June 9, 2010 15:57 WSPC/S0218-1967 132-IJAC S0218196710005546 International Journal of Algebra and Computation Vol. 20, No. 3 (2010) 357–380 c World Scientific Publishing Company DOI: 10.1142/S0218196710005546 DADE’S INVARIANT CONJECTURE FOR THE GENERAL UNITARY GROUP GU4 (q 2 ) IN DEFINING CHARACTERISTIC JIANBEI AN Department of Mathematics, University of Auckland Private Bag 92019, Auckland, New Zealand [email protected] SHIH-CHANG HUANG Department of Mathematics National Cheng Kung University, Tainan, Taiwan [email protected] Received 13 March 2009 Revised 21 January 2010 Communicated by S. Margolis In this paper, we verify Dade’s invariant conjecture for the general unitary group GU4 (q 2 ), q a power of an odd prime p, in the defining characteristic p. Together with the results in [3], this completes the proof of Dade’s invariant conjecture for the group GU4 (q 2 ) in the defining characteristic. Keywords: Modular representation of finite groups; Dade’s conjecture; general unitary groups. Mathematics Subject Classification: 20C20, 20C40 1. Introduction Let G be a finite group and p a prime dividing the order of G. There are several conjectures connecting the representation theory of G with the representation theory of certain p-local subgroups (i.e. the p-subgroups and their normalizers) of G. For example, it seems to be true, that if P is a Sylow p-subgroup of G, then the number of complex irreducible characters of G of degree coprime with p equals the same number for the normalizer NG (P ). This conjecture, called McKay conjecture [18], and its block-theoretic version due to Alperin [1] were generalized by various authors. In [17], Isaacs and Navarro proposed a refinement of the McKay conjecture that deals with congruences of character degrees mod p. In a series of papers [9–11], Dade developed several conjectures expressing the number of complex irreducible characters 357 June 9, 2010 15:57 WSPC/S0218-1967 358 132-IJAC S0218196710005546 J. An & S.-C. Huang with a fixed defect in a given p-block of G in terms of an alternating sum of related values for p-blocks of certain p-local subgroups of G. In [10], Dade proved that his (projective) conjecture implies the McKay conjecture. Motivated by the Isaacs–Navarro conjecture [17], Uno [21] suggested a further refinement of Dade’s conjecture. In this paper, we show that Dade’s invariant conjecture holds for the general unitary group GU4 (q 2 ) with q a power of an odd prime p, in the defining characteristic p. Note that in this case Uno’s invariant conjecture is equivalent to Dade’s invariant conjecture. Together with the results in [3] this completes the proof of Dade’s invariant conjecture for GU4 (q 2 ) in the defining characteristic. The methods are similar to those in [2]. By a corollary of the Borel and Tits theorem [6], the normalizers of radical p-chains of GU4 (q 2 ) are exactly the parabolic subgroups. So we count characters of these chain normalizers which are fixed by certain outer automorphisms. Our calculations are based on the character tables of GU4 (q 2 ) and their parabolic subgroups which have been computed in [19]. This paper is organized as follows: in sec. 2, we fix notation and state the Dade and Uno invariant conjectures in detail. In Sec. 3, we state and prove some lemmas from elementary number theory which we use to count fixed points of certain automorphisms of GU4 (q 2 ). In Sec. 4, we compute the fixed points of the outer automorphisms of GU4 (q 2 ) on the irreducible characters of the parabolic subgroups. In Sec. 5, we verify Dade’s invariant conjecture for GU4 (q 2 ), q = pn odd, in the defining characteristic p. Details on irreducible characters and conjugacy classes of GU4 (q 2 ) are summarized in tabular form in an appendix. 2. Dade’s Invariant Conjecture Let R be a p-subgroup of a finite group G. Then R is radical if Op (N (R)) = R, where Op (N (R)) is the largest normal p-subgroup of the normalizer N (R) := NG (R). Denote by Irr(G) the set of all irreducible ordinary characters of G, and by Blk(G) ∈ Blk(G), and d is an integer, we denote by the set of p-blocks. If H ≤ G, B Irr(H, B, d) the set of characters χ ∈ Irr(H) satisfying d(χ) = d and b(χ)G = B (in the sense of Brauer), where d(χ) = logp (|H|p ) − logp (χ(1)p ) is the p-defect of χ and b(χ) is the block of H containing χ. Given a p-subgroup chain C : P0 < P1 < · · · < Pn of G, define the length |C| := n, Ck : P0 < P1 < · · · < Pk and N (C) = NG (C) := NG (P0 ) ∩ NG (P1 ) ∩ · · · ∩ NG (Pn ). The chain C is said to be radical if it satisfies the following two conditions: (a) P0 = Op (G) and (b) Pk = Op (N (Ck )) for 1 ≤ k ≤ n. Denote by R = R(G) the set of all radical p-chains of G. June 9, 2010 15:57 WSPC/S0218-1967 132-IJAC S0218196710005546 Dade’s Invariant Conjecture for GU4 (q 2 ) 359 Suppose 1 → G → E → E → 1 is an exact sequence, so that E is an extension of G by E. Then E acts on R by conjugation. Given C ∈ R and ψ ∈ Irr(NG (C)), let NE (C, ψ) be the stabilizer of (C, ψ) in E, and NE (C, ψ) := NE (C, ψ)/NG (C). ∈ Blk(G), an integer d ≥ 0 and U ≤ E, let k(NG (C), B, d, U ) be the number For B of characters in the set d, U ) := {ψ ∈ Irr(NG (C), B, d) | N (C, ψ) = U }. Irr(NG (C), B, E Dade’s invariant conjecture can be stated as follows: ∈ Blk(G) with defect Dade’s Invariant Conjecture ( [11]). If Op (G) = 1 and B = 1, then group D(B) d, U ) = 0, (−1)|C| k(NG (C), B, C∈R/G where R/G is a set of representatives for the G-orbits of R. Let Aut(G) and Out(G) be the automorphism and outer automorphism groups of G, respectively. We may suppose E = Out(G). If moreover, Out(G) is cyclic, then we write d, |U |) := k(NG (C), B, d, U ). k(NG (C), B, Let H be a subgroup of G, ϕ ∈ Irr(H), and let r(ϕ) = rp (ϕ) be the integer 0 < r(ϕ) ≤ p − 1 such that the p -part (|H|/ϕ(1))p of |H|/ϕ(1) satisfies |H| ≡ r(ϕ) mod p. ϕ(1) p Given 1 ≤ r < (p + 1)/2, let Irr(H, [r]) be the subset of Irr(H) consisting of those ∈ Blk(G), C ∈ R, an integer d ≥ 0 and characters ϕ with r(ϕ) ≡ ±r mod p. For B U ≤ E, we define d, U, [r]) := Irr(NG (C), B, d, U ) ∩ Irr(NG (C), [r]) Irr(NG (C), B, d, U, [r]) := |Irr(NG (C), B, d, U, [r])|. The following refinement of and k(NG (C), B, Dade’s conjecture is due to Uno. ∈ Uno’s Invariant Conjecture ([21, Conjecture 3.2]). If Op (G) = 1 and B Blk(G) with defect group D(B) = 1, then for all integers d ≥ 0 and 1 ≤ r < (p + 1)/2, d, U, [r]) = 0. (−1)|C| k(NG (C), B, C∈R/G Let q = pn be odd, G = GU4 (q 2 ) and K a parabolic subgroup of G. Then r(ϕ) ≡ ±1 mod p for any ϕ ∈ Irr(K) (see the Tables A.2–A.5 in Appendix). It June 9, 2010 15:57 WSPC/S0218-1967 360 132-IJAC S0218196710005546 J. An & S.