Strictly convex norms on amenable groups Geometry of G G = Z2 . Find a good norm on G. University of Lethbridge, Alberta, Canada http://people.uleth.ca/∼dave.morris [email protected] Abstract. The philosophy of Geometric Group Theory is that infinite groups can be treated as geometric objects. We will look at one aspect of this. It is obvious that the usual Euclidean norm is strictly convex, by which we mean that, for all x and all nonzero y, either |x + y| > |x|, or |x − y| > |x|. We will discuss the existence of such a norm on an abstract (countable) group G. A sufficient condition is the existence of a total order on G that is invariant under multiplication on the left. This is not always a necessary condition, but we will use elementary measure theory and dynamics to show that the condition is indeed necessary if G is amenable. This is joint work with Peter Linnell of Virginia Tech. U of Virginia, April 2016 1 / 16 Assume ming,y d gy, y > 6δ. (if h ≠ e) Remark ρ(g) < ρ(gh) "⇒ ρ(g) < ρ(gh) < ρ(gh2 ) < · · · "⇒ g ≠ ghn "⇒ G has no el’ts of finite order. # U of Virginia, April 2016 3 / 16 ∃ strictly convex norm 2 / 16 (if h ≠ e) (True for finite-index subgrp?) Observation. Suppose ρ : G → R is strictly convex. Define g ≺ h ⇐⇒ ρ(g) < ρ(h). (partial order) It is locally invariant: g ≺ gh or g ≺ gh−1 (if h ≠ e). Converse: ∃ locally-inv’t ≺ "⇒ ∃ str conv norm. Dave Witte Morris (Univ. of Lethbridge) Convex norms on amenable groups U of Virginia, April 2016 4 / 16 ̸⇐ recurrent ̸⇐ bi-inv’t ⇒ locally Conradian left-inv’t ⇒ # order indicable order order Exercise. Spse G acts on R. (or-pres, and StabG (0) = {e}) Define g ≪ h ⇐⇒ g(0) < h(0). This is a left-invariant total order. Show g ≪ h "⇒ ag ≪ ah. U of Virginia, April 2016 Hint: or-pres, so increasing, so x < y ⇒ a(x) < a(y). act on R ̸⇐ ⇒ left-inv’t order ⇒ Converse: ∃ left-inv’t ≪ "⇒ G acts on R. Observation. Left-inv’t total order is locally inv’t. straight locally ⇒ strictly order convex # inv’t norm order fresh order ⇒ ⇒ ∃ locally-inv’t ≺ Convex norms on amenable groups This is strictly convex. ρ(g) < ρ(gh) or ρ(g) < ρ(gh−1 ) Convex norms on amenable groups Dave Witte Morris (Univ. of Lethbridge) Example (Delzant) G acts properly by isometries on δ-hyperbolic X. % & Fix x ∈ X, and %define ρ(g) = d x, gx . & x+y x Dave Witte Morris (Univ. of Lethbridge) Question ¿ Does there exist a norm ρ : G → R, such that balls are strictly convex ? ρ(g) < ρ(gh) or ρ(g) < ρ(gh−1 ) Definition (Strictly convex) # $ ρ(x) < max ρ(x + y), ρ(x − y) Euclidean metric: BREuc (e) = { (x, y) | x 2 + y 2 ≤ R 2 } This is strictly convex. Question ¿ Does there exist a strictly convex norm ρ : G → R ? Question ¿ Does there exist a strictly convex norm ρ : G → R ? (balls are strictly convex) x−y (size of g) word metric: BRword (e) = { (x, y) | |x| + |y| ≤ R } This is convex, but not strictly convex. # Convex norms on amenable groups ! " countably infinite finitely generated Example Dave Witte Morris Dave Witte Morris (Univ. of Lethbridge) (discrete group) ̸⇐ Pf: e < h or h < e ⇒ g < gh or g = (gh−1 )h < gh−1 . ∃ action ∃ left-inv’t ⇒ ∃ str conv ∃ loc inv’t # # on R order norm order Converse false. Dave Witte Morris (Univ. of Lethbridge) (Counterexample by Dunfield, Kionke, Raimbault) Convex norms on amenable groups U of Virginia, April 2016 5 / 16 ̸⇐ # extreme ⇒ unique ⇒ no zero ⇒ torsion points product divisors free Theorem (Morris, Linnell-Morris) For amenable grps, “recurrent” # · · · # “extreme”. Dave Witte Morris (Univ. of Lethbridge) Convex norms on amenable groups U of Virginia, April 2016 6 / 16 Notation. Loc(G) = { loc inv’t orders } ⊂ 2G×G . This is a compact metric space. (Tychonoff) # extreme points Theorem (Morris, Linnell-Morris) For amenable grps, “recurrent” # · · · # “extreme”. [Morris, 2006] Reverse 1st implication. [Morris-Linnell, 2014] Reverse 2nd implication. Dave Witte Morris (Univ. of Lethbridge) (and amenability). Convex norms on amenable groups U of Virginia, April 2016 7 / 16 Use pos cone of ≺ to define left-inv’t total order < Define a < b # a−1 b ≻ e. total (a < b or b < a or b = a): ∀g ≠ e, either g ≻ e or g −1 ≻ e. ✓ recurrence "⇒ ∃M, ghn−M ≻ gh1−M . Dave Witte Morris (Univ. of Lethbridge) Convex norms on amenable groups U of Virginia, April 2016 9 / 16 Example Free group F2 = ⟨a, b⟩. Every el’t starts with $1: f0 (g) = 1, ∀g ∈ F2 . a b Everyone passes their dollar to the person next to them who is e closer to the identity: f1 (g) = $3 (except f1 (e) = $5). Everyone ≥$2, & money only moved bdd distance. Definition. This is a Ponzi scheme on F2 . U of Virginia, April 2016 act on R str conv norm ̸⇐ recurrent bi-inv’t ⇒ left-inv’t # left-inv’t # loc inv’t order order order order Famous Conjecture [Kaplansky] G no torsion ⇒ grp ring C[G] has no zero divisors. Dave Witte Morris (Univ. of Lethbridge) Convex norms on amenable groups U of Virginia, April 2016 10 / 16 I. M. Chiswell, Locally invariant orders on groups, Internat. J. Algebra Comput. 