acetyl-D-mannosamine
N-Acetylneuraminate
Nicotinamide adenine dinucleotide
Nicotinate
Nitrate
Nitrite
NMN
O2
Octadecanoate (n-C18:0)
Ornithine
Phenylpropanoate
Phosphate
Putrescine
Pyruvate
Sodium
Spermidine
Succinate
Sucrose
Sulfate
Taurine
Tetradecanoate (n-C14:0)
Thiamin
Thiosulfate
Thymidine
Trehalose
Trimethylamine
Trimethylamine N-oxide
Uracil
Urea
Uridine
Xanthine
Xanthosine
9
Modelling conditions used in the simulations of Buchnera gene content evolution
Biochemical knowledge on the biomass composition of E. coli is represented in the model as a drain of
precursors and building blocks into biomass, that is a biochemical equation where the stoichiometric
coefficients of the metabolites reflect their cellular concentrations (mmol / g dry weight). The biomass
equation of the E. coli model (as can be found in additional data file 1 of ref16) was complemented with
riboflavin, as physiological evidence indicates that Buchnera provides riboflavin23 in addition to
essential amino acids24-28 to the host aphid (the amount of riboflavin was set to the arbitrary value of
0.01). Although the table below presents the biomass composition of E. coli, we also repeated the
evolutionary simulations with a biomass equation containing two-fold higher levels of essential amino
acids, reflecting the fact that these metabolites are also supplied to the host. Importantly, this
modification had virtually no effect on the accuracy of reaction content predictions (for example in the
case of Buchnera aphidicola bp the area under the ROC curve only changed from 0.8016 to 0.8013).
Supplementary Table 2.List of major biosynthetic components and their contributions to the biomass of
Buchnera
contribution
(mmol / g dry
weight)
0.05
5x10-5
0.488
0.0010
0.281
0.229
0.229
45.73
1.29x10-4
6.0x10-6
0.154
0.203
45.56
0.09
0.276
0.428
0.0084
0.326
0.146
0.00215
0.205
0.0070
3.0x10-6
0.241
0.402
component
contribution
(mmol / g dry
weight)
0.126
0.087
0.0247
0.0254
0.0254
0.0247
1.0x10-5
0.25
0.25
0.582
5.0x10-5
1.3x10-4
4.0x10-4
0.001935
0.0276
4.64x10-4
0.176
0.21
5.2x10-5
0.035
0.054
0.131
0.0030
0.136
0.01
5-Methyltetrahydrofolate
Acetyl-CoA
L-Alanine
AMP
L-Arginine
L-Asparagine
L-Aspartate
ATP
Cardiolipin
Coenzyme A
Glycogen
GTP
H2O
L-Histidine
L-Isoleucine
L-Leucine
Lipopolysaccharide
L-Lysine
L-Methionine
NAD
L-Serine
Spermidine
Succinyl-CoA
L-Threonine
L-Valine
10
component
CTP
L-Cysteine
dATP
dCTP
dGTP
dTTP
FAD
L-Glutamine
L-Glutamate
Glycine
NADH
NADP
NADPH
Phosphatidylethanolamine
Peptidoglycan
Phospatidylglycerol
L-Phenylalanine
L-Proline
Phosphatidylserine
Putrescine
L-Tryptophan
L-Tyrosine
UDPglucose
UTP
Riboflavin
Metabolites available for uptake
Based on biochemical evidence26 glucose and glutamate were allowed to enter the system (the total
flux of carbon uptake was limited to 60 mmol/g/h and the ratio of glucose to glutamate was not
specified). In addition, unconstrained uptake of the following compounds was allowed:
CO2, Fe2+, H+, H2O, K+, Na+, NH4, O2, phosphate, SO42- .
11
Modelling conditions used in the simulations of Wigglesworthia gene content
evolution
It has been reported that Wigglesworthia provides thiamine, pantothenic acid, pyridoxine, biotin and
folic acid to its host18. Thus, the biomass equation of E. coli stoichiometric model16 was complemented
with the above metabolites. We slightly modified the previously compiled E. coli network to enable the
synthesis of thiamine and biotin. More specifically, based on the available biochemical evidence29, we
enabled the secretion of 4-Hydroxybenzyl alcohol and S-Adenosyl-4-Methylthio-2-Oxobutanoate.
The early steps of biotin synthesis pathway is unknown. To circumvent this problem, we enabled the
uptake of the first known intermediary product, Pimeloyl-CoA.
Supplementary Table 3a.List of major biosynthetic components and their contributions to the biomass
of Wigglesworthia
contribution
(mmol / g dry
weight)
0.05
5x10-5
0.488
0.0010
0.281
0.229
0.229
45.73
1.29x10-4
6.0x10-6
0.154
0.203
45.56
0.09
0.276
0.428
0.0084
0.326
0.146
0.00215
0.205
0.0070
3.0x10-6
0.241
0.402
0.126
0.087
component
contribution
(mmol / g dry
weight)
0.0247
0.0254
0.0254
0.0247
1.0x10-5
0.25
0.25
0.582
5.0x10-5
1.3x10-4
4.0x10-4
0.001935
0.0276
4.64x10-4
0.176
0.21
5.2x10-5
0.035
0.054
0.131
0.0030
0.136
0.01*
0.01*
0.01*
0.01*
0.01*
5-Methyltetrahydrofolate
Acetyl-CoA
L-Alanine
AMP
L-Arginine
L-Asparagine
L-Aspartate
ATP
Cardiolipin
Coenzyme A
Glycogen
GTP
H2O
L-Histidine
L-Isoleucine
L-Leucine
Lipopolysaccharide
L-Lysine
L-Methionine
NAD
L-Serine
Spermidine
Succinyl-CoA
L-Threonine
L-Valine
CTP
L-Cysteine
component
dATP
dCTP
dGTP
dTTP
FAD
L-Glutamine
L-Glutamate
Glycine
NADH
NADP
NADPH
Phosphatidylethanolamine
Peptidoglycan
Phospatidylglycerol
L-Phenylalanine
L-Proline
Phosphatidylserine
Putrescine
L-Tryptophan
L-Tyrosine
UDPglucose
UTP
Thiamine
(R)-Pantothenate
Pyridoxine
Biotin
7,8-Dihydrofolate
* The amount of these cofactors was set to the arbitrary value of 0.01, which is higher than those
cofactors already present in the E. coli biomass, reflecting the fact that these metabolites are provided
for the host. We note that setting the contribution of these compounds to an alternative value of 0.1
had virtually no effect on the accuracy of predictions (data not shown).
12
Due to lack of physiological or biochemical information on input metabolites consumed by
Wigglesworthia glossinidia, we attempted to compile a list of compounds that are most likely present
inside an insect cell and for which transport reactions are also annotated in the E. coli model16. As an
approximation, we obtained the metabolite list of Drosophila melanogaster from the literature curated
MetaCyc database30 (it is the only annotated insect genome in MetaCyc). As we have no systematic
data on the availability of these compounds on a quantitative scale, we did not constrain their specific
uptake rates, only limited the total carbon influx to 60 mmol/g/h.
Despite the wide range of compounds allowed to enter the simulated network at the outset of
the simulations, we observe that the simulations predict the evolutionary retention of transport
reactions with reasonable accuracy (area under the ROC curve for transport processes is 0.738). For
example, a large fraction (>80%) of simulated minimal metabolic networks import leucine, valine and
isoleucine, which is in agreement with the presence of a branched-chain amino acid transport system in
Wigglesworthia19. Moreover, we also run simulations where nutrient uptake was fixed throughout the
simulations: only those nutrients were allowed for which the appropriate transport genes are retained in
Wigglesworthia. Very similar results were obtained with this modification, even after excluding
transport genes from analysis (area under ROC curve 0.81). This suggests that the model is robust to
modifications of input conditions.
13
Supplementary Table 3b List of metabolites available for uptake
component
component
2-Oxoglutarate
4-Aminobutanoate
Acetaldehyde
Acetate
Acetoacetate
Adenine
Adenosine
Allantoin
Ammonium ion
AMP
Choline
Citrate
CO2
Cytidine
Cytosine
D-Alanine
Deoxyadenosine
Deoxyinosine
D-Fructose
D-Galactose
D-Glucose
D-Glucose 6-phosphate
D-Lactate
D-Mannose 6-phosphate
Ethanol
Fe2+
Formate
Fumarate
Glycerol
Glycerol 3-phosphate
Glycine
Guanine
Guanosine
H+
H2O
Hypoxanthine
Indole
Inosine
K+
Lactose
L-Alanine
L-Arginine
L-Asparagine
L-Aspartate
L-Cysteine
L-Fucose
L-Glutamate
L-Glutamine
L-Histidine
L-Isoleucine
L-Lactate
L-Leucine
L-Lysine
L-Malate
L-Methionine
L-Phenylalanine
L-Proline
L-Serine
L-Threonine
L-Tryptophan
L-Tyrosine
L-Valine
Maltose
Na+
NAD
NMN
O2
Ornithine
Phosphate
Pyruvate
Succinate
Sucrose
Sulfate
Thymidine
Trehalose
Uracil
Urea
Uridine
Xanthine
Xanthosine
14
Supplementary Figure 2. Comparison of reaction content of simulated and
Wigglesworthia glossinidia metabolic networks.
a) Predictive accuracy for all possible cutoffs (ROC curve). Overall accuracy and statistics (area
under curve): biomass composition derived from physiological data only, AUC=0.758 (blue dots),
biomass with optimised co-factor composition, AUC=0.844 (red dots). All results are highly
significant, P<10-25.
15
b) Presence/absence of reactions in Wigglesworthia glossinidia, averaged over genes within defined
ranges of presence/absence in the simulated minimal reaction-sets. Statistics: biomass composition
derived from physiological data only, χ2=222.23, df=4, P<10-46, biomass with optimised co-factor
composition, χ2=317.06, df=4, P<10-66.
16
Supplementary Table 4. The impact of block deletions on the properties of
minimal minimal networks
The Table shows mean ± standard deviation. The fraction of shared simulation reactions across
minimal reaction sets and the number of reactions across simulated sets remain unchanged, regardless
of the mean size of block deletions. However, fewer simulation steps are necessary to reach minimal
reactions sets if block deletions are allowed. For more details, see Supplementary Methods.