-C. Huang follows that d, U, [1]) = Irr(NG (C), B, d, U ) Irr(NG (C), B, and radical chain C (see the proof in Sec. 5). Thus Uno’s invariant for any block B conjecture for G is equivalent to that of Dade. So we only verify Dade’s invariant conjecture for G. Also notice that the Out(G) is cyclic and the Schur multiplier of G is trivial. So the invariant conjecture for G is equivalent to the inductive conjecture. 3. Notation and Lemmas from Elementary Number Theory From now on, we always assume that p is an odd prime, n is a positive integer and q = pn . We denote by N = {0, 1, 2, . . .} the set of natural numbers including zero. In the next section, we will use the following lemmas, the first one is [2, Lemma 3.1]. Lemma 3.1. Suppose m, n, a ∈ Z with m, n > 0. Then gcd(am −1, an −1) = |ad −1| where d := gcd(m, n). Lemma 3.2. Let t be a positive integer with t | 2n. Then the following hold. 2 if t | n, (i) gcd(pt − 1, q + 1) = t/2 +1 p (ii) gcd(pt − 1, q 2 − 1) =pt − 1. (iii) gcd(pt + 1, q + 1) = (iv) gcd(pt + 1, q 2 − 1) = t 2 (v) gcd(p + 1, q + 1) = 2 if t n. if 2t | n or t n, t p pt++1 1 ifift t| |nn,and 2t n. 22 pt + 1 if t n. if t | n, if t n. Proof. (i) Suppose t | n. If d | pt − 1, q + 1, then d | q − 1 by Lemma 3.1, it follows that d | gcd(q − 1, q + 1) = 2. Suppose t n. There are k, tu , nu ∈ N with 2 | tu and 2 nu such that t = 2k · tu , k k n = 2k ·nu . Hence pt − 1 = (−p2 )tu − 1 and q + 1 = −((−p2 )nu − 1). So Lemma 3.1 k k k implies gcd(pt − 1, q + 1) = gcd((−p2 )tu − 1, (−p2 )nu − 1) = |(−p2 )tu /2 − 1| = pt/2 + 1. (ii) is clear by Lemma 3.1. (v) Suppose t | n. If d | pt + 1, q 2 + 1, then d | p2t − 1 and p2t − 1 | p2n − 1 = q 2 − 1, so that d | gcd(q 2 − 1, q 2 + 1) = 2. Suppose t n. There are k, tu , nu ∈ N with odd tu nu such that t = 2k+1 · tu , k+1 k+1 n = 2k · nu . By Lemma 3.1, pt + 1 = −((−p2 )tu − 1) | (−p2 )nu − 1. So pt + 1 | q 2 + 1. (iii) Suppose 2t | n. If d | pt + 1, q + 1, then d | p2t − 1 and so d | p3n − 1 as 2t | 3n. Thus d | q 3 − 1, q 3 + 1 and d | gcd(q 3 + 1, q 3 − 1) = 2. June 9, 2010 15:57 WSPC/S0218-1967 132-IJAC S0218196710005546 Dade’s Invariant Conjecture for GU4 (q 2 ) 361 Suppose t | n and 2t n. Then t, n have “the same 2-part”, i.e. there are k, tu , nu ∈ N with odd tu nu such that t = 2k · tu , n = 2k · nu . Hence pt + 1 = k k −((−p2 )tu − 1) and q + 1 = −((−p2 )nu − 1). So Lemma 3.1 implies gcd(pt + 1, q + k k k 1) = gcd((−p2 )tu − 1, (−p2 )nu − 1) = |(−p2 )tu − 1| = pt + 1. Suppose t n. If d | pt + 1, q + 1, then by (v), d | q 2 + 1, q + 1 and so d | gcd(q 2 + 1, q 2 − 1) = 2. (iv) Suppose t | n. Then 2t | 2n and pt + 1 | p2t − 1. Hence pt + 1 | p2n − 1 = q 2 − 1. Suppose t n. If d | pt + 1, q 2 − 1, then by (v), d | q 2 + 1 and hence d | gcd(q 2 + 1, q 2 − 1) = 2. Lemma 3.3. Let t ∈ N\{0} with t | 2n. Define δ := 1 if t | n and δ := Then pδt + 1 if 2t | n or t n, gcd(pn−t + 1, q 2 − 1) = 2 if t | n and 2t n. 1 2 if t n. Proof. Suppose 2t | n. There are k, tu , nu ∈ N with 2 tu and 2 | nu such that t = k k 2k ·tu , n = 2k ·nu . Hence pn−t + 1 = −((−p2 )nu −tu − 1) and q 2 − 1 = (−p2 )2nu − 1. k k So Lemma 3.1 implies gcd(pn−t + 1, q 2 − 1) = gcd((−p2 )nu −tu − 1, (−p2 )2nu − 1) = k |(−p2 )tu − 1| = pt + 1. Suppose t | n and 2t n. Let d = gcd(pn−t + 1, q 2 − 1), so that d | p2(n−t) − 1. There is an odd nu ∈ N such that n = t · nu , n − t = t · (nu − 1) = 2t · nu2−1 . By Lemma 3.1, it follows that gcd(p2(n−t) − 1, q 2 − 1) = p2t − 1, so d | p2t − 1 and p2t ≡ 1 (mod d). Thus 0 ≡ pn−t + 1 = p2t· nu −1 2 + 1 ≡ 2 (mod d) and d = 2 as d is even. Suppose t n. There are k, tu , nu ∈ N with 2 | tu and 2 nu such that t = 2k · tu , k k n = 2k · nu . Hence pn−t + 1 = −((−p2 )nu −tu − 1) and q 2 − 1 = (−p2 )2nu − 1. So k k Lemma 3.1 implies gcd(pn−t + 1, q 2 − 1) = gcd((−p2 )nu −tu − 1, (−p2 )2nu − 1) = k |(−p2 )tu /2 − 1| = pt/2 + 1. Lemma 3.4. Let t, m be positive integers. Suppose t | n. If 2m | q + 1, then 2m | pt + 1. Proof. Suppose 2t | n. There is nu ∈ N such that n = 2t·nu . Then q +1 = pn +1 = p2tnu + 1 ≡ (±1)2tnu + 1 = 2 (mod 4). In particular, 4 q + 1 and 2 | q + 1. So 2 | pt + 1. Suppose 2t n. There is an odd nu ∈ N such that n = t · nu . Then q + 1 = ptnu + 1 = (pt + 1) · r, (3.1) where r = (pt(nu −1) − pt(nu −2) + · · · + 1). If 2m | q + 1, then by (3.1) and r is odd, we get 2m | pt + 1. June 9, 2010 15:57 WSPC/S0218-1967 362 132-IJAC S0218196710005546 J. An & S.-C. Huang The following two lemmas follow from [2, Lemma 3.3] by replacing δ by 1 and q − 1 by q + 1 (respectively q 2 − 1). Lemma 3.5. Let t, m be positive integers. Suppose t | 2n and t n. If 2m | q + 1, then 2m | pt − 1. Lemma 3.6. Let t, m be positive integers. Suppose t | 2n and t n. If 2m | q 2 − 1, then 2m | pt − 1. 4. Action of Automorphisms on Irreducible Characters Let G = GU4 (q 2 ) be the general unitary group defined over a finite field with q = pn elements (always assuming that p is odd). Let O = Out(G) and A = G O. Then O = α and A = G α, where α is a field automorphism of order 2n. We fix a Borel subgroup B and distinct maximal parabolic subgroups P and Q of G containing B as in [19]. In particular, α stabilizes B, P and Q. In this section, we determine the action of O on the irreducible characters of B, P , Q and G. Our notation for the parameter sets of these groups is similar to that of CHEVIE and is given in Table A.1 in the Appendix. The correspondence between the CHEVIE notation and that of Nozawa is given in Tables A.2–A.5. The first column of Table A.1 defines a name for the parameter set which parameterizes those characters which are listed in the second column of the table. The list of parameters in the third column of Table A.1 in the Appendix is of the form k = 0, . . . , n1 − 1 k = 0, . . . , n1 − 1 or l = 0, . . . , n2 − 1 where the nj ’s are polynomials in q with integer coefficients. In the first case, the parameter k can be substituted by an element of Z, but two parameters which differ by an element of n1 Z yield the same character. In the second case, the parameter vector (k, l) can be substituted by an element of Z × Z, but two parameter vectors which differ by an element of n1 Z × n2 Z yield the same character. In other words, k can be taken to be an element of Zn1 and (k, l) can be taken to be an element of Zn1 × Zn2 . The groups Zn1 and Zn1 × Zn2 are also called character parameter groups (see Subsec. 