Physical Fluctuomatics 11th Probabilistic image processing by means of physical models Kazuyuki Tanaka Graduate School of Information Sciences, Tohoku University [email protected] http://www.smapip.is.tohoku.ac.jp/~kazu/ Physical Fluctuomatics (Tohoku University) 1 Textbooks Kazuyuki Tanaka: Introduction of Image Processing by Probabilistic Models, Morikita Publishing Co., Ltd., 2006 (in Japanese) , Chapter 7. Kazuyuki Tanaka: Statistical-mechanical approach to image processing (Topical Review), Journal of Physics A: Mathematical and General, vol.35, no.37, pp.R81R150, 2002. Muneki Yasuda, Shun Kataoka and Kazuyuki Tanaka: Computer Vision and Image Processing 3 (Edited by Y. Yagi and H. Saito): Chapter 6. Stochastic Image Processing, pp.137-179, Advanced Communication Media CO., Ltd., December 2010 (in Japanese). Physical Fluctuomatics (Tohoku University) 2 Contents 1. 2. 3. 4. Probabilistic Image Processing Loopy Belief Propagation Statistical Learning Algorithm Summary Physical Fluctuomatics (Tohoku University) 3 Image Restoration by Probabilistic Model Noise Transmission Original Image Degraded Image Posterior Pr{Original Image | Degraded Image } Assumption 1: The degraded image is randomly generated from the original image by according to the degradation process. Assumption 2: The original image is randomly generated by according to the prior probability. Prior Likelihood Pr{Degraded Image | Original Image }Pr{Original Image } Pr{DegradedIm age} Marginal Likelihood Bayes Formula Physical Fluctuomatics (Tohoku University) 4 Image Restoration by Probabilistic Model The original images and degraded images are represented by f = (f1,f2,…,f|V|) and g = (g1,g2,…,g|V|), respectively. Original Degraded Image Image ri ( xi , yi ) Position Vector i i of Pixel i fi: Light Intensity of Pixel i gi: Light Intensity of Pixel i in Original Image in Degraded Image Physical Fluctuomatics (Tohoku University) 5 Probabilistic Modeling of Image Restoration Random Field of Original Image F (F , F ,..., F 1 2 |V | State Vector of Original Image f ( f1 , f 2 ,..., f |V | ) Posterior Pr{Original Image | Degraded Image } Prior Likelihood Pr{Degraded Image | Original Image }Pr{Original Image } Assumption 2: The original image is generated according to a prior probability. Prior Probability consists of a product of functions defined on the neighbouring pixels. Pr{Original Image f } Pr{F f } ( f i , f j ) ijE i j Random Fields Product over All the Nearest Neighbour Pairs of Pixels Physical Fluctuomatics (Tohoku University) 6 ) Probabilistic Modeling of Image Random Field of Original Restoration Image F ( F1 , F2 ,..., F|V | ) Random Field of Degraded Image G (G1 , G2 ,..., G|V | ) Posterior Pr{Original Image | Degraded Image } Prior Likelihood Pr{Degraded Image | Original Image }Pr{Original Image } Assumption 1: A given degraded image is obtained from the original image by changing the state of each pixel to another state by the same probability, independently of the other pixels. State Vector of Original Image f ( f1 , f 2 ,..., f |V | ) State Vector of Degraded Image g ( g1 , g 2 ,..., g |V | ) Pr{Degraded Image g | Original Image f } Pr{G g | F f } ( gi , fi ) Random Fields iV Physical Fluctuomatics (Tohoku University) gi gi or fi fi 7 Bayesian Image Analysis PrG g F f PrF f f Prior Probability Original Image Degradation Process Posterior Probability PrF f G g V:Set of All the pixels E:Set of all the nearest neighbour pairs of pixels g g Degraded Image PrG g F f PrF f PrG g ( f i , g i ) ( f i , f j ) iV {i , j}E Image processing is reduced to calculations