Model
Number of
Number of
Fraction of shared
Number of reactions in
metabolic genes
successful
reactions across
simulated minimal
deleted at a
deletion steps to
minimal reaction
reactions sets
single step
reach the
sets
(Mean±Standard
minimal
deviation)
reaction set
Only single
1±0
658.08±6.47
0.78±0.046
288.63±9.63
1.92±0.06
546.44±0.06
0.77±0.045
288.57±9.41
7.18±0.35
345.29±0.34
0.77±0.044
287.74±9.30
gene deletions
Block deletion
(q=0.5)
Block deletion
(q=0.9)
17
Supplementary Table 5. Accuracy of reaction content predictions
When calculating the fraction of positive hits, specificity and sensitivity, reactions absent in some, but
not all simulated networks were excluded. Sensitivity is defined as the fraction of preserved reactions
correctly predicted by the model and specificity is the fraction of lost reactions correctly identified by
the model. Where indicated, reactions horizontally transferred into E. coli were excluded from the
analysis. % of positive hits indicates the fraction of true positives and true negatives. Abbreviations:
Bp, Buchnera aphidicola, endosymbiont of Baizongia pistaciae; APS, Buchnera aphidicola,
endosymbiont of Acyrthosiphon pisum; Sg, Buchnera aphidicola, endosymbiont of Schizaphis
graminum; all – reactions present in all of the three Buchnera genomes. Results for Wigglesworthia
were obtained by using the biomass equation with optimised cofactor composition (see Supplementary
Methods).
Growth-rate
Cut-off used in
the simulations
Number of
reactions
investigated
All reactions*
(N=873)
0.01
No horizontally
transferred
reactions to E.
coli (N=789)
All reactions*
(N=873)
0.1
No horizontally
transferred
reactions to E.
coli (N=789)
Species to which the
simulation results are
compared
Accuracy and
standard error of
prediction17
% of
Sensitivity Specificity
(measured
positive hits
(%)
(%)
analogous to Fig.
2a in main text)
Buchnera aphidicola Bp
Buchnera aphidicola Sg
Buchnera aphidicola APS
0.802 (0.020)
0.800 (0.019)
0.794 (0.019)
76.8
78.1
78.4
85.0
83.0
80.7
74.4
76.4
77.5
Reactions present in all
three Buchnera strains
0.790 (0.022)
74.7
85.0
72.3
0.844 (0.017)
0.787 (0.021)
0.786 (0.020)
0.780 (0.020)
84.4
74.5
76.0
76.3
86.0
85.0
83.0
80.7
83.7
71.1
73.2
74.3
0.774 (0.023)
72.2
85.0
68.7
0.835 (0.017)
0.794 (0.021)
0.794 (0.019)
0.788 (0.019)
83.1
76.3
77.7
78.0
86.0
83.9
81.9
79.5
81.5
74.1
76.3
77.4
0.781 (0.022)
74.1
83.8
71.8
0.825 (0.017)
0.779 (0.021)
0.780 (0.020)
0.774 (0.020)
83.7
73.8
75.4
75.8
87.0
83.9
81.9
79.5
81.8
70.6
72.9
74.1
0.764 (0.023)
71.4
83.8
68.1
0.814 (0.018)
82.1
87.0
78.6
Wigglesworthia glossinidia
Buchnera aphidicola Bp
Buchnera aphidicola Sg
Buchnera aphidicola APS
Reactions present in all
three Buchnera strains
Wigglesworthia glossinidia
Buchnera aphidicola Bp
Buchnera aphidicola Sg
Buchnera aphidicola APS
Reactions present in all
three Buchnera strains
Wigglesworthia glossinidia
Buchnera aphidicola Bp
Buchnera aphidicola Sg
Buchnera aphidicola APS
Reactions present in all
three Buchnera strains
Wigglesworthia glossinidia
* Reactions without annotated genes are not included in the analyses.
18
Supplementary Table 6. Accuracy of reaction content prediction in different
metabolic subsystems
(a) The area under the ROC curve and its standard error17 was calculated for each metabolic subsystem
where at least one reaction was preserved in all Buchnera strains and one reaction was lost in at least
one Buchnera strain. (b) The area under the ROC curve and its standard error17 was calculated for each
metabolic subsystem of Wigglesworthia (prediction is from simulations run with the optimised biomass
composition, Supplementary Methods).
Table 6a Buchnera
Metabolic subsystem
Fractions of
Area under
reactions retained Number of
Standard
the ROC
in Buchnera
reactions
error
curve
genomes
Threonine and Lysine Metabolism
Pyruvate Metabolism
Anaplerotic Reactions
Pentose Phosphate Cycle
Oxidative phosphorylation
Glycine and Serine Metabolism
Folate Metabolism
Transport, Extracellular
Glycolysis/Gluconeogenesis
Alternate Carbon Metabolism
Arginine and Proline Metabolism
Citrate Cycle (TCA)
Cell Envelope Biosynthesis
Cofactor and Prosthetic Group Biosynthesis
Membrane Lipid Metabolism
Methionine Metabolism
Cysteine Metabolism
Tyrosine, Tryptophan, and Phenylalanine
Metabolism
Nucleotide Salvage Pathways
Valine, leucine, and isoleucine metabolism
Methylglyoxal Metabolism
Purine and Pyrimidine Biosynthesis
19
0.923
0.285
0.142
0.777
0.125
0.25
0.5
0.027
0.555
0.031
0.151
0.076
0.121
0.196
0.16
0.285
0.142
13
7
7
9
40
8
6
146
18
127
33
13
74
122
25
7
7
1
1
1
1
0.971
0.833
0.833
0.83
0.825
0.81
0.757
0.75
0.72
0.669
0.667
0.6
0.583
0
0
0
0
0.053
0.199
0.184
0.127
0.1
0.132
0.133
0.299
0.101
0.066
0.161
0.259
0.339
0.7
0.364
0.4
0.333
0.333
20
85
15
3
24
0.583
0.564
0.5
0.5
0.492
0.139
0.066
0.157
0.408
0.127
Table 6b Wigglesworthia
Metabolic subsystem
Threonine and Lysine Metabolism
Pentose Phosphate Cycle
Histidine Metabolism
Alternate Carbon Metabolism
Methionine Metabolism
Cofactor and Prosthetic Group Biosynthesis
Membrane Lipid Metabolism
Tyrosine, Tryptophan, and Phenylalanine
Metabolism
Glycine and Serine Metabolism
Cell Envelope Biosynthesis
Pyruvate Metabolism
Glycolysis/Gluconeogenesis
Glutamate Metabolism
Transport, Extracellular
Purine and Pyrimidine Biosynthesis
Nucleotide Salvage Pathways
Oxidative Phosphorylation
Alanine and Aspartate Metabolism
Anaplerotic Reactions
Folate Metabolism
Methylglyoxal Metabolism
Citrate Cycle (TCA)
Arginine and Proline Metabolism
Fraction of
reactions
reatained in Number of
Wigglesworthia reactions
genome
investigated Area under
the ROC Standard
curve
error
0.692
13
1
0
0.555
9
1
0
0.1
10
1
0
0.031
127
0.958
0.07
0.285
7
0.9
0.164
0.622
122
0.859
0.033
0.6
25
0.85
0.077
0.2
0.25
0.364
0.285
0.555
0.2
0.047
0.916
0.317
0.15
0.444
0.285
0.5
0.333
0.461
0.212
20
20
8
74
7
18
5
146
24
85
40
9
7
6
3
13
33
0.844
0.833
0.827
0.8
0.756
0.75
0.748
0.739
0.731
0.64
0.6
0.6
0.556
0.5
0.452
0.398
0.131
0.199
0.054
0.217
0.115
0.327
0.109
0.159
0.062
0.131
0.201
0.259
0.253
0.408
0.165
0.117
Metabolic pathways showing variability in retention across simulations
To quantify metabolic flexibility, pairwise similarities of reaction contents of 500 simulated minimal
networks were calculated for each functional subsystem of the metabolism (defined as in ref 16). Subsystems where all reactions are lost in either Buchnera or in the simulated genomes were not
considered here. Many subsystems show little or no variability among simulated genomes (e.g. amino
acid synthesis groups, membrane and cofactor metabolism). Most of the variability among genomes lie
within transport processes, alternate carbon metabolism, anapleurotic reactions, pyruvate metabolism
and in nucleotide salvage pathways. The simulations shown result from boundary conditions that
mimic the evolution of Buchnera (Supplementary Table 2).
Supplementary Table 7.
Metabolic subsystem
(as in ref 16)
Alternate Carbon Metabolism (N=127)
Transport, Extracellular (N=146)
Anaplerotic Reactions (N=7)
Pyruvate Metabolism (N=7)
Nucleotide Salvage Pathways (N=85)
Folate Metabolism (N=6)
Arginine and Proline Metabolism (N=33)
Oxidative Phosphorylation (N=40)
Glycine and Serine Metabolism (N=8)
Threonine and Lysine Metabolism (N=13)
Glycolysis/Gluconeogenesis (N=18)
Cysteine Metabolism (N=7)
Citrate Cycle (TCA) (N=13)
Membrane Lipid Metabolism (N=25)
Purine and Pyrimidine Biosynthesis (N=24)
Tyrosine, Tryptophan, and Phenylalanine Metabolism (N=20)
Cofactor and Prosthetic Group Biosynthesis (N=122)
Pentose Phosphate Cycle (N=9)
Cell Envelope Biosynthesis (N=74)
Valine, Leucine, and Isoleucine Metabolism (N=15)
Histidine Metabolism (N=10)
Methionine Metabolism (N=7)
21
Average pairwise similarity of
minimal networks
(Jaccard index)
0.52
0.57
0.58
0.72
0.76
0.87
0.89
0.9
0.91
0.92
0.92
0.94
0.95
0.95
0.96
0.98
0.99
0.99
1
1
1
1
Supplementary Table 8. Examples of alternative metabolic solutions during
reductive evolution of Buchnera
The Table provides examples of alternative solutions (pathways) to three metabolic problems.