3.7 of the CHEVIE [14] manual). The next lines of Table A.1 list elements which have to be excluded from the character parameter group. The remaining parameters are called admissible in the following. Different values of admissible parameters may give the same character. The fourth column of Table A.1 defines an equivalence relation on the set of admissible parameters. If no equivalence relation is listed we mean the identity relation. The parameter set is defined to be the set of these equivalence classes. Finally, the last column of Table A.1 gives the cardinality of the parameter set. We consider the example P I3 in Table A.1. The character parameter group is Zq2 −1 × Zq2 −1 . The parameter vectors (k, l) and (l, k) yield the same character and June 9, 2010 15:57 WSPC/S0218-1967 132-IJAC S0218196710005546 Dade’s Invariant Conjecture for GU4 (q 2 ) the equivalence class of (k, l) is {(k, l), (l, k)}. Hence, the characters parameterized by the set P I3 P β3 (k, l) 363 are = {{(k, l), (l, k)} | (k, l) ∈ Zq2 −1 × Zq2 −1 , q 2 − 1 k − l}. If we want to emphasize the dependence of a parameter set, say P I3 , from q we write P I3 (q). Table A.1 does not give any detailed information about the parameter sets G I2 , G I5 , G I6 , G I9 and G I10 , since we will not need an explicit knowledge of these sets (note that these parameter sets parameterize the regular semisimple irreducible characters of G). The data in Table A.1 is taken from [19]. The action of O = Out(G) on the conjugacy classes of elements of G, B, P and Q induces an action of O on the sets Irr(G), Irr(B), Irr(P ) and Irr(Q) and then an action on the parameter sets. Using the values of the irreducible characters of G, B, P and Q on the classes listed in the last column of Tables A.2–A.5. we can describe the action of O on the parameter sets. For an O-set I and each subgroup H ≤ O let CI (H) denote the set of fixed points of I under the action of H. In the following proposition we determine |CI (H)| where I runs through all (disjoint) unions of parameter sets which are listed in Table A.6 except for G I2 ∪ G I5 ∪ G I6 ∪ G I9 ∪ G I10 . This last union of parameter sets will be treated separately since it requires different methods. Proposition 4.1. Let G = GU4 (p2n ), t | 2n and I = G I2 ∪ G I5 ∪ G I6 ∪ G I9 ∪ G I10 be one of the (disjoint ) unions of parameter sets listed in Table A.6. If H = αt is a subgroup of O, then the second and third columns of Table A.6 show the number of fixed points |CI (H)| of I under the action of H. Proof. We have to consider the parameter sets in Table A.6. In each of the following cases, we have that the action of α on I is given by xα = px for all x ∈ I using the character values on the classes listed in the last column of Tables A.2–A.5. We demonstrate this for the parameter set I = P I3 ∪ P I8 . The degrees in Table A.5 show that the P β3 (k, l)’s are the only irreducible characters of P of degree q 2 + 1, so P β3 (k, l)α = P β3 (k , l ) for some {(k , l ), . . .} ∈ P I3 . We see from the class representatives in Table VI-1 in [19] that α acts on the semisimple conjugacy classes of P like the pth power map which implies that the values of P β3 (k , l ) and P β3 (pk, pl) on the semisimple classes coincide. Then, the character values of P β3 (k, l) (see the character Table VI-3 in [19]) imply that the values of P β3 (k , l ) and P β3 (pk, pl) coincide on all classes, hence P β3 (k , l ) = P β3 (pk, pl) and α α therefore P β3 (k, l) = P β3 (pk, pl). Similarly, P β8 (k) = P β8 (pk). Hence, xα = px for all x ∈ I. Let I ∈ {G I1 , G I12 , G I13 , G I14 , B I4 , B I8 , P I5 , P I9 , P I10 , Q I5 }. If k ∈ I, then k ∈ CI (H) if and only if (pt − 1)k ≡ 0 mod q + 1. Suppose t | n. Then by Lemma 3.2(i), this is equivalent with 2k ≡ 0 mod q + 1. So we get |CI (H)| = 2. June 9, 2010 15:57 WSPC/S0218-1967 364 132-IJAC S0218196710005546 J. An & S.-C. Huang Suppose t n. Then by Lemma 3.2(i), this is equivalent with (pt/2 + 1)k ≡ 0 mod q + 1. So we get CI (H) = {k ∈ I | k is a multiple of (q + 1)/(pt/2 + 1)} and |CI (H)| = pt/2 + 1. Let I ∈ {G I3 ∪ G I22 , G I4 ∪ G I20 , P I6 ∪ P I7 }. Then these unions of parameter sets are isomorphic H-sets, so that we can assume I = G I3 ∪ G I22 . First, we compute |C G I3 (H)|. Let if i = 1, {{k, −qk} ∈ C G I3 (H) | pt k ≡ k} Ui := t {{k, −qk} ∈ C G I3 (H) | p k ≡ −qk} if i = 2. If x = {k, −qk} ∈ G I3 , then x ∈ U1 if and only if (pt − 1)k ≡ 0 mod q 2 − 1. By 2 −1 Lemma 3.2(ii), this is equivalent with k is a multiple of qpt −1 . So if t | n, (pt − 3)/2 |U1 | = t t/2 (p − p − 2)/2 if t n. Suppose t | n. If x = {k, −qk} ∈ G I3 , then x ∈ U2 if and only if (pt + q)k ≡ 0 mod q 2 − 1. Then (pn−t + 1)k ≡ 0 mod q 2 − 1. By Lemma 3.3, this equivalent with (pt + 1)k ≡ 0 mod q 2 − 1 if 2t | n, and 2k ≡ 0 mod q 2 − 1 if 2t n. So by the definition of G I3 , we get (pt − 1)/2 if 2t | n, |U2 | = 0 if 2t n. Suppose t n. If x = {k, −qk} ∈ G I3 , then x ∈ U2 if and only if (pt + q)k ≡ 0 mod q 2 − 1. Then (pn−t + 1)k ≡ 0 mod q 2 − 1. By Lemma 3.3, this is equivalent with (pt/2 + 1)k ≡ 0 mod q 2 − 1. By Lemma 3.2(i), it follows that gcd(pt/2 + 1, (q + 1)(q − 1)) = gcd(pt/2 + 1, q + 1) = pt/2 + 1. So (q − 1) · p(q+1) t/2 +1 |k. But then q − 1|k, a contradiction to the definition of G I3 . Hence in this case U2 = ∅. So t if 2t | n, p − 2 t |C G I3 (H)| = |U1 | + |U2 | = (p − 3)/2 if t | n and 2t n, t t/2 (p − p − 2)/2 if t n. Next we calculate |C G I22 (H)|. Let {{(k, l), (l, k)} ∈ C G I22 (H) | pt k ≡ k, pt l ≡ l} if i = 1, Ui := {{(k, l), (l, k)} ∈ C G I22 (H) | pt k ≡ l, pt l ≡ k} if i = 2. If x = {(k, l), (l, k)} ∈ G I22 , then x ∈ U1 if and only if (pt −1)k ≡ 0 and (pt −1)l ≡ 0 mod q + 1. Suppose t | n. By Lemma 3.2(i), this is equivalent with 2k ≡ 0 and 2l ≡ 0 mod q + 1. By the definition of G I22 , we get |U1 | = 1. Suppose t n. By Lemma 3.2(i), this is equivalent with k, l are multiples of q+1 . So we get |U1 | = pt/2 (pt/2 + 1)/2. pt/2 +1 Suppose t | n. If x = {(k, l), (l, k)} ∈ G I22 , then x ∈ U2 if and only if pt k ≡ l and t p l ≡ k mod q + 1. From these two congruences, we get (p2t − 1)k ≡ 0 mod q + 1. By June 9, 2010 15:57 WSPC/S0218-1967 132-IJAC S0218196710005546 Dade’s Invariant Conjecture for GU4 (q 2 ) 365 Lemma 3.2(i), this is equivalent with 2(pt + 1)k ≡ 0 mod q + 1. By Lemmas 3.2(iii) and 3.4, this equivalent with 2k ≡ 0 mod q + 1 if 2t | n, and (pt + 1)k ≡ 0 mod q + 1 if 2t n. Thus, we have 0 if 2t | n, |U2 | = (pt − 1)/2 if 2t n. Suppose t n. If x = {(k, l), (l, k)} ∈ G I22 , then x ∈ U2 implies (p2t − 1)k ≡ 0 and (p2t −1)l ≡ 0 mod q+1. By Lemma 3.2(iii), this is equivalent with 2(pt −1)k ≡ 0 mod q + 1. By Lemma 3.5, this is equivalent with (pt − 1)k ≡ 0 mod q + 1. Then k ≡ pt k ≡ l mod q + 1, a contradiction to the definition of G I22 . Hence in this case U2 = ∅. So if 2t | n, 1 t |C G I22 (H)| = |U1 | + |U2 | = (p + 1)/2 if t | n and 2t n, t/2 t/2 p (p + 1)/2 if t n. So, in both cases, |CI (H)| = |C G I3 (H)| + |C G I22 (H)| = pt − 1. Let I ∈ {G I7 ∪ G I16 , G I8 ∪ G I15 }. Then these unions of parameter sets are isomorphic H-sets, so that we can assume I = G I7 ∪ G I16 . First, we compute |C G I7 (H)|. Let if i = 1, {{(k, l), (−qk, l)} ∈ C G I7 (H) | pt k ≡ k, pt l ≡ l} Ui := t t {{(k, l), (−qk, l)} ∈ C G I7 (H) | p k ≡ −qk, p l ≡ l} if i = 2. If x = {(k, l), (−qk, l)} ∈ G I7 , then x ∈ U1 if and only if (pt − 1)k ≡ 0 mod q 2 − 1 and (pt − 1)l ≡ 0 mod q + 1. 