of averages, variances and co-variances in the posterior probability. Physical Fluctuomatics (Tohoku University) 8 Estimation of Original Image We have some choices to estimate the restored image from posterior probability. In each choice, the computational time is generally exponential order of the number of pixels. (1) fˆ arg max Pr{F z | G g} z (2) fˆi arg max Pr{Fi zi | G g} zi Maximum A Posteriori (MAP) estimation Maximum posterior marginal (MPM) estimation Pr{Fi f i | G g} Pr{F f | G g} f \ fi ˆ arg min z Pr{F z | G g}dz 2 f i i (3) i i Thresholded Posterior Mean (TPM) estimation Physical Fluctuomatics (Tohoku University) 9 Prior Probability of Image Processing 1 1 2 PrF f exp fi f j Z PR ( ) 2 {i , j}E Digital Images (fi=0,1,…,q1) Z PR ( ) 1 2 exp z z j 2 i z1 0 z1 0 z|V | 0 {i , j }E q 1 q 1 q 1 Sampling of Markov Chain Monte Carlo Method 2 1 E: Set of all the 4 nearest-neighbour pairs of pixels Paramagnetic V: Set of all the pixels Ferromagnetic Fluctuations increase near α=1.76…. Physical Fluctuomatics (Tohoku University) 10 Bayesian Image Analysis by Gaussian Graphical Model Prior Probability V:Set of all the pixels 1 1 2 PrF f | exp f i f j Z PR ( ) 2 {i , j}E 1 2 Z PR ( ) exp zi z j dz1dz2 dz|V | 2 {i , j}E Patterns are generated by MCMC. 0.0001 E:Set of all the nearest-neighbour pairs of pixels 0.0005 0.0030 Markov Chain Monte Carlo Method Physical Fluctuomatics (Tohoku University) 11 Degradation Process for Gaussian Graphical Model Degradation Process is assumed to be the additive white Gaussian noise. PrG g F f , iV f i , gi , 1 exp 2 f i g i 2 2 2 2 1 V: Set of all the pixels Original Image f Gaussian Noise n Degraded Image g Degraded image is obtained by adding a white Gaussian noise to the original image. g i f i ~ N 0, 2 Histogram of Gaussian Random Numbers Physical Fluctuomatics (Tohoku University) 12 Bayesian Image Analysis PrF f f PrG g F f Prior Probability Degradation Process Original Image Posterior Probability PrF f G g V:Set of All the pixels E:Set of all the nearest neighbour pairs of pixels g g Degraded Image PrG g F f PrF f PrG g ( f i , g i ) ( f i , f j ) iV {i , j}E Image processing is reduced to calculations of averages, variances and co-variances in the posterior probability. Physical Fluctuomatics (Tohoku University) 13 Bayesian Image Analysis PrF f f PrG g F f g g Degradation Process Prior Probability Original 画素 Image Posterior Probability PrF f G g fˆi PrFi f i G g Degraded Image PrG g F f PrF f PrG g PrF f \ fi Marginal Posterior Probability of Each Pixel Physical Fluctuomatics (Tohoku University) f G g Computational Complexity 14 Posterior Probability for Image Processing by Bayesian Analysis PrF f G g, , 1 1 1 2 2 exp f i gi f i f j Z Posterior g, , 2 {i , j}E 2 iV 1 1 2 2 Z Posterior g, , exp zi g i zi z j 2 {i , j}E z1 0 z 2 0 z|V | 0 2 iV q 1 q 1 q 1 Additive White Gaussian Noise 1 PrF f G g {i , j} f i , f j Z Posterior ( g , , ) {i , j}E {i , j} f i , f j 1 1 2 exp f i g i f j g j 4 4 Physical Fluctuomatics (Tohoku University) 2 1 2 1 fi f j 2 15 2 Bayesian Network and Posterior Probability of Image Processing Bayesian Network Posterior Probability PrF f G g PrG g F f PrF f PrG g Probabilistic Model expressed in terms of Graphical Representations with Cycles PrF f G g 1 f , f Z Posterior {i , j}E {i , j } i j V: Set of all the pixels E: Set of all the nearest neighbour pairs of pixels Physical Fluctuomatics (Tohoku University) 16 Markov Random Fields PrF f G g f , f 1 Z Posterior {i , j}E {i , j } i j PrFi f i F1 f1 , , Fi 1 f i 1 , Fi 1 f i 1 , , FL f L , G g f , f PrF f G g P x x PrF z G g z , f {i , j } i j ji i {i , j } zi (V , E ) zi i i j j i j ji Markov Random Fields i (V , E ) ∂i: Set of all the nearest neighbour pixels of the pixel i Physical Fluctuomatics (Tohoku University) 17 Contents 1. 