Simulated metabolic networks contain one or other of the two alternative solutions, but never both
(data not shown). Importantly, Buchnera strains also retained only one of these pathways (proteins
encoded by Buchnera genomes are underlined in the table). Descriptions are from Ecocyc31.
Metabolic solution #1
(enzymes and reactions
retained by Buchnera)
Metabolic solution #2
(enzymes and reactions lost
by Buchnera)
Description
Ribonucleoside-diphosphate
reductase (NrdA & NrdB)
Ribonucleoside-triphosphate
reductase (NrdD)
NDP + reduced thioredoxin →
dNDP + H2O + oxidized
thioredoxin
NTP + reduced thioredoxin
→ dNTP + H2O + oxidized
thioredoxin
Deoxyribonucleotides are synthetised from
ribonucleotides. It can be achieved by two
ways in E. coli: either NDP is reduced to
dNDP (ribonucleoside-diphosphate
reductase), or NTP is reduced to dNTP. This
latter reaction is catalysed by an oxygen
sensitive enzyme, thus E. coli uses it under
anaerobic conditions.
Buchnera strains retained the oxygen
requiring ribonucleoside-diphosphate
reductase.
Phosphate H+ symporter
(PitA or PitB)
Phosphate ABC transporter
complex (pstA & pstB &
pstC & pstS)
H+ex + Pi ex ↔ H+in + Pi in
ATPin + H2Oin + Pi ex →
ADPin + H+in + 2 Pi in
Step 1: Acetate kinase (AckA
or TdcD or PurT)
Acetyl-CoA synthetase (Acs)
acetate + ATP ↔ acetyl-P +
ADP
acetate + ATP + CoA →
acetyl-CoA + AMP + PPi
Phosphate can be imported by E. coli either
by a low affinity transporter PitA (or PitB)
driven by proton motive force, or by a high
affinity ABC transporter system (pstABCS),
which is ATP-dependent.
Buchnera strains retained the low affinity
PitA transporter.
There are two distinct pathways by which E.
coli activates acetate to acetyl-CoA. AcetylCoA synthetase (ACS) catalyzes one of them.
It is thought that this ACS pathway functions
in a mainly anabolic role, scavenging acetate
present in the extracellular medium.
Buchnera strains retained the acetate kinase phosphotransacetylase pathway (proteins
AckA and Pta).
Step 2: Phosphotransacetylase
(Pta or EutD)
acetyl-P + Coa ↔ acetyl-CoA +
Pi
(ex = extracellular metabolite, in = intracellular metabolite)
22
Supplementary Table 9. Cross comparison of Buchnera and Wigglesworthia
reaction content predictions
Although the metabolic functions of the endosymbionts Buchnera and Wigglesworthia differ
significantly, their reaction contents show considerable overlap (0.38 – 0.40). Even a model that
predicts gene content evolution in Buchnera with 100% accuracy would explain a large fraction of the
gene content evolution in Wigglesworthia as genes lost in these lineages show significant overlap.
Therefore, it is important to investigate whether the differences in the boundary conditions between
Buchnera and Wigglesworthia simulations are substantial enough to specifically predict the reaction
content of Buchnera and Wigglesworthia, respectively.
Our cross-comparisons show that simulations constructed to reflect the lifestyle of Buchnera
predict the reaction content of Buchnera strains with higher accuracy than those of Wigglesworthia.
Similarly, simulations set up for Wigglesworthia predict the reaction content of Wigglesworthia more
successfully than those of Buchnera strains (a biomass equation with optimised cofactor composition
was used for Wigglesworthia simulations, see Supplementary Methods).
Simulation
Genome
Buchnera
Wigglesworthia
Buchnera aphidicola Bp
Buchnera aphidicola Sg
Buchnera aphidicola APS
Wigglesworthia glossinidia
Buchnera aphidicola Bp
Buchnera aphidicola Sg
Buchnera aphidicola APS
Wigglesworthia glossinidia
Accuracy of reaction content
prediction
(area under the ROC curve
and its standard error)
0.802 (0.020)
0.800 (0.019)
0.794 (0.019)
0.708 (0.021)
0.764 (0.022)
0.775 (0.020)
0.756 (0.020)
0.844 (0.017)
23
Supplementary Table 10. Physiologically coupled reactions are frequently lost
together in endosymbionts
To identify physiologically coupled enzyme sets in the E.coli network, we followed a previously
described protocol31.We considered a condition where all external nutrients are available; this scenario
gives a condition-insensitive underestimate of physiologically coupled reactions. Briefly, the analysis is
based on fixing the flux through one reaction, and then maximising and minimizing the flux through all
other reactions in turn. We concentrated on fully coupled reaction pairs. Assuming that endosymbiont
networks are close to minimal, one would expect that such reactions are retained or lost together. We
identified 619 fully coupled reaction pairs by flux coupling analysis32 in E. coli. Fully coupled
reactions have fixed flux ratios and are always used together in steady state flux distributions of the
network (e.g. steps of a linear pathway). We found 619 fully coupled reaction pairs. Having identified
coupled reactions, we counted the number of cases when both members of a coupled reaction pair are
either lost or retained in a given endosymbiont. We found that 74-84% of coupled pairs are lost or
retained together, which is significantly higher than 50-55% expected by chance (P < 10-5 for all
species, calculated by randomising pairings of coupled reactions). This conclusion remains when
horizontally transferred genes are excluded from the analysis (data not shown).
Note however, that as most reactions have more than one fully coupled reaction partner, this
analysis is not suitable for measuring the fraction of compulsory reactions in endosymbionts. One
could get a better view of this process by analysing physiologically coupled reaction sets. In these sets,
all reaction pairs are fully coupled to each other. The 619 fully coupled reaction pairs in E.coli
comprise 100 independent, fully coupled reactions sets. As these sets can only fulfil their function if all
of their constituent reactions are present, one would expect to find either all or none of the coupled
reactions in endosymbionts. Reactions present in a set missing some of their reactions may be
considered superfluous. 13-20% of the reactions in endosymbionts fulfil this requirement (data not
shown). This figure is still likely to be an overestimate, however, if endosymbionts (but not E.coli) can
uptake some of the intermediate metabolites.
Species
% of coupled reaction pairs
where both members are
either lost or retained
% of reaction pairs
expected by chance
Buchnera aphidicola Bp
83.8
55.1
Buchnera aphidicola Sg
73.8
52.6
24
Buchnera aphidicola APS
79.3
51.2
Wigglesworthia glossinidia
76.5
50.4
25
Supplementary Table 11. List of 140 bacterial species investigated and their
lifestyles
Species
lifestyle
Species
lifestyle
Buchnera aphidicola APS
Buchnera aphidicola Bp
Buchnera aphidicola Sg
Blochmannia floridanus
Wigglesworthia brevipalpis
Aeropyrum pernix
Aquifex aeolicus
Bacillus halodurans
Deinococcus radiodurans
Halobacterium sp. NRC-1
Methanobacterium thermautotrophicum
Methanococcus jannaschii
Methanococcus maripaludis
Methanopyrus kandleri
Oceanobacillus iheyensis
Photobacterium profundum
Pyrobaculum aerophilum
Pyrococcus abyssi
Pyrococcus furiosus
Pyrococcus horikoshii
Sulfolobus solfataricus
Sulfolobus tokodaii
Thermoanaerobacter tengcongensis
Thermoplasma acidophilum
Thermoplasma volcanium
Thermotoga maritima
Thermus thermophilus
Nostoc sp. PCC 7120
Bacillus subtilis
Caulobacter crescentus
Chlorobium tepidum
Chromobacterium violaceum
Clostridium acetobutylicum
Corynebacterium efficiens
Corynebacterium glutamicum
Corynebacterium glutamicum 13032
Desulfovibrio vulgaris
Escherichia coli K12
Geobacter sulfurreducens
Gloeobacter violaceus
Lactococcus lactis
Listeria innocua
Methanosarcina acetivorans
Methanosarcina mazei
Pasteurella multocida
Photorhabdus luminescens
endosymbiont
endosymbiont
endosymbiont
endosymbiont
endosymbiont
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
pathogen
pathogen
intracellular
pathogen
Nitrosomonas europaea
Prochlorococcus marinus SS120
Prochlorococcus marinus MIT9313
Prochlorococcus marinus CCMP1378
Pseudomonas putida
Rhodopirellula baltica
Rodopseudomonas palustris
Shewanella oneidensis
Streptomyces avermitilis
Streptomyces coelicolor
Synechococcus elongatus
Synechococcus sp. WH8102
Synechocystis sp. PCC6803
Streptococcus mutans
Agrobacterium tumefaciens Cereon
Agrobacterium tumefaciens WashU
Bacillus anthracis
Bacillus cereus ATCC 10987
Bacillus cereus ATCC 14579
Bordetella bronchiseptica
Bordetella parapertussis
Bordetella pertussis
Borrelia burgdorferi
Brucella melitensis
Brucella suis
Campylobacter jejuni
Clostridium perfringens
Clostridium tetani
Corynebacterium diphtheriae
Enterococcus faecalis
Escherichia coli O157:H7
Escherichia coli EDL933
Escherichia coli O6
Fusobacterium nucleatum
Haemophilus ducreyi
Haemophilus influenzae
Helicobacter hepaticus
Helicobacter pylori 26695
Helicobacter pylori J99
Leptospira interrogans 56601
Leptospira interrogans L1-130
Listeria monocytogenes EGD
Listeria monocytogenes F2365
Mycobacterium bovis
Neisseria meningitidis A
Neisseria meningitidis B
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
free living
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
Ureaplasma parvum
26
Supplementary Table 11. List of 140 bacterial species investigated and their lifestyles (continued).