2 −1 Suppose t | n. By Lemma 3.2(i) and (ii), this is equivalent with qpt −1 | k and t 2l ≡ 0 mod q + 1. Hence, |U1 | = p − 3. 2 −1 Suppose t n. By Lemma 3.2(i) and (ii), this is equivalent with qpt −1 | k and q+1 t t/2 t/2 | l. So by the definition of I , we get |U | = (p − p − 2)(p + 1)/2. G 7 1 pt/2 +1 Suppose t | n. If x = {(k, l), (−qk, l)} ∈ G I7 , then x ∈ U2 if and only if (pt +q)k ≡ 0 mod q 2 −1 and (pt −1)l ≡ 0 mod q+1. Then (pn−t +1)k ≡ 0 mod q 2 −1 and 2l ≡ 0 mod q + 1. By Lemma 3.3, the first congruence is equivalent with (pt + 1)k ≡ 0 mod q 2 − 1 if 2t | n, and 2k ≡ 0 mod q 2 − 1 if 2t n. So by the definition of G I7 , we get pt − 1 if 2t | n, |U2 | = 0 if 2t n. Suppose t n. If x = {(k, l), (−qk, l)} ∈ G I7 , then x ∈ U2 if and only if (pt +q)k ≡ 0 mod q 2 −1 and (pt −1)l ≡ 0 mod q+1. Then the first congruence is equivalent with (pn−t + 1)k ≡ 0 mod q 2 − 1. By Lemma 3.3, this is equivalent with (pt/2 + 1)k ≡ 0 mod q 2 −1. By Lemma 3.2(i), it follows that gcd(pt/2 +1, (q+1)(q−1)) = gcd(pt/2 +1, June 9, 2010 15:57 WSPC/S0218-1967 366 132-IJAC S0218196710005546 J. An & S.-C. Huang q + 1) = pt/2 + 1. So (q − 1) · p(q+1) t/2 +1 | k. But then q − 1 | k, definition of G I7 . Hence in this case U2 = ∅. So t 2(p − 2) |C G I7 (H)| = |U1 | + |U2 | = pt − 3 t (p − pt/2 − 2)(pt/2 + 1)/2 a contradiction to the if 2t | n, if t | n and 2t n, if t n. Next we calculate |C G I16 (H)|. Let {{(k, l, m), (k, m, l)} ∈ C G I16 (H) | pt k ≡ k, pt l ≡ l, pt m ≡ m} if i = 1, Ui := {{(k, l, m), (k, m, l)} ∈ C G I16 (H) | pt k ≡ k, pt l ≡ m, pt m ≡ l} if i = 2. If x = {(k, l, m), (k, m, l)} ∈ G I16 , then x ∈ U1 if and only if (pt − 1)k ≡ 0, (pt − 1)l ≡ 0 and (pt − 1)m ≡ 0 mod q + 1. Suppose t | n. By Lemma 3.2(i), this is equivalent with 2k ≡ 0, 2l ≡ 0 and 2m ≡ 0 mod q + 1. By the definition of G I16 , we get |U1 | = 0. Suppose t n. By Lemma 3.2(i), this is equivalent with k, l and m are multiples q+1 . So we get |U1 | = pt/2 (pt − 1)/2. of pt/2 +1 Suppose t | n. If x = {(k, l, m), (k, m, l)} ∈ G I16 , then x ∈ U2 if and only if t (p − 1)k ≡ 0, pt l ≡ m and pt m ≡ l mod q + 1. From the last two congruences we get (pt − 1)k ≡ 0 and (p2t − 1)l ≡ 0 mod q + 1. By Lemma 3.2(i), this is equivalent with 2k ≡ 0 and 2(pt + 1)l ≡ 0 mod q + 1. By Lemmas 3.2(iii) and 3.4, the second congruence is equivalent with 2l ≡ 0 mod q + 1 if 2t | n, and (pt + 1)l ≡ 0 mod q + 1 if 2t n. So by the definition of G I16 , we get 0 if 2t | n, |U2 | = t p − 1 if 2t n. Suppose t n. If x = {(k, l, m), (k, m, l)} ∈ G I16 , then x ∈ U2 if and only if (pt − 1)k ≡ 0, pt l ≡ m and pt m ≡ l mod q + 1. From the last two congruences we get (pt − 1)k ≡ 0 and (p2t − 1)l ≡ 0 mod q + 1. By Lemma 3.2(iii), the second congruence is equivalent with 2(pt − 1)l ≡ 0 mod q + 1. By Lemma 3.5, this is equivalent with (pt −1)l ≡ 0 mod q +1. Then l ≡ pt l ≡ m mod q +1, a contradiction to the definition of G I16 . Hence in this case U2 = ∅. So if 2t | n, 0 |C G I16 (H)| = |U1 | + |U2 | = pt − 1 if t | n and 2t n, t/2 t p (p − 1)/2 if t n. Thus, |CI (H)| = |C G I7 (H)| + |C G I16 (H)| = 2(pt − 2) (p t/2 if t | n, + 1)(p − p t t/2 − 1) if t n. Let I ∈ {G I17 , G I18 , G I19 , G I21 }. If (k, l) ∈ I, then (k, l) ∈ CI (H) if and only if (pt − 1)k ≡ 0 and (pt − 1)l ≡ 0 mod q + 1. June 9, 2010 15:57 WSPC/S0218-1967 132-IJAC S0218196710005546 Dade’s Invariant Conjecture for GU4 (q 2 ) 367 Suppose t | n. By Lemma 3.2(i), this is equivalent with 2k ≡ 0 and 2l ≡ 0 mod q + 1. So by the definition of I, we get |CI (H)| = 2. Suppose t n. By Lemma 3.2(i), this is equivalent with k, l are multiples of q+1 . So we get |CI (H)| = pt/2 (pt/2 + 1). pt/2 +1 Let I = B I1 . If (k, l) ∈ I, then (k, l) ∈ CI (H) if and only if (pt − 1)k ≡ 0 and t (p − 1)l ≡ 0 mod q 2 − 1. By Lemma 3.2(ii), this is equivalent with k, l are multiples 2 −1 of qpt −1 . Thus, |CI (H)| = (pt − 1)2 . Let I ∈ {B I2 , P I4 , Q I1 , Q I2 }. If (k, l) ∈ I, then (k, l) ∈ CI (H) if and only if (pt − 1)k ≡ 0 mod q 2 − 1 and (pt − 1)l ≡ 0 mod q + 1. 2 −1 | k and Suppose t | n. By Lemma 3.2(i) and (ii), this is equivalent with qpt −1 2 −1 2l ≡ 0 mod q + 1. So we get CI (H) = {(k, l) ∈ I | qpt −1 | k and |CI (H)| = 2(pt − 1). Suppose t n. By Lemma 3.2(i) and (ii), this is equivalent with (pt/2 + 1)l ≡ 0 mod q + 1. So we get CI (H) = {(k, l) ∈ I | q2 −1 pt −1 |k q+1 2 | l} and q2 −1 pt −1 | k q+1 and pt/2 +1 and | l} and |CI (H)| = (p − 1)(p + 1). Let I ∈ {B I3 , B I6 , P I1 , P I2 , Q I4 }. If k ∈ I, then k ∈ CI (H) if and only if (pt − 1)k ≡ 0 mod q 2 − 1. So we get CI (H) = {k ∈ I | k is a multiple of (q 2 − 1)/(pt − 1)} and |CI (H)| = pt − 1. Let I = B I5 . If (k, l) ∈ I, then (k, l) ∈ CI (H) if and only if (pt − 1)k ≡ 0 mod q + 1 and (pt − 1)l ≡ 0 mod q 2 − 1. Suppose t | n. By Lemma 3.2(i) and (ii), this is equivalent with 2k ≡ 0 mod 2 2 −1 −1 | l. So we get CI (H) = {(k, l) ∈ I | q+1 | k and qpt −1 | l} and q + 1 and qpt −1 2 t |CI (H)| = 2(p − 1). Suppose t n. By Lemma 3.2(i) and (ii), this is equivalent with (pt/2 + 1)k ≡ 0 2 2 −1 q+1 −1 mod q + 1 and qpt −1 | l. So we get CI (H) = {(k, l) ∈ I | pt/2 | k and qpt −1 | l} and +1 t t/2 |CI (H)| = (pt/2 + 1)(pt − 1). Let I ∈ {B I7 , Q I7 , Q I9 , Q I10 }. If (k, l) ∈ I, then (k, l) ∈ CI (H) if and only if (pt − 1)k ≡ 0 and (pt − 1)l ≡ 0 mod q + 1. Suppose t | n. By Lemma 3.2(i), this is equivalent with 2k ≡ 0 and 2l ≡ 0 mod q + 1. So we get CI (H) = {(k, l) ∈ I | q+1 2 | k, l} and |CI (H)| = 4. Suppose t n. By Lemma 3.2(i), this is equivalent with k, l are multiples of q+1 . So we get |CI (H)| = (pt/2 + 1)2 . pt/2 +1 Let I = P I3 ∪ P I8 . First, we compute |C P I3 (H)|. Let {{(k, l), (l, k)} ∈ C P I3 (H) | pt k ≡ k, pt l ≡ l} if i = 1, Ui := {{(k, l), (l, k)} ∈ C P I3 (H) | pt k ≡ l, pt l ≡ k} if i = 2. If x = {(k, l), (l, k)} ∈ P I3 , then x ∈ U1 if and only if (pt − 1)k ≡ 0 and (pt − 1)l ≡ 0 2 −1 mod q 2 − 1. By Lemma 3.2(ii), this is equivalent with k, l are multiples of qpt −1 . Hence |U1 | = (pt − 2)(pt − 1)/2. Suppose t | n. If x = {(k, l), (l, k)} ∈ P I3 , then x ∈ U2 if and only if pt k ≡ l and t p l ≡ k mod q 2 − 1. From these two congruences we get (p2t − 1)k ≡ 0 mod q 2 − 1, June 9, 2010 15:57 WSPC/S0218-1967 368 132-IJAC S0218196710005546 J. An & S.-C. Huang and this is equivalent to k being a multiple of (q 2 − 1)/(p2t − 1). Excluding those solutions with k ≡ l mod q 2 − 1, we get |U2 | = pt (pt − 1)/2. Suppose t n. If x = {(k, l), (l, k)} ∈ P I3 , then x ∈ U2 if and only if pt k ≡ l and pt l ≡ k mod q 2 − 1. From these two congruences we get (p2t − 1)k ≡ 0 mod q 2 − 1. By Lemma 3.2(iv), this is equivalent with 2(pt − 1)k ≡ 0 mod q 2 − 1. By Lemma 3.6, this is equivalent with (pt − 1)k ≡ 0 mod q 2 − 1. Then k ≡ pt k ≡ l, a contradiction to the definition of P I3 . Hence, U2 = ∅. So (pt − 1)2 if t | n, |C P I3 (H)| = |U1 | + |U2 | = t t (p − 2)(p − 1)/2 if t n. Next we calculate |C P I8 (H)|. If x = {k, q 2 k} ∈ P I8 , then x ∈ C P I8 (H) if and only if (pt − 1)k ≡ 0 or (pt − q 2 )k ≡ 0 mod (q 2 + 1)(q 2 − 1). Suppose (pt − 1)k ≡ 0. By Lemma 3.2(ii), it follows that gcd(pt −1, (q 2 +1)(q 2 −1)) = gcd(pt −1 , q 2 −1) = pt −1. 