16 (2006), no. 6, 1161–1179. MR 2286427 T. Delzant: Sur l’anneau d’un groupe hyperbolique, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 4, 381–384. MR 1440952 S. Kionke, J. Raimbault, N. Dunfield: On geometric aspects of diffuse groups. http://arxiv.org/abs/1411.6449 V. M. Kopytov and N. Ya. Medvedev, Right-Ordered Groups. Consultants Bureau (Plenum), New York 1996. MR 1393199 Definition G is amenable ⇐⇒ % Ponzi scheme on G. Convex norms on amenable groups 8 / 16 Is it true for amenable groups? What is amenable ? Dave Witte Morris (Univ. of Lethbridge) U of Virginia, April 2016 ̸⇐ ⇒ unique ⇒ no zero ⇒ torsion product divisors free ∃n, ghn ≻ ehn ≻ e ≻ gh (for contradiction) However, g ≻ gh, so g ≺ gh−1 ≺ gh−2 ≺ gh−3 ≺ · · · ≺ ghn−M ≺ · · · ≺ gh1−M ≺ · · · →← Convex norms on amenable groups extreme pts transitive (a < b & b < c "⇒ a < c): g, h ≻ e ⇒ gh ≻ e. "⇒ Dave Witte Morris (Univ. of Lethbridge) # antireflexive (a ̸< a): e ̸≻ e ✓ recurrence G amenable (& countable) "⇒ can reverse quantifiers: ∃ ≺ ∈ Loc(G) that is recurrent for all g ∈ G. Summary for amenable groups ∃ ≺ ∈ Loc(G) that is recurrent for all h ∈ G. g≻e Poincaré Recurrence Thm For each g ∈ G, ∃ recurrent ≺ ∈ Loc(G): n ≺ is an accumulation point of { ≺g | n ∈ Z+ }. # Both proofs use recurrence G acts (continuously) on Loc(G) by translation on right: a ≺g b ⇐⇒ ag −1 ≺ bg −1 # # # act on R recurrent ⇒ left-inv’t ⇒ left-inv’t order order Recurrence str conv loc inv’t # norm order 11 / 16 Dave Witte Morris (Univ. of Lethbridge) Convex norms on amenable groups U of Virginia, April 2016 12 / 16 A. S. Sikora, Topology on the spaces of orderings of groups, Bull. London Math. Soc. 36 (2004), no. 4, 519–526. MR 2069015 P. Linnell and D. W. Morris: Amenable groups with a locally invariant order are locally indicable, Groups, Geometry, and Dynamics 8 (2014) 467–478. MR 3231224, http://arxiv.org/abs/1202.4716 Wikipedia, Poincaré Recurrence Theorem. http: //en.wikipedia.org/w/index.php?title=Poincaré recurrence D. W. Morris, Amenable groups that act on the line, Algebr. Geom. Topol. 6 (2006), 2509–2518. MR 2286034 A. Navas, On the dynamics of (left) orderable groups, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 5, 1685–1740. MR 2766228 J.-P. Pier, Amenable Locally Compact Groups. Wiley, New York 1984. MR 0767264 Dave Witte Morris (Univ. of Lethbridge) Convex norms on amenable groups U of Virginia, April 2016 Exercise. Assume G has extreme points. Show: G has a strictly convex norm (or a locally invariant partial order). G has the Unique Product Property. C[G] has no zero divisors. 13 / 16 Dave Witte Morris (Univ. of Lethbridge) Convex norms on amenable groups U of Virginia, April 2016 14 / 16 Bi-invariant order: ∃ total order <, such that ∀a, b, c ∈ G, a < b # ca < cb # ac < bc. Fresh order: ∃ total order <, such that, ∀g ∈ G, e ∉ semigroup generated by { h ∈ G | gh < g }. Recurrent left-inv’t order: ∃ left-inv’t total order <, such that, for all a1 < a2 < · · · < ak and all g ≠ e, ∃n ∈ Z+ , a1 g n < a2 g n < · · · < ak g n . Extreme points: (Also called weakly diffuse.) For every finite, nonempty A ⊆ G, ∃a ∈ A, ∀h ≠ e, either ah ∉ A or ah−1 ∉ A. Equivalently: (Also called diffuse.) If 2 ≤ #A < ∞, then ∃ two different a’s. Locally indicable: The abelianization of every nontrivial finitely generated subgrp of G is infinite. Conradian order: ∃ total order <, such that ∀a, b > e, ∃n ∈ Z+ , abn > b. Straight order: ∃ order <, ∀a, b ∈ G with b ≠ e, either · · · < ab−2 < ab−1 < a < ab < ab2 < · · · or · · · > ab−2 > ab−1 > a > ab > ab2 > · · · Dave Witte Morris (Univ. of Lethbridge) Convex norms on amenable groups U of Virginia, April 2016 15 / 16 Unique Product Property: ∀ nonempty, finite A, B ⊂ G, there exist a ∈ A and b ∈ B, such that if (a′ , b′ ) ∈ A × B and a′ b′ = ab, then a = a′ and b = b′ . No zero divisors: % 0 divisors in group ring C[G]. Dave Witte Morris (Univ. of Lethbridge) Convex norms on amenable groups U of Virginia, April 2016 16 / 16
© Copyright 2026 Paperzz