Species
lifestyle
Porphyromonas gingivalis
Pseudomonas aeruginosa
Pseudomonas syringae
Ralstonia solanacearum
Salmonella enterica
Salmonella typhi
Salmonella typhimurium
Shigella flexneri 2a 301
Shigella flexneri 2a 2457T
Staphylococcus aureus MW2
Staphylococcus aureus Mu50
Staphylococcus aureus N315
Streptococcus agalactiae III
Streptococcus agalactiae V
Streptococcus pneumoniae TIGR4
Streptococcus pneumoniae R6
Streptococcus pyogenes M1
Streptococcus pyogenes MGAS8232
Streptococcus pyogenes MGAS315
Streptococcus pyogenes SSI-1
Treponema denticola
Treponema pallidum
Vibrio cholerae
Vibrio parahaemolyticus
Vibrio vulnificus YJ016
Xanthomonas axonopodis
Xanthomonas campestris
Xylella fastidiosa 9a5c
Xylella fastidiosa 700964
Yersinia pestis CO92
Yersinia pestis KIM
Chlamydia muridarum
Chlamydia pneumoniae AR39
Chlamydia pneumoniae CWL029
Chlamydia pneumoniae J138
Chlamydia trachomatis
Chlamydophila caviae
Chlamydophila pneumoniae TW183
Coxiella burnetii
Mycobacterium leprae
Phytoplasma Onion yellows
Rickettsia conorii
Rickettsia prowazekii
Wolbachia sp. wMel
Mycoplasma genitalium
Mycoplasma penetrans
Mycoplasma pneumoniae
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
pathogen
obligate intracellular
obligate intracellular
obligate intracellular
obligate intracellular
obligate intracellular
obligate intracellular
obligate intracellular
obligate intracellular
obligate intracellular
obligate intracellular
obligate intracellular
obligate intracellular
obligate intracellular
obligate intracellular
obligate intracellular
obligate intracellular
27
Supplementary Table 12. Endosymbiont genes without orthologues in E. coli K12
Supplementary table 12.a Buchnera aphidicola genes with no orthologs in E. coli
Gi number
Gene
Annotation
Blast to E. coli K-12
Best hits from Blast to all of
Genbank exc. Buchnera
hypothetical protein (many
species) / alpha-hemolysin
(Bacillus)
flagellar protein FliJ
(Shewanella)
27904528
yidD
hypothetical protein
no significant hit
27904577
fliJ
flagellar FliJ protein
no significant hit
27904578
fliK
flagellar FliK protein
no significant hit
rpoB (Plasmodium)
27904675
grpE
GrpE protein 2
best hit has other ortholog
(16130533)
GrpE protein/HSP-70
cofactor/heat shock protein
(many species)
27904706
ftsL
cell division protein
FtsL homolog
best hit is cell division
protein (16128076,
e=0.002)
cell division protein FtsL
(Haemophilus)
27904850
aroQ
27904996
trpG
27905000
yba3
28191368
repA2
28191366
repA1
3-dehydroquinate
dehydratase
anthranilate synthase
component II
best hit has other ortholog
(16129224)
hypothetical protein
no significant hit
replication associated
protein
replication associated
protein
no significant hit
3-dehydroquinate dehydratase
(Erwinia)
anthranilate synthase
component II (Shigella)
no significant hit outside
Buchnera
no significant hit
repA1 (Sodalis)
no significant hit
repA (Sodalis)
28
Supplementary Table 12b. Buchnera aphidicola sg genes with no orthologs in E. coli
Gi number
Gene
Annotation
Blast to E. coli K-12
21672309
yidD
hypothetical protein
no significant hit
21672465
grpE
GrpE
best hit has other
ortholog (16130533)
Best hits from Blast to all of
Genbank exc. Buchnera
hypothetical protein (many
species) | alpha-hemolysin
(Bacillus)
GrpE protein/HSP-70 cofactor
(Photorhabdus)
21672467
smpA
small protein A
no significant hit
no significant hit anywhere
21672642
secG
protein-export membrane
protein SecG
no significant hit
21672710
ribD1
riboflavin biosynthesis protein
RibD
best hit has other
ortholog (16128399)
21672822
Yba4
hypothetical protein
no significant hit
paramyosin (Boophilus)
10954447
repA1
replication associated protein
no significant hit
repA1 (Sodalis)
16129145
repA2
replication associated protein
no significant hit
repA1 (Sodalis)
29
no significant hit outside
Buchnera
bifunctional:
diaminohydroxyphosphoribosyla
minopyrimidine deaminase +
uracil reductase (Escherichia
coli K-12)
Supplementary Table 12c. Buchnera aphidicola sp genes with no orthologs in E. coli
Gi
number
Gene
10957102
trpG2
anthranilate synthase small
subunit
best hit has other
ortholog (16129224)
15617003
aroD
type II 3-dehydroquinase
no significant hit
15617059
ribD1
riboflavin deaminase
best hit has other
ortholog (16128399)
10957104
repA1
10957106
repA2
15616700
yba1
15616863
Annotation
replication-associated protein
RepA1
replication-associated protein
RepA2
Blast to E. coli K-12
Best hits from Blast to all of
Genbank exc. Buchnera
anthranilate synthase component II
(Erwinia)
3-dehydroquinate dehydratase
(Erwinia)
bifunctional:
diaminohydroxyphosphoribosylami
nopyrimidine deaminase + uracil
reductase (Escherichia coli K-12)
no significant hit
repA1 protein (Sodalis)
no significant hit
repA protein (Sodalis)
hypothetical protein
no significant hit
no significant hit outside Buchnera
grpE1
heat shock protein GrpE1
best hit has other
ortholog (16130533)
grpE (Wigglesworthia)
15616941
flgN
flagella synthesis protein FlgN
no significant hit
no significant hit outside Buchnera
15616658
cof
Cof protein
best hit has other
ortholog (49176424)
15616984
secG
protein-export membrane
protein SecG
no significant hit
15617175
yba4
hypothetical protein
no significant hit
10957101
trpG
anthranilate synthase small
subunit
best hit has other
ortholog (16129224)
15616800
yba2
hypothetical protein
no significant hit
30
haloacid dehalogenase-like
hydrolase-like protein
(Leishmania)
biotin carboxylase subunit of
acetyl CoA carboxylase, putative
(Plasmodium)
erythrocyte membrane protein
pfemp3 (Plasmodium)
anthranilate synthase component II
(Erwinia)
hypothetical protein (many
species)
Supplementary Table 12d. Wigglesworthia glossinidia genes with no orthologs in E. coli
Gi
number
Gene
Annotation
Blast to E. coli K-12
Best hits from Blast to all of
Genbank
50470479
-
conjugative transfer
surface exclusion
lipoprotein
no significant hit
TraT+ conjugative transfer: surface
exclusion (Salmonella)
32490800
fliO
hypothetical protein
no significant hit
no significant hit anywhere
32491016
recD
hypothetical protein
no significant hit
32490785
flgN
hypothetical protein
no significant hit
32491035
wg003
hypothetical protein
no significant hit
32491341
wg001
hypothetical protein
no significant hit
50470477
repA
replication protein A
no significant hit
31
exodeoxyribonuclease V alpha chain
(Buchera Bp) ; no other hits
flagella synthesis protein (Erwinia;
e=2e-4); no other hits
hypothetical protein (Photorhabdus) |
Ccm2 + Ccm1 (Proteus) | putative
membrane protein (Yersinia)
probable transmembrane protein
(Blochmania) | putative membrane
protein (Erwinia)
replication protein RepA +
replication initiator and transcription
repressor (Erwinia)
References
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
von Mering, C. et al. STRING: known and predicted protein-protein
associations, integrated and transferred across organisms. Nucleic Acids Res
33, D433-7 (2005).
Pal, C., Papp, B. & Lercher, M. J. Adaptive evolution of metabolic networks
by horizontal gene transfer. Nat Genet in press (2005).
von Mering, C. et al. STRING: known and predicted protein-protein
associations, integrated and transferred across organisms. Nucleic Acids Res
33 Database Issue, D433-7 (2005).
Tatusov, R. L. et al. The COG database: an updated version includes
eukaryotes. BMC Bioinformatics 4, 41 (2003).
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Res 32, 1792-7 (2004).
Castresana, J. Selection of conserved blocks from multiple alignments for their
use in phylogenetic analysis. Mol Biol Evol 17, 540-52 (2000).
Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate
large phylogenies by maximum likelihood. Syst Biol 52, 696-704 (2003).
Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of
mutation data matrices from protein sequences. Comput Appl Biosci 8, 275-82
(1992).
Boussau, B., Karlberg, E. O., Frank, A. C., Legault, B. A. & Andersson, S. G.
Computational inference of scenarios for alpha-proteobacterial genome
evolution. Proc Natl Acad Sci U S A 101, 9722-7 (2004).
Mirkin, B. G., Fenner, T. I., Galperin, M. Y. & Koonin, E. V. Algorithms for
computing parsimonious evolutionary scenarios for genome evolution, the last
universal common ancestor and dominance of horizontal gene transfer in the
evolution of prokaryotes. BMC Evol Biol 3, 2 (2003).
Lerat, E., Daubin, V. & Moran, N. A. From gene trees to organismal
phylogeny in prokaryotes: the case of the gamma-Proteobacteria. PLoS Biol 1,
E19 (2003).
Gil, R. et al. The genome sequence of Blochmannia floridanus: comparative
analysis of reduced genomes. Proc Natl Acad Sci U S A 100, 9388-93 (2003).
Snel, B., Bork, P. & Huynen, M. A. Genomes in flux: the evolution of
archaeal and proteobacterial gene content. Genome Res 12, 17-25 (2002).
Moran, N. A. & Mira, A. The process of genome shrinkage in the obligate
symbiont Buchnera aphidicola. Genome Biol 2, RESEARCH0054 (2001).
Smith, C. L., Econome, J. G., Schutt, A., Klco, S. & Cantor, C. R. A physical
map of the Escherichia coli K12 genome. Science 236, 1448-53 (1987).
Reed, J. L., Vo, T. D., Schilling, C. H. & Palsson, B. O. An expanded
genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome
Biol 4, R54 (2003).
Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology 143, 29-36 (1982).
Nogge, G. Significance of symbionts for the maintenance of an optimal
nutritional state for successful reproduction in haematophagous arthropods.