2 −1) Thus (q 2 + 1) · (qpt −1 | k. But then (q 2 + 1) | k, a contradiction to the definition of P I8 . So we have proved that x ∈ C P I8 (H) if and only if (pt − q 2 )k ≡ 0 mod (q 2 + 1)(q 2 − 1). Suppose t | n. If {k, q 2 k} ∈ C P I8 (H), then (pt − q 2 )k ≡ 0 mod (q 2 + 1)(q 2 − 1). Thus (pt + 1)k ≡ 0 mod q 2 + 1 and (pt − 1)k ≡ 0 mod q 2 − 1. By Lemmas 3.2(ii) 2 2 2 2 −1 −1 and (v), we get q 2+1 | k and qpt −1 | k. Since q 2+1 | q 2 + 1 and qpt −1 | q 2 − 1 and since pt − 1 is even, we have gcd( q 2 +1 2 2n , q2 −1 pt −1 q2 +1 q2 −1 2 · pt −1 | k. The condition q2 −1 that pt −1 is even. Thus q 2 + 1 | k, ) = 1 and so t | n implies (pt − 1)(pt + 1) | p − 1 = q 2 − 1, so a contradiction to the definition of P I8 . Hence in this case C P I8 (H) = ∅. Suppose t n. We claim (q 2 + 1)(q 2 − 1) 2 C P I8 (H) = {k, q k} ∈ P I8 | k is a multiple of t . (p + 1)(pt − 1) 2 2 +1)(q −1) Let k = (q (pt +1)(pt −1) · m for some m ∈ Z. Because t | 2n and t n we have 2t | 2n − t. Since (pt − 1)(pt + 1) = p2t − 1 | p2n−t − 1 we then get (p2n−t − 1)k = p2n−t −1 2 2 2 2 t 2 (pt +1)(pt −1) (q + 1)(q − 1) · m ≡ 0 mod (q + 1)(q − 1). So (p − q )k ≡ 0 mod 2 2 2 (q + 1)(q − 1) and {k, q k} ∈ C P I8 (H). Conversely, suppose {k, q 2 k} ∈ C P I8 (H). Then (pt − q 2 )k ≡ 0 mod (q 2 + 1)(q 2 − 1). Hence (pt + 1)k ≡ 0 mod q 2 + 1 and (pt − 1)k ≡ 0 mod q 2 − 1. By Lemma 3.2(ii) 2 2 2 +1 −1 +1 and (v), this is equivalent with qpt +1 | k and qpt −1 | k. Since qpt +1 | q 2 + 1 and q2 −1 pt −1 | q 2 − 1 and since 2 2 q2 −1 pt −1 2 2 +1 q −1 is odd by Lemma 3.6, we have gcd( qpt +1 , pt −1 ) = 1. +1)(q −1) Therefore (q (pt +1)(pt −1) | k, and the claim holds. So by the definition of P I8 , we get |C P I8 (H)| = pt (pt − 1)/2. So in both cases, |CI (H)| = |C P I3 (H)| + |C P I8 (H)| = (pt − 1)2 . Let I = Q I3 ∪ Q I8 . First, we compute |C Q I3 (H)|. Let if i = 1, {{(k, l), (k, −ql)} ∈ C Q I3 (H) | pt k ≡ k, pt l ≡ l} Ui := t t {{(k, l), (k, −ql)} ∈ C Q I3 (H) | p k ≡ k, p l ≡ −ql} if i = 2. June 9, 2010 15:57 WSPC/S0218-1967 132-IJAC S0218196710005546 Dade’s Invariant Conjecture for GU4 (q 2 ) 369 If x = {(k, l), (k, −ql)} ∈ Q I3 , then x ∈ U1 if and only if (pt − 1)k ≡ 0 and (pt − 1)l ≡ 0 mod q 2 − 1. By Lemma 3.2(ii), this is equivalent with k, l being 2 −1 multiples of qpt −1 . So by the definition of Q I3 , we get if t | n, (pt − 1)(pt − 3)/2 |U1 | = t t t/2 (p − 1)(p − p − 2)/2 if t n. Suppose t | n. If x = {(k, l), (k, −ql)} ∈ Q I3 , then x ∈ U2 if and only if (pt −1)k ≡ 2 −1 0 and (pt + q)l ≡ 0 mod q 2 − 1. Then qpt −1 | k and (pn−t + 1)l ≡ 0 mod q 2 − 1. By Lemma 3.3, the second congruence is equivalent with (pt + 1)l ≡ 0 mod q 2 − 1 if 2t | n, and 2l ≡ 0 mod q 2 − 1 if 2t n. So by the definition of Q I3 , we get (pt − 1)2 /2 if 2t | n, |U2 | = 0 if 2t n. Suppose t n. If x = {(k, l), (k, −ql)} ∈ Q I3 , then {(k, l), (k, −ql)} ∈ U2 if and only 2 −1 if (pt − 1)k ≡ 0 and (pt + q)l ≡ 0 mod q 2 − 1. Then qpt −1 | k and (pn−t + 1)l ≡ 0 mod q 2 − 1. By Lemma 3.3, the second congruence is equivalent with (pt/2 + 1)l ≡ 0 mod q 2 − 1. By Lemma 3.2(i), it follows that gcd(pt/2 + 1, (q + 1)(q − 1)) = gcd(pt/2 + 1, q + 1) = pt/2 + 1. So (q − 1) · p(q+1) t/2 +1 | l. But then q − 1 | l, a contradiction to the definition of Q I3 . Hence in this case U2 = ∅. So t t if 2t | n, (p − 1)(p − 2) t t |C Q I3 (H)| = |U1 | + |U2 | = (p − 1)(p − 3)/2 if t | n and 2t n, t t t/2 (p − 1)(p − p − 2)/2 if t n. Next we calculate |C Q I8 (H)|. Let {{(k, l, m), (k, m, l)} ∈ C Q I8 (H) | pt k ≡ k, pt l ≡ l, pt m ≡ m} if i = 1, Ui := {{(k, l, m), (k, m, l)} ∈ C Q I8 (H) | pt k ≡ k, pt l ≡ m, pt m ≡ l} if i = 2. If x = {(k, l, m), (k, m, l)} ∈ Q I8 , then x ∈ U1 if and only if (pt − 1)k ≡ 0 mod q 2 − 1, and (pt − 1)l ≡ 0 and (pt − 1)m ≡ 0 mod q + 1. Suppose t | n. Then (pt − 1)k ≡ 0 mod q 2 − 1, and 2l ≡ 0 and 2m ≡ 0 mod 2 −1 q + 1. This is equivalent with qpt −1 | k, and q+1 2 | l, m. So by the definition of Q I8 , t we get |U1 | = p − 1. Suppose t n. Then (pt −1)k ≡ 0 mod q 2 −1, and (pt/2 +1)l ≡ 0 and (pt/2 +1)m ≡ 0 mod q + 1. Hence q+1 q2 − 1 | l, m | k and t/2 U1 = {(k, l, m), (k, m, l)} ∈ Q I8 | t p −1 p +1 and |U1 | = pt/2 (pt/2 + 1)(pt − 1)/2. Suppose t | n. If x = {(k, l, m), (k, m, l)} ∈ Q I8 , then x ∈ U2 if and only if t (p − 1)k ≡ 0 mod q 2 − 1, pt l ≡ m and pt m ≡ l mod q + 1. By Lemma 3.2(i) 2 −1 | k and (p2t − 1)l ≡ 0 mod q + 1. By we get from the last two congruences, qpt −1 June 9, 2010 15:57 WSPC/S0218-1967 132-IJAC S0218196710005546 J. An & S.-C. Huang 370 Lemma 3.2(i), the second congruence is equivalent with 2(pt + 1)l ≡ 0 mod q + 1. By Lemmas 3.2(iii) and 3.4, this is equivalent with 2l ≡ 0 mod q + 1 if 2t | n, and (pt + 1)l ≡ 0 mod q + 1 if 2t n. So by the definition of Q I8 , we get 0 if 2t | n, |U2 | = t 2 (p − 1) /2 if 2t n. Suppose t n. If x = {(k, l, m), (k, m, l)} ∈ Q I8 , then x ∈ U2 if and only if (p − 1)k ≡ 0 mod q 2 − 1, and pt l ≡ m and pt m ≡ l mod q + 1. By Lemma 3.2(i) 2 −1 we get from the last two congruences, qpt −1 | k and (p2t − 1)l ≡ 0 mod q + 1. By Lemma 3.2(iii), the second congruence is equivalent with 2(pt − 1)l ≡ 0 mod q + 1. By Lemma 3.5, this is equivalent with (pt − 1)l ≡ 0 mod q + 1. Then l ≡ pt l ≡ m mod q + 1, a contradiction to the definition of Q I8 . Hence in this case U2 = ∅. So t if 2t | n, p − 1 t t |C Q I8 (H)| = |U1 | + |U2 | = (p − 1)(p + 1)/2 if t | n and 2t n, t/2 t/2 t p (p + 1)(p − 1)/2 if t n. t So in both cases, |CI (H)| = |C Q I3 (H)| + |C Q I8 (H)| = (pt − 1)2 . Let I = Q I6 ∪ Q I11 . First, we compute |C Q I6 (H)|. Let if i = 1, {{(k, l), (k, −ql)} ∈ C Q I6 (H) | pt k ≡ k, pt l ≡ l} Ui := t t {{(k, l), (k, −ql)} ∈ C Q I6 (H) | p k ≡ k, p l ≡ −ql} if i = 2. If x = {(k, l), (k, −ql)} ∈ Q I6 , then x ∈ U1 if and only if (pt − 1)k ≡ 0 mod q + 1 and (pt − 1)l ≡ 0 mod q 2 − 1. Suppose t | n. By Lemma 3.2(i) and (ii), this is equivalent with q+1 2 | k and q2 −1 pt −1 | l. So we get |U1 | = pt − 3. Suppose t n. Then q+1 pt/2 +1 | k and q2 −1 pt −1 | l. So we get |U1 | = (pt/2 + 1)(pt − pt/2 − 2)/2. Suppose t | n. If x = {(k, l), (k, −ql)} ∈ Q I6 , then x ∈ U2 if and only if (pt −1)k ≡ n−t 0 mod q + 1 and (pt + q)l ≡ 0 mod q 2 − 1. Then q+1 + 1)l ≡ 0 mod 2 | k and (p 2 t q − 1. By Lemma 3.3, the second congruence is equivalent with (p + 1)l ≡ 0 mod q 2 − 1 if 2t | n, and 2l ≡ 0 mod q 2 − 1 if 2t n. So by the definition of Q I6 , we get pt − 1 if 2t | n, |U2 | = 0 if 2t n. Suppose t n. If {(k, l), (k, −ql)} ∈ U2 , then (pt −1)k ≡ 0 mod q+1 and (pt +q)l ≡ 0 q+1 | k and (pn−t + 1)l ≡ 0 mod q 2 − 1. By Lemma 3.3, the mod q 2 − 1. Then pt/2 +1 second congruence is equivalent with (pt/2 + 1)l ≡ 0 mod q 2 − 1. By Lemma 3.2(i), June 9, 2010 15:57 WSPC/S0218-1967 132-IJAC S0218196710005546 Dade’s Invariant Conjecture for GU4 (q 2 ) 371 it follows that gcd(pt/2 + 1, (q + 1)(q − 1)) = gcd(pt/2 + 1, q + 1) = pt/2 + 1. So (q − 1) · p(q+1) t/2 +1 | l. But then q − 1 | l, a contradiction to the definition of Q I6 . Hence in this case U2 = ∅. So t if 2t | n, 2(p − 2) t |C Q I6 (H)| = |U1 | + |U2 | = p − 3 if t | n and 2t n, t/2 t t/2 (p + 1)(p − p − 2)/2 if t n. Next we calculate |C Q I11 (H)|. Let {{(k, l, m), (k, m, l)} ∈ C Q I11 (H) | pt k ≡ k, pt l ≡ l, pt m ≡ m} if i = 1, Ui := {{(k, l, m), (k, m, l)} ∈ C Q I11 (H) | pt k ≡ k, pt l ≡ m, pt m ≡ l} if i = 2. If x = {(k, l, m), (k, m, l)} ∈ Q I11 , then x ∈ U1 if and only if (pt − 1)k ≡ 0, (pt − 1)l ≡ 0 and (pt − 1)m ≡ 0 mod q + 1. Suppose t | n. Then 2k ≡ 0, 2l ≡ 0 and 2m ≡ 0 mod q + 1. So by the definition of Q I11 , we get |U1 | = 2. Suppose t n. Then (pt/2 + 1)k ≡ 0, (pt/2 + 1)l ≡ 0 and (pt/2 + 1)m ≡ 0 mod q + 1. Hence q+1 | k, l, m U1 = {(k, l, m), (k, m, l)} ∈ Q I11 | t/2 p +1 and |U1 | = pt/2 (pt/2 + 1)2 /2. Suppose t | n. If x = {(k, l, m), (k, m, l)} ∈ Q I11 , then x ∈ U2 if and only if (pt − 1)k ≡ 0, pt l ≡ m and pt m ≡ l mod q + 1. By Lemma 3.2(i) and the last two 2t congruences, we get q+1 2 | k and (p − 1)l ≡ 0 mod q + 1. By Lemma 3.2(i), the second congruence is equivalent with 2(pt + 1)l ≡ 0 mod q + 1. By Lemmas 3.2(iii) and 3.4, this is equivalent with 2l ≡ 0 mod q + 1 if 2t | n, and (pt + 1)l ≡ 0 mod q + 1 if 2t n. So by the definition of Q I8 , we get 0 if 2t | n, |U2 | = t p − 1 if 2t n. Suppose t n. If x = {(k, l, m), (k, m, l)} ∈ Q I11 , then x ∈ U2 if and only if (p − 1)k ≡ 0, pt l ≡ m and pt m ≡ l mod q + 1. By Lemma 3.2(i) and the last two q+1 | k and (p2t − 1)l ≡ 0 mod q + 1. By Lemma 3.2 (iii), congruences, we get pt/2 +1 the second congruence is equivalent with 2(pt − 1)l ≡ 0 mod q + 1. By Lemma 3.5, this is equivalent with (pt − 1)l ≡ 0 mod q + 1. Then l ≡ pt l ≡ m mod q + 1, a contradiction to the definition of Q I11 . Hence in this case U2 = ∅. So if 2t | n, 2 t |C Q I11 (H)| = |U1 | + |U2 | = p + 1 if t | n and 2t n, t/2 t/2 2 p (p + 1) /2 if t n. t June 9, 2010 15:57 WSPC/S0218-1967 372 132-IJAC S0218196710005546 J. An & S.-C. Huang Thus, |CI (H)| = |C Q I6 (H)| + |C Q I11 (H)| = 2(pt − 1) (p t/2 if t | n, + 1)(p − 1) if t n. t Now, we deal with the regular semisimple irreducible characters of G. Proposition 4.2. Let G = GU4 (q 2 ), t | 2n, I := G I2 ∪ G I5 ∪ G I6 ∪ G I9 ∪ G I10 and H = αt a subgroup of O. Then (a) |CI (H)| is equal to the number of those regular semisimple conjugacy classes of G which are stabilized by αt . (b) If t n (respectively t | n), then |CI (H)| is equal to the number of regular semisimple conjugacy classes of GU4 (pt ) (respectively Sp4 (pt )). (c) |CI (H)| = (pt − 1)2 . Proof. We use an argument similar to the one in [2, Proposition 4.2]. The set I parameterizes the regular semisimple irreducible characters of G. We fix some notation. Let Fq2 be a finite field with q 2 elements, F an algebraic closure of Fq2 and G = GL4 (F). Let α be the field automorphism α : G → G obtained from the map F → F, x → xp , and γ : G → G the graph automorphism of order 2 given by [13, p. 68]. Thus γ(g) = X(g T )−1 X −1 for any g ∈ G, where 0 0 0 1 0 0 −1 0 . X := 0 0 0 1 −1 0 0 0 F F Setting F := αn ◦ γ = γ ◦ αn we get G = GU4 (q 2 ) = G = GL4 (q 2 ) = {g ∈ G | F (g) = g}. Since the restriction α|G : G → G of α to G generates Out(G) we can assume α|G = α. For L ∈ {G, G}, let Sreg (L) be the set of all regular semisimple conjugacy classes of L. If ρ is an endomorphism of L, then let Sreg (L)ρ := {C ∈ Sreg (L) | C ρ = C} be the set of ρ-stable regular semisimple conjugacy classes of L. Finally, let Irrss reg (G) be the set of regular semisimple irreducible characters of G. F By [5, Corollary 3.10, p. 197] of Springer-Steinberg, the map C → C ∩ G is a bijection from Sreg (G)F onto Sreg (G) and this bijection induces a bijection between the set of regular semisimple conjugacy classes of G fixed by αt and the set of F -stable regular semisimple conjugacy classes of G fixed by αt . It follows that, since αt raises every element of a maximally split torus of G to its pt th power, the automorphism αt maps each regular semisimple conjugacy class (g)G of G to the t class (g p )G . In other words, αt acts on the regular semisimple conjugacy classes of G like the pt th power map (this does not mean, that αt maps every regular semisimple element of G to its pt th power). (a) Since G = GU4 (q 2 ) is isomorphic to its dual group (in the sense of [7, t Sec. 4.4, p. 120]), the number |Sreg (G)α | of fixed points of αt on Sreg (G) is June 9, 2010 15:57 WSPC/S0218-1967 132-IJAC S0218196710005546 Dade’s Invariant Conjecture for GU4 (q 2 ) 373 equal to the number of fixed points of αt on Irrss reg (G). By definition, the latter equals |CI (H)|. (b) In this part of the proof, we imitate an argument which is used in the proof of [4, Lemma 4.1]. As we have seen at the beginning of this proof, there is a bijection from t the set of regular semisimple conjugacy classes of G fixed by αt onto Sreg (G)F,α , the set of fixed points of Sreg (G) under the action of the group F, αt . So by (a), t t we have |CI (H)| = |Sreg (G)α | = |Sreg (G)F,α |. Case 1. Suppose t n, then F, αt = αn ◦ γ, αt = αt/2 ◦ γ, αt = αt/2 ◦ γ. t/2 αt/2 ◦γ αt/2 ◦γ ∼ Thus |CI (H)| = |Sreg (G)α ◦γ | = |Sreg (G )|. Since G = GU4 (pt ), we get |CI (H)| = |Sreg (GU4 (pt ))|, proving (b) in this case. Case 2. Suppose t | n, then F, αt = αn ◦ γ, αt = γ, αt . Thus |CI (H)| = t t |Sreg (G)F,α | = |(Sreg (G)α )γ | = |Sreg (G (G αt γ ) |. But G αt = GL4 (pt ), so αt γ ) = GL4 (pt )γ = {g ∈ GL4 (pt ) | gXg T = X}. Now X T = −X and so the form determined by X is symplectic. It follows that (G αt γ ) = Sp4 (pt ) and |CI (H)| = |Sreg (Sp4 (pt ))|. (c) From the character tables of GU4 (pt ) and Sp4 (pt ) in [19] and [20] we get that if t n (respectively t | n), then the number of regular semisimple conjugacy classes of GU4 (pt ) (respectively Sp4 (pt )) is equal to (pt − 1)2 . 5. Dade’s Invariant Conjecture for GU4 (q 2 ), q Odd In this section, we prove Dade’s invariant conjecture for G = GU4 (q 2 ) in the defining characteristic p, where q = pn with an odd prime p. By [16, p. 152], G has only two p-blocks, the principal block B0 = B0 (G) and one defect-0-block (consisting of the Steinberg character). Hence we have to verify the conjecture for B0 . We will follow the notation of Sec. 4. By a corollary of the Borel–Tits theorem [6], the normalizers of radical psubgroups are parabolic subgroups. The radical p-chains of G (up to G-conjugacy) are given in Table 1. Table 1. Radical p-chains of G. C NG (C) NA (C) A C1 {1} G C2 {1} < Op (P ) P P α C3 {1} < Op (P ) < Op (B) B B α C4 {1} < Op (Q) Q Q α C5 {1} < Op (Q) < Op (B) B B α C6 {1} < Op (B) B B α June 9, 2010 15:57 WSPC/S0218-1967 374 132-IJAC S0218196710005546 J. An & S.