CALIFORNIA STATE UNIVERSITY, NORTHRIDGE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE340 – ELECTRONICS I FALL 2009 HOMEWORK ASSIGNMENT #2 SOLUTIONS Problem One Problem 2.10. N D 5 1017 cm 3 a N A 4 1016 cm 3 nn 5 1017 cm 3 nn N D 1.08 10 cm 3 5 1017 cm 3 n2 pn i ND pn pp N A p p 4 1016 cm 3 1.08 10 n2 np i NA b ni 1.08 1010 cm 3 10 cm 3 4 1016 cm 3 10 pn 2 pn 233.28 cm - 3 2 n p 2916 cm - 3 19 3 ni 250 K 5.2 1015 250 2 exp 1.792 10 J 23 1.38 10 J / T 250 K ni 250 K 1.08 108 cm - 3 ni 300 K 1.08 1010 cm - 3 ni 350 K 2.99 1011 cm -3 b ni T 5.2 1015 T 3 2 exp ni 250 K 1.08 10 8 cm - 3 VO kT N A N D ln q ni2 VO VO 1.38 10 300 K VO 1.38 10 350 K T J 23 J 1.6 10 VO 23 1.6 10 23 J 1.6 10 kT ni 300 K 1.08 1010 cm -3 ni 350 K 2.99 1011 cm - 3 1.38 10 250 K EG 250 K ln 5 10 19 J 17 350 K ln 5 10 17 19 J K 17 300 K ln 5 10 K 19 J cm 3 4 1016 cm 3 VO 250 K 0.9053V 8 -3 2 1.08 10 cm K cm 3 4 1016 cm 3 VO 300 K 0.848V 10 -3 2 1.08 10 cm cm 3 4 1016 cm 3 VO 350 K 0.789 V 11 -3 2 2.99 10 cm Problem Two Problem 2.12 N D 3 1016 cm 3 a VO C j0 C j0 N A 2 1015 cm 3 kT N D N A VO 0.698V ln q ni2 q Si N A N D 2VO N A N D 1.6 10 19 C j0 V 1 R VO C 11.7 8.85 1014 F cm 3 1016 cm 3 2 1015 cm 3 20.698V 3 1016 cm 3 2 1015 cm 3 C j0 14.92 10-9 F Cj VR 1.6V cm 2 Cj 14.92 10-9 F cm 2 1.6V 1 0.698V C j 8.22 10-9 F cm 2 b Cj C j0 1 C 2j VR VO C 2j C 2j 0 VR 1 VO q Si N A N D kT N D N A 2 N A N D VR ln 2 q n i C 2j Cj q Si N A N D 2VO VR N A N D q Si N A N D kT N D N A 2N A N D VR ln 2 q n i Plotting Cj vs. NA: NA (cm-3) 2x1015 4x1015 6x1015 8x1015 1x1016 Cj (F/cm2) 8.22x10-9 11.24x10-9 13.34x10-9 14.97x10-9 16.3x10-9 Thus, NA needs to increase by a factor of 5 in order to double the junction capacitance. Problem Three Problem 2.17 D1 D2 + VD1 - + VD2 - IB VB I B I D1 I D 2 V I B I S 1 exp D1 VT VB VD1 VD 2 I VD1 VT ln B I S1 V I B I S 2 exp D 2 VT I I I VD 2 VT ln B VB VT ln B ln B IS 2 I S 2 I S1 I B I B I B2 V VB exp B VB VT ln ln VT VT I S1I S 2 I S 1 I S 2 V I B2 I S 1I S 2 exp B VT V I B I S 1I S 2 exp B 2VT I B2 I S1I S 2 I I I VD1 VT ln B VD1 VT ln S 1 S 2 I S 1 I S1 I VD1 VT ln S 2 I S 1 VD1 ln exp VB 2V T IS 2 1 VB VT ln 2 I S1 exp VB 2V T 1 I V VD1 VT ln S 2 B 2 I S 1 2VT VD 2 I S1 1 VB VT ln 2 IS 2 Problem Four Problem 2.21 IX R1 2kΩ VX D1 VX 2V I D1 VD1 0.85V VX VD1 R1 I D1 I X I D1 2V 0.85V 2kΩ I D1 0.575mA V 0.85V -18 I S I D1 exp D1 I S 575 10- 6 Aexp I S 3.64 10 A 0.026V ηVT Problem Five Problem 3.4 R1 VX D1 VB VX VO cos t VB 1V VO (VO+1)/R1 VX IX VX VO cos t VB 1V VO (VO-1)/R1 VX IX Problem Six Problem 3.47 vout 2V 0.5 -2V vin 2V 0.5 -2V R1 vout vin D1 D2 R2 R3 2V R1 R2 R3 1k 2V Problem Seven D1 IO D2 + 10mA R1 D3 R3 VO - R2 VO 9V R3 I O 1mA@ T 25 C VD1 0.7V 9V R3 9k 1mA 0.7 V I D1 5 1015 A exp 0.026V I D1 2.5 mA I R1 10 mA 2.5 mA I R1 7.5 mA R1 I S 5 1015 A VR1 0.7V 9V VR1 9.7V 9.7V R1 1.29kΩ 7.5 mA I D 2 2.5 mA 1mA I D 2 1.5 mA 1.5 10 3 A VD 2 0.6865 V VD 2 0.026V ln 15 5 10 A R2 9V 20.6865V R2 5.2123kΩ 1.5 mA VD 3 0.6865 V Problem Eight 25kΩ D1 vA + 10kΩ 2kΩ - 5kΩ - vo + vs(t) 3kΩ 10kΩ 3kΩ For the circuit shown above, the diode and operational amplifiers