Parasitology 82, 101-104 (1981).
Akman, L. et al. Genome sequence of the endocellular obligate symbiont of
tsetse flies, Wigglesworthia glossinidia. Nat Genet 32, 402-7 (2002).
32
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
Zientz, E., Dandekar, T. & Gross, R. Metabolic interdependence of obligate
intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev 68, 74570 (2004).
Puustinen, A. & Wikstrom, M. The heme groups of cytochrome o from
Escherichia coli. Proc Natl Acad Sci U S A 88, 6122-6 (1991).
Saiki, K., Mogi, T., Ogura, K. & Anraku, Y. In vitro heme O synthesis by the
cyoE gene product from Escherichia coli. J Biol Chem 268, 26041-4 (1993).
Nakabachi, A. & Ishikawa, H. Provision of riboflavin to the host aphid,
Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera. J Insect Physiol
45, 1-6 (1999).
Douglas, A. E. Parallels and contrasts between symbiotic bacteria and
bacterial- derived organelles: evidence from Buchnera, the bacterial symbiont
of aphids. Fems Microbiology Ecology 24, 1-9 (1997).
Douglas, A. E. & Prosser, W. A. Synthesis of the essential amino acid
tryptophan in the pea aphid (Acyrthosiphon pisum) symbiosis. Journal of
Insect Physiology 38, 565-568 (1992).
Febvay, G., Rahbe, Y., Rynkiewicz, M., Guillaud, J. & Bonnot, G. Fate of
dietary sucrose and neosynthesis of amino acids in the pea aphid,
acyrthosiphon pisum, reared on different diets. J Exp Biol 202 (Pt 19), 263952 (1999).
Liadouze, I., Febvay, G., Guillaud, J. & Bonnot, G. Metabolic fate of energetic
amino acids in the aposymbiotic pea aphid Acyrthosiphon pisum (Harris)
(Homoptera: Aphididae). Symbiosis 21, 115-127 (1996).
Douglas, A. E. Sulphate utilisation in an aphid symbiosis. Insect Biochemistry
18, 599-605 (1988).
White, R. H. 4-Hydroxybenzyl alcohol. A metabolite produced during the
biosynthesis of thiamine in Escherichia coli. Biochim Biophys Acta 583, 5562 (1979).
Krieger, C. J. et al. MetaCyc: a multiorganism database of metabolic pathways
and enzymes. Nucleic Acids Res 32, D438-42 (2004).
Keseler, I. M. et al. EcoCyc: a comprehensive database resource for
Escherichia coli. Nucleic Acids Res 33, D334-7 (2005).
Burgard, A. P., Nikolaev, E. V., Schilling, C. H. & Maranas, C. D. Flux
coupling analysis of genome-scale metabolic network reconstructions.
Genome Res 14, 301-12 (2004).
33
Supplementary Table 13. Metabolic gene content of endosymbionts and simulated minimal genomes
Presence (+) or absence (-) in endosymbiontic genomes of 904 genes annotated in the stoichiometric model of E. coli.
Figure 1c in the main text is based on results of the general simulations (column 7).
Four genes (b1416, b1417, b3767, b3768) are not annotated appropriatelyin the NCBI genome database, and therefore these genes were excluded from all analysis.
Presence/Absence of the ortholog in endosymbiont genomes
Blattner names (E.coli ) Gene name (E.coli ) Buchnera aphidicola
b0002
thrA
+
b0003
thrB
+
b0004
thrC
+
b0007
yaaJ
b0008
talB
b0019
nhaA
b0025
ribF
b0029
lytB
+
b0031
dapB
+
b0032
carA
+
b0033
carB
+
b0036
caiD
b0038
caiB
b0040
caiT
b0048
folA
+
b0049
apaH
+
b0052
pdxA
b0061
araD
b0062
araA
b0063
araB
b0066
sfuC
b0067
sfuB
b0068
sfuA
b0071
leuD
+
b0072
leuC
+
b0073
leuB
+
b0074
leuA
+
b0077
ilvI
+
Buchnera aphidicola Sg
+
+
+
+
+
+
+
+
+
+
+
Buchnera sp
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Wigglesworthia brevipalpis
+
+
+
+
+
+
+
+
+
+
-
Fraction of simulated minimal gene sets with the presence of the gene
General (nutrient rich) conditions
0.34
0.342
0.342
0.01
0.494
0.268
1
0
0.704
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0.802
0.802
0.802
0.802
0.368
Wigglesworthia conditions
Buchnera conditions
0.36
0.092
0.092
0.008
0.444
0.004
1
1
1
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0.744
0.744
0.744
0.744
0.406
0.498
0.606
0.606
0
0.512
0
1
0
1
0.012
0.012
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
0.414
b0078
b0085
ilvH
murE
+
+
+
-
+
+
+
0.368
1
0.406
1
0.414
1
b0086
b0087
b0088
b0090
b0091
b0092
b0096
b0099
b0104
b0109
b0112
b0114
b0115
b0116
b0118
b0120
b0121
b0124
b0125
b0126
b0131
b0133
b0134
b0142
b0154
b0158
b0159
b0160
b0166
b0171
b0173
b0174
b0175
b0179
b0180
b0181
b0182
b0185
b0186
murF
mraY
murD
murG
murC
ddlB
lpxC
mutT
guaC
nadC
aroP
aceE
aceF
lpdA
acnB
speD
speE
gcd
hpt
yadF
panD
panC
panB
folK
hemL
yadT
mtn
dgt
dapD
pyrH
dxr
uppS
cdsA
lpxD
fabZ
lpxA
lpxB
accA
ldcC
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
1
1
1
1
1
0.53
1
0.488
0
0.198
0.636
0
0
1
0.478
0.184
0.186
0
0.03
0.514
0.27
0.27
0.27
1
0
0
0.184
0
0.704
0.668
0
0
1
1
1
1
1
1
0
1
1
1
1
1
0.492
1
0.498
0
0.188
0.7
0.002
0.002
0.934
0.458
1
1
0
0.088
0.506
1
1
1
1
1
0
1
0
1
0.6
1
0
1
1
1
1
1
1
0
1
1
1
1
1
0.51
1
0.48
0
1
0
1
1
1
0.484
1
1
0
0.054
0.536
1
1
1
1
0
0
1
0
1
0.618
0
0
1
1
1
1
1
1
0
b0197
b0198
yaeC
yaeE
-
-
-
-
0.858
0.858
0.808
0.808
0
0
b0199
b0200
b0207
b0212
b0221
b0222
b0238
b0242
b0243
b0273
b0312
b0314
b0323
b0331
b0333
b0334
b0335
b0336
b0337
b0339
b0340
b0341
b0343
b0344
b0347
b0348
b0349
b0350
b0351
b0352
b0353
b0356
b0365
b0366
b0367
b0368
b0369
b0381
b0386
abc
yaeD
yafB
gloB
fadF
gmhA
gpt
proB
proA
argF
betB
betT
yahI
prpB
prpC
prpD
prpE
codB
codA
cynT
cynS
cynX
lacY
lacZ
mhpA
mhpB
mhpC
mhpD
mhpF
mhpE
mhpT
adhC
tauA
tauB
tauC
tauD
hemB
ddlA
proC
+
+
+
-
+
+
+
+
-
+
+
+
+
-
+
+
+
+
0.858
1
0
0
0
1
0.032
0.766
0.766
0.4
0
0
0.314
0
0
0
0
0.08
0.094
0.486
0
0
0
0
0
0
0
0
0.02
0
0
0.01
0
0
0
0
0
0.47
0.912
0.808
1
0
0
0
1
0.104
0.728
0.728
0.388
0
0
0.378
0
0
0
0.04
0.088
0.122
0.494
0
0
0
0
0
0
0
0
0
0
0
0.016
0
0
0
0
1
0.508
0.892
0
1
0
0
0
1
0.046
0.388
0.388
0.502
0
0
0.302
0.002
0.002
0.002
0.014
0
0.122
0.464
0
0
0
0
0
0
0
0
0.044
0
0
0.008
0
0
0
0
0
0.49
1
b0388
b0401
aroL
brnQ
-
-
-
+
0.49
0.84
0.514
0.856
0.52
0
b0403
b0414
b0415
b0417
b0418
b0420
b0421
b0423
b0425
b0428
b0429
b0430
b0431
b0432
b0451
b0469
b0474
b0475
b0477
b0480
b0485
b0505
b0507