-C. Huang Since NG (C5 ) = NG (C6 ) and NA (C5 ) = NA (C6 ), it follows that for all d ∈ N and u | 2n k(NG (C5 ), B0 , d, u) = k(NG (C6 ), B0 , d, u). Thus the contribution of C5 and C6 in the alternating sum of Dade’s invariant conjecture is zero. So Dade’s invariant conjecture for G is equivalent to k(G, B0 , d, u) + k(B, B0 , d, u) = k(P, B0 , d, u) + k(Q, B0 , d, u) (5.1) for all d ∈ N and u | 2n. a p-block of G = GU4 (p2n ) with Theorem 5.1. Let p > 2 be a prime and B positive defect. Then B satisfies Dade’s invariant conjecture. = B0 . Suppose u | 2n and Proof. By the proceeding remarks, we can assume B 2n t set t := u and H := α . Let S ∈ {G, B, P, Q}. By the character tables in [19], we have k(S, B0 , d, u) = 0 when d ∈ {3n, 4n, 5n, 6n}. (i) If d = 3n, then by Tables A.2 and A.6, we have 4 |C G Ij (H)| = k(G, B0 , d, u) = (pt/2 + 1)2 j∈{13,18} and k(Q, B0 , d, u) = |C Q I9 (H)| = if t n, if t | n, 4 (p if t | n, t/2 2 + 1) if t n. Thus (5.1) holds in this case. (ii) If d = 4n, then Table A.3 implies, that (5.1) is equivalent to |C G Ij (H)| + |C B Ij (H)| = |C P Ij (H)| + |C Q Ij (H)|, j∈JG j∈JB j∈JP j∈JQ (5.2) where JG := {4, 12, 20}, JB := {5, 7}, JP := {2, 10} and JQ := {6, 10, 11}. By Table A.6, the sums on both sides of Eq. (5.2) are equal to 3(pt + 1) or pt/2 (pt/2 + 1)(pt/2 + 2) according as t | n or t n. Thus (5.1) also holds in this case. (iii) If d = 5n, then Table A.4 implies, that (5.1) is equivalent to (5.2) with JG := {8, 14, 15, 17, 21}, JB := {6, 8}, JP := {6, 7, 9} and JQ := {2, 7}. By Table A.6, the sums on both sides of the Eq. (5.2) are also equal to 3(pt + 1) or pt/2 (pt/2 + 1)(pt/2 + 2) according as t | n or t n. Thus (5.1) holds in this case. (iv) If d = 6n, then Table A.5 implies, that (5.1) is equivalent to (5.2) with JG := {1, 2, 3, 5, 6, 7, 9, 10, 16, 19, 22}, JB := {1, 2, 3, 4}, JP := {1, 3, 4, 5, 8} and JQ := {1, 3, 4, 5, 8}. By Table A.6, the sums on both sides of Eq. (5.2) are equal to 2pt (pt + 1) or 2p3t/2 (pt/2 + 1) according as t | n or t n. Thus (5.1) also holds in this case. June 9, 2010 15:57 WSPC/S0218-1967 132-IJAC S0218196710005546 Dade’s Invariant Conjecture for GU4 (q 2 ) 375 Appendix Table A.1. Parameter sets for the irreducible characters of the parabolic subgroups G = GU4 (q 2 ), B, P, Q. Parameter Set Characters Parameters G I1 χ1 (k) k = 0, . . . , q G I2 χ2 (k, l) G I3 = G I4 χ3 (k), χ4 (k) Equivalence relation q+1 see the remarks in Sec. 4 k = 0, . . . , q 2 − 2 q − 1 k, k = 0, Number of Characters {k ≡ −qk} (q 2 −q−2)(q 2 −q−4) 8 q 2 −q−2 2 q 2 −1 2 G I5 χ5 (k) see the remarks in Sec. 4 q 2 (q 2 −1) 4 G I6 χ6 (k, l, m) see the remarks in Sec. 4 q(q+1)(q 2 −q−2) 4 G I7 = G I8 χ7 (k, l), χ8 (k, l) k = 0, . . . , q 2 − 2 l = 0, . . . , q q − 1 k, k = 0, {(k, l) ≡ (−qk, l)} (q+1)(q 2 −q−2) 2 q 2 −1 2 G I9 χ9 (k, l) see the remarks in Sec. 4 q(q+1)(q 2 −1) 3 G I10 χ10 (k, l, m, n) see the remarks in Sec. 4 q(q 2 −1)(q−2) 24 G I11 = ··· = G I14 χ11 (k), . . . , χ14 (k) k = 0, . . . , q G I15 = χ15 (k, l, m), χ16 (k, l, m) k, l, m = 0, . . . , q k = l, m ; l = k, m; m = k, l G I17 = G I18 = G I19 χ17 (k, l), χ18 (k, l), χ19 (k, l) k, l = 0, . . . , q k = l G I20 χ20 (k, l) k, l = 0, . . . , q k = l G I21 χ21 (k, l) k, l = 0, . . . , q k = l G I22 χ22 (k, l) k, l = 0, . . . , q k = l B I1 B α1 (k, l) k, l = 0, . . . , q 2 − 2 B I2 B α2 (k, l) k = 0, . . . , q 2 − 2 l = 0, . . . , q (q + 1)(q 2 − 1) B I3 B α3 (k) k = 0, . . . , q 2 − 2 q2 − 1 B I4 B α4 (k) k = 0, . . . , q q+1 B I5 B α5 (k, l) k = 0, . . . , q l = 0, . . . , q 2 − 2 (q + 1)(q 2 − 1) B I6 B α6 (k) k = 0, . . . , q 2 − 2 q2 − 1 G I16 q+1 {(k, l, m) ≡ (k, m, l)} q(q 2 −1) 2 q(q + 1) {(k, l) ≡ (l, k)} q(q+1) 2 q(q + 1) {(k, l) ≡ (l, k)} q(q+1) 2 (q 2 − 1)2 June 9, 2010 15:57 WSPC/S0218-1967 376 132-IJAC S0218196710005546 J. An & S.-C. Huang Table A.1. (Continued ) Parameter Set Characters Parameters B I7 B α7 (k) k, l = 0, . . . , q (q + 1)2 B I8 B α8 (k) k = 0, . . . , q q+1 P β1 (k), P β2 (k) k = 0, . . . , q 2 − 2 q2 − 1 P I3 P β3 (k, l) k, l = 0, . . . , q 2 − 2 k = l P I4 P β4 (k, l) k = 0, . . . , q 2 − 2 l = 0, . . . , q (q + 1)(q 2 − 1) P I5 P β5 (k) k = 0, . . . , q q+1 P I1 = P I2 P I6 P β6 (k) 0, . . . , q 2 k= q − 1 k, k = 0, Equivalence relation −2 {(k, l) ≡ (l, k)} Number of Characters (q 2 −1)(q 2 −2) 2 {k ≡ −qk} q 2 −q−2 2 q 2 −1 2 P I7 P β7 (k, l) k, l = 0, . . . , q k = l {(k, l) ≡ (l, k)} q(q+1) 2 P I8 P β8 (k) k = 0, . . . , q 4 − 2 q2 + 1 k {k ≡ q 2 k} q 2 (q 2 −1) 2 P I10 P β9 (k), k = 0, . . . , q q+1 Q I2 Q γ1 (k, l), k = 0, . . . , q 2 − 2 l = 0, . . . , q (q + 1)(q 2 − 1) Q γ3 (k, l) k, l = 0, . . . , q 2 − 2 q − 1 l, P I9 = Q I1 = Q I3 P β10 (k) Q γ2 (k, l) l = 0, {(k, l) ≡ (k, −ql)} (q 2 −1)(q 2 −q−2) 2 q 2 −1 2 Q I4 Q γ4 (k) k = 0, . . . , q 2 − 2 q2 − 1 Q I5 Q γ5 (k) k = 0, . . . , q q+1 Q I6 Q γ6 (k, l) k = 0, . . . , q l = 0, . . . , q 2 − 2 q−1l l = 0, Q γ7 (k, l) k, l = 0, . . . , q Q I8 Q γ8 (k, l, m) k = 0, . . . , q 2 − 2 l, m = 0, . . . , q l = m Q γ9 (k, l), k, l = 0, . . . , q Q γ11 (k, l, m) k, l, m = 0, . . . , q l = m = Q I11 Q I10 Q γ10 (k, l) (q+1)(q 2 −q−2) 2 q 2 −1 2 Q I7 Q I9 {(k, l) ≡ (k, −ql)} (q + 1)2 {(k, l, m) ≡ (k, m, l)} q(q+1)(q 2 −1) 2 (q + 1)2 {(k, l, m) ≡ (k, m, l)} q(q+1)2 2 June 9, 2010 15:57 WSPC/S0218-1967 132-IJAC S0218196710005546 Dade’s Invariant Conjecture for GU4 (q 2 ) Table A.2. The irreducible characters of the chain normalizers in GU4 (q 2 ) of defect 3n. Character G Q Degree P Q G I13 I1 q+1 A1 χ18 (k, l) G I18 I2 q(q + 1) A7 Q γ9 (k, l) q 3 (q − P Q 1)(q 2 + 1) − 1) Q I9 I1 × I1 (q + 1)2 A11 The irreducible characters of the chain normalizers in GU4 (q 2 ) of defect 4n. Degree Param. set Param. Nozawa G I4 J1 Number q 2 −q−2 2 Class χ4 (k) q 2 (q + 1)(q 3 + 1) χ12 (k) q 2 (q 2 + 1) G I12 I1 q+1 A1 χ20 (k, l) q 2 (q 2 + 1)(q 2 − q + 1) G I20 I2 q(q+1) 2 A10 B α5 (k, l) q 2 (q − 1) B I5 I1 × J0 (q + 1)(q 2 − 1) B3 B α7 (k, l) q 2 (q − 1)2 B I7 I1 × I1 (q + 1)2 A9 P β2 (k) q2 C1 P β10 (k) q 2 (q Q γ6 (k, l) q 2 (q 2 Q γ10 (k, l) q 2 (q − 1) Q γ11 (k, l, m) q 2 (q − 1)(q 2 + 1) − 1) − 1)2 P I2 J0 q2 P I10 I1 q+1 −1 Q I6 I1 × J1 Q I10 I1 × I1 (q+1)(q 2 −q−2) 2 (q + 1)2 I1 × I2 q(q+1)2 2 Q I11 C1 A1 B1 A11 A15 The irreducible characters of the chain normalizers in GU4 (q 2 ) of defect 5n. Character B Class q 3 (q Table A.4. G Number q 3 (q 2 − q + 1) Character B Parameter Nozawa χ13 (k) Table A.3. G Parameter set Degree Param. set Param. Nozawa G I8 J2 Number (q+1)(q 2 −q−2) 2 Class χ8 (k, l) q(q 2 + 1)(q 3 + 1) χ14 (k) q(q 2 − q + 1) G I14 I1 q+1 χ15 (k, l, m) q(q − 1)(q 2 + 1)(q 2 − q + 1) G I15 I3 χ17 (k, l) q(q − 1)2 (q 2 + 1) G I17 I2 q(q 2 −1) 2 q(q + 1) A8 χ21 (k, l) q(q 2 + 1)(q 2 − q + 1) G I21 I2 q(q + 1) A8 B α6 (k) q(q 2 − 1) B I6 J0 (q + 1)2 C2 B I8 I1 q+1 A1 P I6 J1 1)(q 2 B α8 (k) q(q − P β6 (k) q(q 4 − 1) − 1) B2 A1 A12 P β7 (k, l) q(q − P I7 I2 q 2 −q−2 2 q(q+1) 2 P β9 (k) q(q − 1)(q 2 + 1) P I9 I1 q+1 A1 Q γ2 (k, l) q Q I2 J0 × I1 (q + 1)(q 2 − 1) B2 Q I7 I2 (q + 1)2 A8 Q γ7 (k, l) q(q − 1)2 (q 2 1)(q 2 + 1) − 1) C2 A7 377 June 9, 2010 15:57 WSPC/S0218-1967 378 132-IJAC S0218196710005546 J. An & S.