are ideal. The input voltage is a sinusoid given by the following equation: vS 15 sin( 2 1000t ) V a) Sketch the input and output voltage waveforms as a function of time. Positive cycle representative circuit: 25kΩ 10kΩ va + 2kΩ vs(t) va 5kΩ - - vo 3kΩ + 10kΩ 3kΩ 3k va vs 2k 3k va 0.615 sin( 2 1000t ) V va 9 sin( 2 1000t ) V 25k vo 9 sin( 2 1000t ) V vo 45 sin( 2 1000t ) V 5k Negative cycle representative circuit: 25kΩ va + 2kΩ vs(t) 10kΩ va - vo 3kΩ + 10kΩ va 0 vo 0 5kΩ 3kΩ vs(V) 15 t(s) vo(V) t(s) -45 15 10 vs 0 -10V -15V 10.8 vo 0 -25.0V -45 V -48.2V 0s 0.5m s 1.0m s 1.5m s 2.0m s 2.5m s Tim e 3.0m s 3.5m s 4.0m s 4.5m s b) Redo part a using a piece-wise linear model for the diode with rd 10 and Vbi 0.7V . Positive cycle representative circuit: 25k 0.7V 10k 5k + 2k 0.01k vs(t) - vo - 3k + 10k 3k v 0.7 v 0.7 i t s va s 3k va 0.598815 sin 2 1000t V 0.7V 5.01k 5.01k vO 50.598815 sin 2 1000t V 0.7V vO 2.994 15 sin 2 1000t V 0.7V vO 44.91sin 2 1000t V 2.1V vs(V) 15 t(s) vo(V) t(s) -42.8 20 0 -20V 50 V(R1:1) 0 -50V 0s V(R5:2) 0.5m s 1.0m s 1.5m s 2.0m s s 2.5m s Tim e 3.0m s 3.5m s 4.0m s 4.5m s s 5.0m s Problem Nine 300Ω D1 D3 vs vo D4 D2 2.7kΩ 4.7uF For the circuit shown above, let vS 10 sin 377t V . Each diode is to be modeled as a piece-wise linear device with the following parameters: V 0.7V rd 26 a) Sketch v S and vO as a function of time. Circuit Model: 300Ω 0.7V 0.7V 26Ω 26Ω vs vo 2.7kΩ 0.7V 0.7V 26Ω 26Ω 4.7μF Positive half cycle: 300Ω 0.7V 26Ω vs vo 2.7kΩ 0.7V 26Ω 10 300i 0.7 26i 2700i 0.7 26i i vO , MAX 2.82mA2.7k vO , MAX 7.6V Negative half cycle produces the same results. 4.7μF 26Ω 10V 1.4V 3052 i 2.82mA vs(V) 10 t(s) vo(V) 7.6 t(s) b) Calculate the ripple voltage of vO and determine what percentage it is of the peak output voltage. VP 10V VD , on 0.7V 377 rad sec VR V P VR 5V V300 0.846V f 60 Hz 2VD , on V300 10V 1.4V 0.846V VR 2700 4.7 10 6 F 260 Hz 2 RLCL f c) Repeat part a with a PSPICE simulation and compare your results. 10 7.02 V 4.88 V 5 0 -5V -10V 0s 5m s 10m s 15m s 20m s 25m s Tim e 30m s 35m s 40m s 45m s 50m s Problem Ten 1kΩ + D1 vs(t) D3 vo(t) D4 D2 - VC vS t 15 sin 377t V In this problem, diodes D2 and D3 are non-ideal diodes that can be characterized by using the piece-wise linear model. These devices have the following model parameters: Vbi 0.7V rd 26 D1 and D4 are zener diodes that have zener voltages of 4.7V and 5V respectively. The incremental resistance of the zener diodes are 5Ω and 10Ω respectively. a) Draw an equivalent circuit showing the incremental models for each diode. 1k VCC 5 26 + 4.7V 0.7V vo vs 0.7V 5V 26 10 VCC b) Sketch the output waveforms for vs(t) and vo(t) on the same graph as a function of time. 15 1000i 0.7 26i 5 10i i 15V 5.7V 1036 i 8.98mA vO , MAX 8.98mA0.036k 5V 0.7V vO , MAX 6.023V 15 1000i 0.7 26i 4.7V 5i i 15V 5.4V 1031 vO , MIN 9.31mA0.031k 4.7V 0.7V i 9.31mA vO , MIN 5.69V vs(V), vO(V) 6.02 t(s) -5.69 c) Verify your results using PSPICE. 15V 10V (4.1620m,5.5680) 5V 0V (12.503m,-5.5680) -5V -10V -15V 0s V(V1:+) 5ms V(D2:1) 10ms 15ms 20ms 25ms Time 30ms 35ms 40ms 45ms 50ms
© Copyright 2026 Paperzz