b0508
b0509
b0511
b0512
b0514
b0516
b0521
b0522
b0523
b0529
b0576
b0583
b0586
b0593
b0594
b0595
malZ
ribD
ribH
thiL
pgpA
dxs
ispA
thiI
panE
cyoE
cyoD
cyoC
cyoB
cyoA
amtB
apt
adk
hemH
gsk
ushA
ybaS
allA
gcl
hyi
glxR
allP
allB
glxK
allC
arcC
purK
purE
folD
pheP
entD
entF
entC
entE
entB
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
0.004
1
1
0
0.524
0
0
0
0.002
0
1
1
1
1
1
0.036
1
0
0.314
1
0
0
0
0
0
0
0
0
0
0.35
0.72
0.72
1
0.038
0
0
0
0
0
0
1
1
0
0.49
1
1
1
0.03
1
1
1
1
1
1
0.186
1
1
0.224
1
0
0
0.012
0
0.006
0
0
0.01
0
0.272
0.846
0.846
1
0.04
0
0
0
0
0
0
1
1
0
0.46
0
0
0
0
0
1
1
1
1
1
0.126
1
0
0
1
0
0
0.014
0.004
0.008
0
0
0.012
0
0.354
1
1
1
0
0
0
0
0
0
b0596
b0612
entA
citT
-
-
-
-
0
0
0
0
0
0
b0615
b0616
b0617
b0621
b0638
b0639
b0652
b0653
b0654
b0655
b0662
b0674
b0677
b0678
b0679
b0688
b0692
b0693
b0696
b0697
b0698
b0720
b0721
b0722
b0723
b0724
b0726
b0727
b0728
b0729
b0733
b0734
b0750
b0751
b0754
b0755
b0757
b0758
b0759
citF
citE
citD
dcuC
phpB
nadD
gltL
gltK
gltJ
gltI
ubiF
asnB
nagA
nagB
nagE
pgm
potE
speF
kdpC
kdpB
kdpA
gltA
sdhC
sdhD
sdhA
sdhB
sucA
sucB
sucC
sucD
cydA
cydB
nadA
pnuC
aroG
gpmA
galK
galT
galE
+
+
+
-
+
+
+
+
-
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
0
0
0
0
0
1
0
0
0
0
0
0.066
0.028
0
0.02
0.504
0.686
0.014
0
0
0
1
1
1
1
1
1
1
0.956
0.956
0
0
0.198
0.546
0.312
0.34
0
0.002
0.002
0
0
0
0
0
1
0
0
0
0
1
0.086
0
0
0
0.548
0.372
0.45
0
0
0
1
1
1
1
1
0.932
0.932
0.908
0.908
0
0
0.188
0.67
0.304
0.362
0
0.002
0.002
0
0
0
0
0
1
0
0
0
0
0
0.306
0
0
0
0.476
0
0.45
0
0
0
1
1
1
1
1
1
1
0.692
0.692
0
0
1
0
0.326
0.32
0
0
0
b0774
b0775
bioA
bioB
+
+
+
+
+
+
+
+
0
0
1
1
0
0
b0776
b0778
b0809
b0810
b0811
b0825
b0828
b0854
b0855
b0856
b0857
b0860
b0861
b0862
b0864
b0870
b0871
b0888
b0894
b0895
b0896
b0902
b0903
b0904
b0907
b0908
b0910
b0915
b0918
b0928
b0931
b0945
b0954
b0963
b0972
b0973
b0974
b0996
b0997
bioF
bioD
glnQ
glnP
glnH
fsa
ybiK
potF
potG
potH
potI
artJ
artM
artQ
artP
ltaA
poxB
trxB
dmsA
dmsB
dmsC
pflA
pflB
focA
serC
aroA
cmk
lpxK
kdsB
aspC
pncB
pyrD
fabA
mgsA
hyaA
hyaB
hyaC
torC
torA
+
+
+
+
+
+
-
+
+
+
+
+
-
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
-
0
0
0
0
0
0.248
0
0.01
0.01
0.01
0.01
0.024
0.024
0.024
0.024
0
0
1
0
0
0
0
0
0.008
1
1
0.968
1
1
1
0.256
0.892
1
0
0
0
0
0
0
1
1
0
0
0
0.212
0
0
0
0
0
0.02
0.02
0.02
0.02
0
0
1
0
0
0
0
0
0.012
1
1
0.942
1
1
1
0.142
0.82
1
0
0
0
0
0
0
0
0
0
0
0
0.138
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0.064
0.064
0.08
1
1
0.792
1
1
1
0
1
1
0
0
0
0
0
0
b1002
b1006
agp
ycdG
-
-
-
-
0
0.016
0
0.052
0
0
b1014
b1015
b1033
b1054
b1062
b1091
b1092
b1093
b1095
b1096
b1098
b1101
b1109
b1123
b1124
b1125
b1126
b1131
b1136
b1186
b1189
b1190
b1197
b1198
b1199
b1200
b1207
b1208
b1210
b1215
b1216
b1223
b1224
b1225
b1226
b1227
b1232
b1236
b1238
putA
putP
ycdW
lpxL
pyrC
fabH
fabD
fabG
fabF
pabC
tmk
ptsG
ndh
potD
potC
potB
potA
purB
icdA
nhaB
dadA
dadX
treA
dhaH
dhaK2
dhaK1
prsA
ispE
hemA
kdsA
chaA
narK
narG
narH
narJ
narI
purU
galU
tdk
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
0
0.036
0
1
0.892
0.904
1
1
1
1
1
0.002
0
0.366
0.366
0.366
0.366
0.794
1
0.204
0
0.506
0
0.01
0.01
0.01
1
0
0
1
0.27
0
0
0
0
0
0.85
0.55
0.212
0.002
0.034
0
1
0.82
0.888
1
1
1
1
1
0
0
0
0
0
0
0.888
1
0.006
0.002
0.474
0
0.012
0.012
0.012
1
1
1
1
0.024
0
0
0
0
0
0.86
0.464
0.286
0
0
0.002
1
1
0.558
1
1
1
1
1
0.374
0
0
0
0
0
1
1
0.002
0
0.528
0
0.106
0.106
0.106
1
0
0
1
0.004
0.002
0
0
0
0
0.494
0.526
0.13
b1241
b1249
adhE
cls
+
+
+
+
1
1
1
1
0
1
b1260
b1261
b1262
b1263
b1264
b1270
b1276
b1277
b1278
b1281
b1288
b1297
b1300
b1302
b1363
b1380
b1385
b1386
b1398
b1415
b1416
b1417
b1440
b1441
b1442
b1443
b1469
b1474
b1475
b1476
b1479
b1492
b1493
b1519
b1521
b1524
b1584
b1602
b1603
trpA
trpB
trpC
trpD
trpE
btuR
acnA
ribA
pgpB
pyrF
fabI
ycjK
aldH
goaG
trkG
ldhA
feaB
tynA
paaK
aldA
gapC_2
gapC_1
ydcS
ydcT
ydcU
ydcV
narU
fdnG
fdnH
fdnI
sfcA
xasA
gadB
tam
uxaB
yneH
speG
pntB
pntA
+
+
+
+
+
+
+
+
?
?
-
+
+
+
+
+
+
+
?
?
-
+
+
+
+
+
+
+
+
?
?
-
+
+
+
?
?
+
-
0.176
0.176
0.026
0.026
0.026
0
0.522
1
0.476
0.892
1
0.528
0.002
0.112
0
0
0
0
0
1
0.348
0.348
0.45
0.45
0.45
0.45
0
0.158
0.158
0.158
0.014
0
0.02
0
0
0
0
0.068
0.068
0.176
0.176
0.042
0.042
0.042
0
0.542
1
0.51
0.82
1
0.532
0
0.062
0
0
0
0
0
1
0.302
0.302
0
0
0
0
0
0.186
0.186
0.186
0.014
0
0.066
0
0
0
0
0.122
0.122
1
1
1
1
1
0
0.516
1
0.54
1
1
0.51
0.002
0.058
0
0
0
0
0
1
0.298
0.298
0
0
0
0
0
0.082
0.082
0.082
0.044
0.006
0.056
0
0
0
0
0.03
0.03
b1605
b1611
arcD
fumC
-
-
-
+
0.114
0.354
0.176
0.354
0
0.338
b1612
b1613
b1621
b1622
b1623
b1636
b1638
b1646
b1651
b1656
b1662
b1676
b1692
b1693
b1702
b1704
b1709
b1711
b1723
b1732
b1740
b1744
b1745
b1746
b1747
b1748
b1761
b1764
b1767
b1768
b1773
b1779
b1801
b1805
b1812
b1814
b1817
b1818
b1819
fumA
manA
malX
malY
add
pdxY
pdxH
sodC
gloA
sodB
ribE
pykF
ydiB
aroD
pps
aroH
btuD
btuC
pfkB
katE
nadE
astE
astB
astD
astA
astC
gdhA
selD
ansA
pncA
b1773
gapA
yeaV
fadD
pabB
sdaA
manX
manY
manZ
+
+
+
-
+
+
+
+
-
+
+
+
+
-
+
+
+
+
-
0.3
0
0
0.056
0
0
0
0
0
0
1
0.426
0.526
1
0
0.336
0
0
0
0
0.454
0
0
0
0
0
1
0
0
0
0.296
0.652
0.014
0
1
0.064
0.052
0.052
0.052
0.362
0
0.004
0.094
0.002
0
0
0
0
0
1
0.528
0.542
1
0
0.334
0
0
0
0
0.33
0
0
0
0
0
1
0
0
0.142
0.274
0.698
0.004
0
1
0.038
0
0
0
0.342
0
0.328
0.49
0
0
0
0
0
0
1
0.362
0.466
1
0
0.34
0
0
0.44
0
1
0
0
0
0
0
1
0
0
0
0.348
0.702
0.012
0
1
0.258
0.298
0.298
0.298
b1849
b1850
purT
eda
-
-
-
+
-
0.342
0
0.382
0
0.568
0
b1851
b1852
b1854
b1855
b1865
b1872
b1873
b1896
b1897
b1898
b1899
b1900
b1901
b1907
b1912
b1982
b1991
b1992
b1993
b2019
b2020
b2021
b2022
b2023
b2024
b2025
b2026
b2028
b2029
b2036
b2038
b2039
b2040
b2041
b2042
b2045
b2048
b2049
b2052
edd
zwf
pykA
msbB
ntpA
torZ
torY
otsA
otsB
araH_2
araH_1
araG
araF
tyrP
pgsA
amn
cobT
cobS
cobU
hisG
hisD
hisC
hisB
hisH
hisA
hisF
hisI
ugd
gnd
glf
rfbC
rfbA
rfbD
rfbB
galF
wcaK
cpsG
manC
fcl
+
+
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