2. 3. 4. Probabilistic Image Processing Loopy Belief Propagation Statistical Learning Algorithm Summary Physical Fluctuomatics (Tohoku University) 18 Loopy Belief Propagation Probabilistic Model expressed in terms of Graphical Representations with Cycles 1 Pr F f G g {i , j} f i , f j Z Posterior {i , j}E V: Set of all the pixels E: Set of all the nearest neighbour pairs of pixels PrF1 f1 G g PrF f G g f \ f1 3 4 1 5 2 M 21 f1 M 31 f1 M 41 f1 M 51 f1 M 21 z1 M 31 z1 M 41 z1 M 51 z1 z1 Physical Fluctuomatics (Tohoku University) 19 Loopy Belief Propagation M 12 f 2 z , f M z M z M z {1, 2} 1 31 2 41 1 51 1 1 z1 z , z M z M z M z {1, 2} z1 1 2 31 1 41 1 51 1 z2 3 4 1 2 Simultaneous fixed point equations to determine the messages 5 M M Physical Fluctuomatics (Tohoku University) 20 Belief Propagation Algorithm for Image Processing Step 1: Solve the simultaneous fixed point equations for messages by using iterative method q 1 i j M i j f j z , f M z zi 0 q 1 q 1 {i , j } i k i j i k i z , z M z zi 0 z j 0 {i , j } i k i j i k i (j i, i V , f i {0,1,2, ,q 1}) i PrFi f i G g Step 2: Substitute the messages to approximate expressions of marginal probabilities for each pixel and compute estimated image so as to maximize the approximate marginal probability at each pixel. M f k i i k i q 1 M f z i 0 k i k i i (i V , f i {0 ,1,2, ,q 1}) fˆi arg Physical Fluctuomatics (Tohoku University) max z i 0 ,1,, q 1 Pi zi 21 Belief Propagation in Probabilistic Image Processing Physical Fluctuomatics (Tohoku University) 22 Contents 1. 2. 3. 4. Probabilistic Image Processing Loopy Belief Propagation Statistical Learning Algorithm Summary Physical Fluctuomatics (Tohoku University) 23 Statistical Estimation of Hyperparameters Hyperparameters , are determined so as to maximize the marginal likelihood Pr{G=g|,} with respect to , . (ˆ , ˆ ) arg max Pr{G g | , } , Pr{G g | , } Pr{F z, G g | , } z Pr{G g | F z, } Pr{F z | } z y V x Original Image Pr{F f | } f Degraded Image Pr{G g | F f , } g g Marginalized with respect to F Pr{G g | , } Physical Fluctuomatics (Tohoku University) Marginal Likelihood 24 Maximum Likelihood in Signal Processing Original Image =Parameter f f1 f2 f|V | Incomplete Data Degraded Image =Data ˆ Hyperparameter g1 ˆ , arg max Pr G g , , g2 g Pr{G g | , } Pr{G g | F z, } Pr{F z | } z g |V | Marginal Likelihood Extremum Condition Pr{G g | , } Pr{G g | , } 0, 0 ˆ , ˆ ˆ , ˆ Physical Fluctuomatics (Tohoku University) 25 Maximum Likelihood and EM algorithm Original Image =Parameter Incomplete Data Degraded Image =Data Pr{G g | , } Pr{G g | F z, } Pr{F z | } z Marginal Likelihood f1 f2 f f |V | g1 g 2 Q , , Q -function g PF f G g, , ln PF f , G g , z g |V | Q , , 0 , Hyperparameter E Step : Calculate Q , (t ), (t ) Q , , 0 , M Step : Update α (t 1) , (t 1) arg max Q , (t ), (t ) PrG g , ( , ) Expectation Maximization (EM) algorithm provide us one of Extremum Points of Marginal Likelihood. PrG g , 0, 0 ˆ ˆ ˆ , ˆ , Extemum Condition Physical Fluctuomatics (Tohoku University) 26 Maximum Likelihood and EM algorithm Physical Fluctuomatics (Tohoku University) 27 Bayesian Image Analysis by Exact Solution of Gaussian Graphical Model f i , gi , Posterior Probability 1 Pr{F f | G g, , } exp 2 2 f iV gi 2 i 1 2 f i f j 2 {i , j}E Average of the posterior probability can be calculated by using the multidimensional Gauss integral Formula