-C. Huang Table A.5. The irreducible characters of the chain normalizers in GU4 (q 2 ) of defect 6n. We use the abbreviation η := (q − 1)(q 2 + 1)(q 2 − q + 1). Character G χ1 (k) χ2 (k, l) Q (q + 1)(q 2 + 1)(q 3 + 1) (q + (q + 1)(q 2 χ6 (k, l, m) (q − 1)(q 2 χ7 (k, l) (q 2 χ9 (k, l) (q 2 χ10 (k, l, m, n) (q − 1)η χ16 (k, l, m) χ19 (k, l) χ5 (k) P 1 1)(q 3 χ3 (k) B Degree + 1) Param. set Param. Nozawa G I1 I1 G I2 J4 G I3 J1 − 1)(q 3 + 1) G I5 S1 + 1)(q 3 + 1) G I6 J3 Number q+1 (q 2 −q−2)(q 2 −q−4) 8 q 2 −q−2 2 q 2 (q 2 −1) 4 q(q+1)(q 2 −q−2) 4 (q+1)(q 2 −q−2) 2 q(q+1)(q 2 −1) 3 q(q 2 −1)(q−2) 24 q(q 2 −1) 2 Class A1 C3 C1 E1 B3 + 1)(q 3 + 1) G I7 J2 − 1)(q 4 − 1) G I9 R2 G I10 I4 η G I16 I3 (q − 1)(q 2 + 1) G I19 I2 q(q + 1) A8 χ22 (k, l) (q 2 + 1)(q 2 − q + 1) G I22 I2 q(q+1) 2 A11 B α1 (k, l) 1 B I1 J0 × J0 (q 2 − 1)2 C5 B α2 (k, l) q−1 B I2 J0 × I1 (q + 1)(q 2 − 1) B2 B α3 (k) q2 − 1 B I3 J0 q2 − 1 C1 B I4 I1 q+1 A1 P I1 J0 q2 − 1 C1 (q 2 −1)(q 2 −2) 2 (q + 1)(q 2 − 1) B1 B α4 (k) (q − P β1 (k) 1 1)(q 2 − 1) C1 D1 A14 A12 P β3 (k, l) q2 + 1 P I3 J0 × J0 P β4 (k, l) (q − 1)(q 2 + 1) P I4 J0 × I1 P β5 (k) (q − 1)(q 4 − 1) P I5 I1 q+1 A1 P β8 (k) q2 − 1 P I8 S1 q 2 (q 2 −1) 2 E1 Q γ1 (k, l) 1 Q I1 J0 × I1 (q + 1)(q 2 − 1) B2 C1 C5 Q γ3 (k, l) q+1 Q I3 J0 × J1 Q γ4 (k) (q + 1)(q 2 − 1) Q I4 J0 (q 2 −1)(q 2 −q−2) 2 q2 − 1 Q γ5 (k) (q 2 − 1)2 Q I5 I1 q+1 A1 q(q+1)(q 2 −1) 2 B5 Q γ8 (k, l, m) q−1 Q I8 J0 × I2 C3 Table A.6. Number of fixed points of H = αt on parameter sets of the irreducible characters of the parabolic subgroups of GU4 (q 2 ). The unions of parameter sets in this table are disjoint unions. Parameter set I G I1 G I2 ∪ G I5 ∪ G I6 ∪ G I9 ∪ G I10 G I3 ∪ G I22 G I4 ∪ G I20 G I7 ∪ G I16 G I8 ∪ G I15 Number of fixed points |CI (H)| if t | n if t n 2 (pt − 1)2 pt − 1 pt − 1 2(pt − 2) 2(pt − 2) pt/2 + 1 (pt − 1)2 pt − 1 pt − 1 t/2 (p + 1)(pt − pt/2 − 1) (pt/2 + 1)(pt − pt/2 − 1) June 9, 2010 15:57 WSPC/S0218-1967 132-IJAC S0218196710005546 Dade’s Invariant Conjecture for GU4 (q 2 ) Table A.6. Parameter set I G I12 G I13 G I14 G I17 G I18 G I19 G I21 B I1 B I2 B I3 B I4 B I5 B I6 B I7 B I8 P I1 P I2 P I3 ∪ P I8 P I4 P I5 P I6 ∪ P I7 P I9 P I10 Q I1 Q I2 Q I3 ∪ Q I8 Q I4 Q I5 Q I6 ∪ Q I11 Q I7 Q I9 Q I10 379 (Continued ) Number of fixed points |CI (H)| if t | n if t n 2 2 2 2 2 2 2 (pt − 1)2 2(pt − 1) pt − 1 2 2(pt − 1) pt − 1 4 2 pt − 1 pt − 1 (pt − 1)2 2(pt − 1) 2 pt − 1 2 2 2(pt − 1) 2(pt − 1) (pt − 1)2 pt − 1 2 2(pt − 1) 4 4 4 pt/2 + 1 pt/2 + 1 pt/2 + 1 t/2 p (pt/2 + 1) pt/2 (pt/2 + 1) pt/2 (pt/2 + 1) pt/2 (pt/2 + 1) (pt − 1)2 (pt − 1)(pt/2 + 1) pt − 1 pt/2 + 1 (pt/2 + 1)(pt − 1) pt − 1 (pt/2 + 1)2 pt/2 + 1 pt − 1 pt − 1 (pt − 1)2 (pt − 1)(pt/2 + 1) pt/2 + 1 pt − 1 pt/2 + 1 pt/2 + 1 t (p − 1)(pt/2 + 1) (pt − 1)(pt/2 + 1) (pt − 1)2 pt − 1 pt/2 + 1 (pt/2 + 1)(pt − 1) (pt/2 + 1)2 (pt/2 + 1)2 (pt/2 + 1)2 Acknowledgments Part of this work was done while the second author visited Chiba University in Japan. He wishes to express his sincere thanks to Professor Shigeo Koshitani for his support and great hospitality. He also acknowledges the support of a JSPS postdoctoral fellowship from the Japan Society for the Promotion of Science. References [1] J. L. Alperin, The main problem of block theory, in Proc. Conf. Finite Groups, Univ. Utah, Park City, UT (Academic Press, New York, 1975), pp. 341–356. [2] J. An, F. Himstedt and S. Huang, Uno’s invariant conjecture for Steinberg’s triality groups in defining characteristic, J. Algebra 316 (2007) 79–108. June 9, 2010 15:57 WSPC/S0218-1967 380 132-IJAC S0218196710005546 J. An & S.-C. Huang [3] J. An, F. Himstedt and S. Huang, Dade’s invariant conjecture for the symplectic group Sp4 (2n ) and the special unitary group SU4 (22n ) in defining characteristic, to appear in Comm. Algebra. [4] H. I. Blau and G. O. Michler, Modular representation theory of finite groups with T.I. Sylow p-subgroups, Trans. Amer. Math. Soc. 319 (1990) 417–468. [5] A. Borel et al., Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Math., Vol. 131 (Springer, Heidelberg, 1970). [6] N. Burgoyne and C. Williamson, On a theorem of Borel and Tits for finite Chevalley groups, Arch. Math. (Basel ) 27 (1976) 489–491. [7] R. W. Carter, Finite groups of Lie type — Conjugacy classes and complex characters, A Wiley-Interscience publication, Chichester (1985). [8] B. Char, K. Geddes, G. Gonnet, B. Leong, M. Monagan and S. Watt, Maple V, Language Reference Manual (Springer, 1991). [9] E. C. Dade, Counting characters in blocks I, Invent. Math. 109 (1992) 187–210. [10] E. C. Dade, Counting characters in blocks II, J. Reine Angew. Math. 448 (1994) 97–190. [11] E. C. Dade, Counting characters in blocks 2.9, ed. R. Solomon, Representation Theory of Finite Groups (1997), pp. 45–59. [12] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.4 (2005), http://www.gap-system.org. [13] D. Gorenstein, R. Lyons and R. Solomon, The Classification of Finite Simple Groups. Number 3 (Mathematical Surveys and Monographs, AMS, Providence, 1998). [14] M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, CHEVIE — A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Engrg. Comm. Comput. 7 (1996) 175–210. [15] F. Himstedt, Charaktertafeln parabolischer Untergruppen der Steinbergschen Trialitätsgruppen und Anwendungen auf deren Darstellungstheorie, Dissertation, RWTH Aachen (2003). [16] J. Humphreys, Defect groups for finite groups of Lie type, Math. Z. 119 (1971) 149–152. [17] I. M. Isaacs and G. Navarro, New refinements of the McKay conjecture for arbitrary finite groups, Ann. of Math. 156 (2002) 333–344. [18] J. McKay, A new invariant for simple groups, Notices Amer. Math. Soc. 18 (1971) 397. [19] S. Nozawa, On the characters of the finite general unitary group U4 (q 2 ), J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 19 (1972) 257–293. [20] B. Srinivasan, The characters of the finite symplectic group Sp(4, q), Trans. Amer. Math. Soc. 131 (1968) 488–525. [21] K. Uno, Conjectures on character degrees for the simple Thompson group, Osaka J. Math. 41 (2004) 11–36.
© Copyright 2026 Paperzz