+
-
+
+
+
-
0
0.018
0.554
1
0.512
0
0
0
0
0
0
0
0
0.008
1
0
0
0
0
0.292
0.292
0.292
0.292
0.292
0.292
0.292
0.292
0
0.018
0
0
0
0
0
0.45
0.002
0
0
0
0
0.142
0.44
1
0.502
0
0
0
0
0
0
0
0
0.006
1
0
0
0
0
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0.228
0
0.142
0
0
0
0
0
0.536
0.002
0
0
0
0
1
0.42
1
0.52
0
0
0
0
0
0
0
0
0
1
0.002
0
0
0
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0.474
0
0
0
0
b2053
b2065
gmd
dcd
+
+
+
+
0
0
0
0
0
0
b2066
b2091
b2092
b2093
b2094
b2095
b2096
b2097
b2103
b2104
b2128
b2129
b2130
b2131
b2132
b2133
b2143
b2148
b2149
b2150
b2153
b2156
b2167
b2168
b2169
b2210
b2221
b2222
b2223
b2224
b2232
b2234
b2235
b2239
b2240
b2241
b2242
b2243
b2260
udk
gatD
gatC
gatB
gatA
gatZ
gatY
fbaB
thiD
thiM
yehW
yehX
yehY
yehZ
bglX
dld
cdd
mglC
mglA
mglB
folE
lysP
fruA
fruK
fruB
mqo
atoD
atoA
atoE
atoB
ubiG
nrdA
nrdB
glpQ
glpT
glpA
glpB
glpC
menE
+
+
-
+
+
+
-
+
+
-
+
+
+
+
-
0.156
0
0
0
0
0
0
0.264
0
0
0
0
0
0
0
0
0.042
0
0
0
1
0.388
0
0
0
0
0
0
0
0
0
0.366
0.366
0
1
0
0
0
0
0.264
0
0
0
0
0
0
0.28
1
0
0
0
0
0
0
0
0.06
0
0
0
1
0.356
0
0
0
0
0
0
0
0
1
0.364
0.364
0
1
0.002
0.002
0.002
0
0.142
0
0
0
0
0
0
0.322
0
0
0
0
0
0
0
0
0.172
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0.312
0.312
0.006
0
0
0
0
0
b2261
b2262
menC
menB
-
-
-
-
0
0
0
0
0
0
b2264
b2265
b2276
b2277
b2278
b2279
b2280
b2281
b2282
b2283
b2284
b2285
b2286
b2287
b2288
b2296
b2297
b2306
b2307
b2308
b2309
b2310
b2311
b2312
b2315
b2316
b2320
b2323
b2329
b2344
b2366
b2378
b2388
b2393
b2400
b2406
b2407
b2411
b2413
menD
menF
nuoN
nuoM
nuoL
nuoK
nuoJ
nuoI
nuoH
nuoG
nuoF
nuoE
nuoC
nuoB
nuoA
ackA
pta
hisP
hisM
hisQ
hisJ
argT
ubiX
purF
folC
accD
pdxB
fabB
aroC
fadL
dsdA
lpxP
glk
nupC
gltX
xapB
xapA
lig
cysZ
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
-
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0.294
0.464
0.12
0.12
0.12
0.098
0.028
0
0.72
1
1
0
1
1
0.934
0
0
0.008
0.046
0
0.062
0.208
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0.256
0.438
0.104
0.104
0.104
0.086
0.03
0.514
1
1
1
1
1
1
0
0
0
0.006
0.102
1
0.088
0.352
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0.16
0.466
0
0
0
0
0
0
1
1
1
0
1
1
0
0
0
0.026
0
0
0
0.38
0
0.348
b2414
b2415
cysK
ptsH
+
+
+
+
+
-
0
0.084
0
0.016
0.514
1
b2416
b2417
b2418
b2421
b2422
b2423
b2424
b2425
b2429
b2436
b2440
b2441
b2458
b2463
b2464
b2465
b2472
b2476
b2478
b2492
b2497
b2498
b2499
b2500
b2507
b2508
b2515
b2518
b2530
b2533
b2536
b2538
b2539
b2540
b2541
b2542
b2551
b2557
b2563
ptsI
crr
pdxK
cysM
cysA
cysW
cysU
cysP
yfeV
hemF
eutC
eutB
eutD
maeB
talA
tktB
dapE
purC
dapA
focB
uraA
upp
purM
purN
guaA
guaB
gcpE
ndk
iscS
suhB
hcaT
hcaE
hcaF
hcaC
hcaB
hcaD
glyA
purL
acpS
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
0.084
0.002
0
0
0
0
0
0
0
0
0
0
0.426
0.054
0.504
0.502
0.704
0.72
0.704
0.018
0.012
0.018
0.72
0.668
0.674
0.674
0
1
0
0
0
0
0
0
0
0
1
0.72
0
0.016
0.004
0
0
0
0
0
0
0
1
0
0
0.452
0.09
0.5
0.542
1
0.846
1
0.018
0.042
0.038
1
0.846
0.758
0.758
1
1
1
0
0
0
0
0
0
0
1
1
0
1
0.702
0
0.486
1
1
1
0.652
0
0
0.006
0.006
0.422
0.094
0.482
0.53
1
1
1
0.072
0
0.118
1
0.736
1
1
0
1
0
0
0
0
0
0
0
0
1
1
0
b2564
b2574
pdxJ
nadB
-
-
-
+
-
0
0.198
1
0.188
0
1
b2585
b2587
b2599
b2600
b2601
b2615
b2661
b2662
b2663
b2675
b2676
b2677
b2678
b2679
b2687
b2688
b2690
b2702
b2703
b2704
b2705
b2719
b2720
b2721
b2722
b2723
b2724
b2738
b2746
b2747
b2750
b2751
b2752
b2762
b2763
b2764
b2779
b2780
b2781
pssA
kgtP
pheA
tyrA
aroF
yfjB
gabD
gabT
gabP
nrdE
nrdF
proV
proW
proX
luxS
gshA
yqaB
srlA
srlE
srlB
srlD
hycG
hycF
hycE
hycD
hycC
hycB
ygbL
ispF
ispD
cysC
cysN
cysD
cysH
cysI
cysJ
eno
pyrG
mazG
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
-
1
0
0.906
0.94
0.352
1
0.196
0.11
0
0
0
0
0
0
0
0
0.494
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.984
0.946
0
1
0
0.872
0.92
0.362
1
0.116
0.056
0
0
0
0.002
0.002
0.002
0
1
0.45
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0.978
0.918
0
1
0
1
1
0.334
1
0.064
0.052
0.006
0
0
0
0
0
0
0
0.524
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
b2787
b2788
gudD
ygcY
-
-
-
-
0
0
0
0
0
0
b2789
b2796
b2797
b2799
b2800
b2801
b2802
b2803
b2818
b2827
b2836
b2838
b2841
b2874
b2883
b2889
b2901
b2903
b2904
b2905
b2907
b2913
b2914
b2917
b2919
b2920
b2925
b2926
b2927
b2935
b2937
b2938
b2942
b2943
b2947
b2957
b2964
b2965
b2975
gudP
sdaC
sdaB
fucO
fucA
fucP
fucI
fucK
argA
thyA
aas
lysA
araE
yqeA
ygfP
idi
bglA
gcvP
gcvH
gcvT
ubiH
serA
rpiA
sbm
ygfG
ygfH
fbaA
pgk
epd
tktA
speB
speA
metK
galP
gshB
ansB
nupG
speC
glcA
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
-
0
0
0.06
0
0
0
0
0
0.678
0.874
0.934
0.644
0
0.336
0
0
0
0
0
0
0
1
0.5
0
0
0
0.31
1
0
0.498
0
0
0.184
0.004
0
0
0.074
0.014
0.08
0
0
0.05
0
0
0
0
0
0.652
0.784
0
0.71
0
0.326
0
0
0
0.004
0.004
0.004
1
1
0.496
0
0
0.04
0.336
1
1
0.458
0.018
0.006
1
0.006
1
0
0.1
0.532
0.088
0
0
0.262
0
0
0
0
0
1
1
0.006
1
0
0.332
0
0
0
0.11
0.11
0.11
0
1
0.462
0.002
0.002
0.014
0.304
1
0
0.47
0.098
0.064
1
0.026
0
0
0
0.452
0.276
b2976
b2978
glcB
glcF
-
-
-
-
0.452
0.82
0.484
0.804
0.354
0.412
b2979
b2987
b2988
b2994
b2997
b3008
b3012
b3018
b3041
b3052
b3058
b3061
b3062
b3063
b3073
b3089
b3091
b3092
b3093
b3111
b3112
b3114
b3115
b3116
b3117
b3124
b3125
b3126
b3127
b3128
b3132
b3137
b3161
b3172
b3176
b3177
b3187
b3189
b3212
glcD
pitB
gsp
hybC
hybO
metC
yqhE
plsC
ribB
rfaE
folB
ttdA
ttdB
ygjE
ygjG
sstT
uxaA
uxaC
exuT
tdcGa
tdcGb
tdcE
tdcD
tdcC
tdcB
garK
garR
garL
garP
garD
agaZ
agaY
mtr
argG
mrsA
folP
ispB
murA
gltB
+
+
+
+
-
+
+
+
+
-
+
+
+
+
+
-
+
+
+
+
+
+
+
-
0.82
0.5
0
0
0
0.086
0
1
1
1
1
0
0
0
0.002
0.002
0
0
0
0
0
0
0.264
0.004
0.044
0
0
0
0
0
0
0
0.87
0.884
1
1
0
1
0
0.804
0.486
0
0
0
0.098
0
1
1
1
1
0
0
0
0.004
0
0
0
0
0
0
0.002
0.258
0.008
0.036
0.002
0.006
0
0
0
0
0
0.842
0.824
1
1
1
1
0
0.412
0.494
0
0
0
0.51
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0.138
0.202
0
0.246
0.002
0.002
0
0
0
0
0
0
1
1
1
0
1
0
b3213
b3222
gltD
nanK
-
-
-
-
0
0.006
0
0
0
0
b3223
b3224
b3225
b3236
b3255
b3256
b3258
b3281
b3359
b3360
b3365
b3366
b3367
b3368
b3380
b3385
b3386
b3389
b3390
b3403
b3409
b3415
b3416
b3417
b3425
b3426
b3428
b3429
b3430
b3433
b3437
b3450
b3451
b3452
b3453
b3454
b3455
b3456
b3457
nanE
nanT
nanA
mdh
accB
accC
panF
aroE
argD
pabA
nirB
nirD
nirC
cysG
yhfW
gph
rpe
aroB
aroK
pckA
feoB
gntT
malQ
malP
glpE
glpD
glgP
glgA
glgC
asd
gntK
ugpC
ugpE
ugpA
ugpB
livF
livG
livM
livH
+
+
+
+
+
-
+
+
+
+
+
+
-
+
+
+
+
+
+
+
-
+
+
+
+
+
+
-
0.006
0.006
0.006
1
1
1
0.73
0.474
0.668
1
0
0
0
0
0.256
0
0.504
1
0.51
0.016
0
0
0.006
0.006
0
0
0
1
1
0.864
0
0
0
0
0
0.02
0.02
0.02
0.02
0
0
0
1
1
1
0
0.458
0.644
1
0
0
0
0
0.346
0
0.508
1
0.486
0.032
1
0
0.002
0.002
0
0
0
1
1
1
0
0.004
0.004
0.004
0.004
0.018
0.018
0.018
0.018
0
0
0
1
1
1
0
0.534
1
1
0
0
0
0
0.102
0
0.498
1
0.48
0.03
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
b3458
b3460
livK
livJ
-
-
-
-
0.002
0.018
0
0.018
0
0
b3493
b3500
b3517
b3519
b3526
b3528
b3551
b3553
b3564
b3565
b3566
b3567
b3568
b3572
b3575
b3579
b3581
b3583
b3588
b3599
b3600
b3603
b3605
b3607
b3608
b3612
b3616
b3617
b3619
b3620
b3621
b3622
b3626
b3627
b3631
b3633
b3634
b3640
b3642
pitA
gor
gadA
treF
kdgK
dctA
bisC
yiaE
xylB
xylA
xylF
xylG
xylH
avtA
yiaK
yiaO
sgbH
sgbE
aldB
mtlA
mtlD
lldP
lldD
cysE
gpsA
yibO
tdh
kbl
rfaD
rfaF
rfaC
rfaL
rfaJ
rfaI
rfaG
kdtA
coaD
dut
pyrE
+
+
+
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
0.5
0
0.024
0
0
0
0
0
0
0
0
0
0
0.296
0
0
0
0
0
0
0
0.1
0
0
1
0.31
0.01
0.01
1
1
1
1
1
1
1
1
1
0.124
0.892
0.506
0
0.052
0
0
0
0
0
0
0
0
0
0
0.328
0
0
0
0
0
0
0
0.108
0
0
1
0.284
0
0
1
1
1
1
1
1
1
1
0
0.13
0.82
0.482
0
0.054
0
0
0
0
0.002
0
0
0
0
0
0
0
0
0
0
0
0
0
0.312
0
1
1
0.32
0.012
0.012
1
1
1
1
1
1
1
1
1
0.252
1
b3648
b3653
gmk
gltS
+
-
+
-
+
-
+
-
1
0
1
0
1
0.006
b3654
b3665
b3666
b3670
b3671
b3691
b3692
b3693
b3708
b3709
b3725
b3726
b3727
b3728
b3729
b3730
b3731
b3732
b3733
b3734
b3735
b3736
b3737
b3738
b3739
b3744
b3748
b3749
b3750
b3751
b3752
b3767
b3768
b3769
b3770
b3771
b3772
b3774
b3784
yicE
yicP
uhpT
ilvN
ilvB
dgoT
dgoA
dgoK
tnaA
tnaB
pstB
pstA
pstC
pstS
glmS
glmU
atpC
atpD
atpG
atpA
atpH
atpF
atpE
atpB
atpI
asnA
rbsD
rbsA
rbsC
rbsB
rbsK
ilvG_1
ilvG_2
ilvM
ilvE
ilvD
ilvA
ilvC
wecA
+
+
+
+
+
+
+
+
+
+
?
?
+
+
-
+
+
+
+
+
+
+
+
+
+
?
?
+
+
-
+
+
+
+
+
+
+
+
+
+
?
?
+
+
-
+
+
+
+
+
+
+
+
+
+
?
?
-
0.284
0.018
0.056
0.358
0.358
0
0
0
0.742
0.028
0
0
0
0
0.92
1
1
1
1
1
1
1
1
1
1
0.934
0
0
0
0
0
0.216
0.216
0.216
0.65
0.942
0.04
0.944
0
0.198
0.11
0.032
0.322
0.322
0
0
0
0.742
0.018
0.004
0.004
0.004
0.004
1
1
1
1
1
1
1
1
1
1
1
0.914
0
0
0
0
0
0.23
0.23
0.23
0.67
0.958
0.036
0.97
0
0.046
0.098
0
0.36
0.36
0
0
0
0.278
0
0.024
0.024
0.024
0.024
1
1
1
1
1
1
1
1
1
1
1
0.694
0
0
0
0
0
0.226
0.226
0.226
1
1
0.234
1
0
b3786
b3787
wecB
wecC
-
-
-
-
0
0
0
0
0
0
b3788
b3789
b3790
b3791
b3793
b3794
b3803
b3804
b3805
b3806
b3809
b3821
b3825
b3829
b3831
b3833
b3835
b3843
b3845
b3846
b3849
b3850
b3870
b3892
b3893
b3894
b3902
b3903
b3904
b3907
b3908
b3909
b3916
b3917
b3918
b3919
b3926
b3927
b3929
rffG
rffH
wecD
wecE
wecF
wecG
hemX
hemD
hemC
cyaA
dapF
pldA
pldB
metE
udp
ubiE
ubiB
yigC
fadA
fadB
trkH
hemG
glnA
fdoI
fdoH
fdoG
rhaD
rhaA
rhaB
rhaT
sodA
kdgT
pfkA
sbp
cdh
tpiA
glpK
glpF
menG
+
+
+
+
+
-
+
+
+
+
+
+
-
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
-
0
0
0
0
0
0
0
0
0
0
0.704
0
0
0.08
0.16
0
0
0
0
0
0
0
0.472
0.174
0.174
0.174
0
0
0
0
0
0
0
0
0
1
0.418
0.212
0
0
0
0
0
0
0
0
1
1
0
1
0
0
0.52
0.214
1
1
0.486
0
0
0
1
0.468
0.146
0.146
0.146
0
0
0
0
0
0
0
0
0
1
0.416
0.21
0
0
0
0
0
0
0
0
0
0
0
1
0.006
0.006
0.51
0.17
0
0
0
0
0
0
0
0.49
0.06
0.06
0.06
0
0
0
0
0
0
0.534
0.348
0
1
0.398
0.276
0
b3930
b3939
menA
metB
-
-
-
-
0
0.142
0
0.192
0
1
b3940
b3941
b3942
b3945
b3946
b3951
b3952
b3956
b3957
b3958
b3959
b3960
b3962
b3966
b3967
b3972
b3974
b3990
b3991
b3992
b3993
b3994
b3997
b4005
b4006
b4013
b4014
b4015
b4019
b4024
b4025
b4031
b4032
b4033
b4034
b4035
b4036
b4039
b4040
metL
metF
katG
gldA
talC
pflD
pflC
ppc
argE
argC
argB
argH
sthA
btuB
murI
murB
coaA
thiH
thiG
thiF
thiE
thiC
hemE
purD
purH
metA
aceB
aceA
metH
lysC
pgi
xylE
malG
malF
malE
malK
lamB
ubiC
ubiA
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
0.37
1
0
0.52
0.246
0
0
0.098
0.678
0.678
0.678
0.884
0.072
0
1
1
1
0
0
0
0
0
0
0.72
0.8
0.142
0.546
0.978
0.062
0.154
0.934
0
0.006
0.006
0.006
0.006
0.006
0
0
0.386
1
0
0.5
0.234
0
0
0.526
0.652
0.652
0.652
0.824
0.024
0
1
1
0
1
1
1
1
1
1
1
0.886
0.192
0.488
0.95
0.48
0.254
0.956
0
0.002
0.002
0.002
0.002
0.002
1
1
0.502
1
0
0.362
0.102
0.054
0.054
0.482
1
1
1
1
0.032
0
1
1
1
0
0
0
0
0
0
1
1
1
0.28
0.544
0.49
0
0.92
0
0
0
0
0
0
0
0
b4041
b4042
plsB
dgkA
-
-
-
+
-
1
1
1
1
1
1
b4053
b4054
b4069
b4077
b4079
b4090
b4111
b4117
b4119
b4120
b4122
b4123
b4131
b4132
b4138
b4139
b4151
b4152
b4153
b4154
b4160
b4177
b4196
b4197
b4198
b4208
b4226
b4227
b4228
b4229
b4230
b4231
b4232
b4238
b4239
b4240
b4244
b4245
b4254
alr
tyrB
acs
gltP
fdhF
rpiB
proP
adiA
melA
melB
fumB
dcuB
cadA
cadB
dcuA
aspA
frdD
frdC
frdB
frdA
psd
purA
sgaH
sgaU
sgaE
cycA
ppa
ytfQ
ytfR
ytfS
ytfT
yjfF
fbp
nrdD
treC
treB
pyrI
pyrB
argI
+
+
-
+
+
+
+
-
+
+
+
+
-
+
+
+
+
+
+
+
-
0.494
0.224
0.082
0
0.634
0.5
0.052
0
0
0
0.346
0
0
0
0
0.088
0
0
0
0
1
0.764
0
0
0
0.008
1
0
0
0
0
0
0.87
0.634
0
0
0.892
0.892
0.484
0.506
0.23
0.068
0
0.638
0.504
0.082
0.012
0
0
0.284
0
0
0
0
0.016
0
0
0
0
1
0.836
0
0
0
0.032
1
0
0
0
0
0
0.89
0.636
0
0
0.82
0.82
0.436
0.472
0
0.112
0.01
0.338
0.538
0
0.034
0
0
0.32
0
0
0
0
0.03
0
0
0
0
1
1
0
0
0
0.014
1
0
0
0
0
0
0
0.688
0
0
1
1
0.498
b4265
b4266
idnT
idnO
-
-
-
-
0
0
0
0
0
0
b4267
b4268
b4301
b4321
b4322
b4323
b4381
b4382
b4383
b4384
b4388
b4395
b4407
idnD
idnK
sgcE
gntP
uxuA
uxuB
deoC
deoA
deoB
deoD
serB
gpmB
thiS
+
+
-
+
+
-
+
+
-
-
0.09
0
0.494
0
0
0
0.006
0.006
0.252
0.254
1
0.334
0
0.036
0
0.482
0
0
0
0.006
0.004
0.302
0.34
1
0.332
1
0.032
0
0.486
0
0
0
0.55
0.082
0.6
0.352
1
0.36
0