fˆ z Pr{F z | G g, , } dz I I C 2 |V|x|V| matrix g V:Set of all the pixels E:Set of all the nearest-neghbour pairs of pixels 4 i C j 1 0 i j {i, j} E otherwise Multi-Dimensional Gaussian Integral Formula Physical Fluctuomatics (Tohoku University) 28 Bayesian Image Analysis by Exact Solution of Gaussian Graphical Model Iteration Procedure in Gaussian Graphical Model 1 t 12 C 1 C T t Tr g g 2 2 |V | | V | I t 1 t 1 C I t 1 t 1 C g 1 1 t 12 I 1 t 12 t 14 C 2 t Tr g gT |V | I t 1 t 12 C | V | I t 1 t 12 C 2 m (t ) I I (t ) (t ) 2 C g f̂ fˆi (t ) arg min zi mi (t ) 2 zi t 0.0008 0.001 0.0006 0.0004 0.0002 g 0 0 20 40 60 100t 80 Physical Fluctuomatics (Tohoku University) f̂ 29 Image Restorations by Exact Solution and Loopy Belief Propagation of Gaussian Graphical Model t 1, t 1 arg max Q , t , t , g . , Exact ˆ Exact 37.624 ˆ Exact 0.000713 0.001 0.0008 0.0006 fˆ hˆ ,ˆ , g 0.0004 0.0002 0 0 20 40 60 80 ˆ LBP 36.335 ˆ LBP 0.000600 Physical Fluctuomatics (Tohoku University) 100 Loopy Belief Propagation 30 Image Restorations by Gaussian Graphical Model Original Image Degraded Image Belief Propagation MSE: 1512 Lowpass Filter MSE: 411 MSE:325 Wiener Filter Median Filter MSE: 545 MSE: 447 Physical Fluctuomatics (Tohoku University) Exact MSE:315 MSE 1 fi fˆi | V | iV 31 2 Image Restoration by Gaussian Graphical Model Original Image Degraded Image Belief Propagation MSE: 1529 MSE: 260 Lowpass Filter Wiener Filter Median Filter MSE: 224 MSE: 372 MSE: 244 Physical Fluctuomatics (Tohoku University) Exact MSE236 32 Image Restoration by Discrete Gaussian Graphical Model Original Image Q=4 (t) ˆ LBP 1.05224 ˆ LBP 1.20519 Degraded Image =1 MSE:0.98893 SNR:1.03496 (dB) Belief Propagation MSE: 0.36011 SNR: 5.42228 (dB) (t) Physical Fluctuomatics (Tohoku University) 33 Image Restoration by Discrete Gaussian Graphical Model Original Image Q=4 (t) ˆ LBP 1.02044 ˆ LBP 1.20294 Degraded Image =1 MSE: 0.98893 SNR: 1.07221 (dB) Belief Propagation MSE: 0.28796 SNR: 6.43047 (dB) (t) Physical Fluctuomatics (Tohoku University) 34 Image Restoration by Discrete Gaussian Graphical Model Original Image Q=8 (t) ˆ LBP 0.96380 ˆ LBP 0.66033 Degraded Image =1 MSE:0.98893 SNR:1.89127 (dB) Belief Propagation (t) MSE: 0.37697 SNR: 6.07987 (dB) Physical Fluctuomatics (Tohoku University) 35 Image Restoration by Discrete Gaussian Graphical Model Original Image Q=8 (t) Degraded Image ˆ LBP 0.85195 ˆ LBP 0.62324 =1 MSE:0.98893 SNR:0.93517 (dB) Belief Propagation (t) MSE: 0.32060 SNR: 5.82715 (dB) Physical Fluctuomatics (Tohoku University) 36 Contents 1. 2. 3. 4. Probabilistic Image Processing Loopy Belief Propagation Statistical Learning Algorithm Summary Physical Fluctuomatics (Tohoku University) 37 Summary Image Processing Bayesian Network for Image Processing Design of Belief Propagation Algorithm for Image Processing Physical Fluctuomatics (Tohoku University) 38 Practice 10-1 For random fields F=(F1,F2,…,F|V|)T and G=(G1,G2,…,G|V|)T and state vectors f=(f1,f2,…,f|V|)T and g=(g1,g2,…,g|V|)T, we consider the following posterior probability distribution: PrF f G g f , f 1 Z Posterior {i , j}E {i , j } i j Here ZPosterior is a normalization constant and E is the set of all the nearest-neighbour pairs of nodes. Prove that PrF f G g PrFi f i F1 f1 , , Fi 1 f i 1 , Fi 1 f i 1 , , FL f L , G g PrF z G g and PrF f G g {i, j} fi , f j zi ji PrF z G g z , f {i , j } zi zi i j ji where ∂i denotes the set of all the nearest neighbour pixels of the pixel i. Physical Fluctuomatics (Tohoku University) 39 Practice 10-2 Make a program that generate a degraded image g=(g1,g2,…,g|V|) from a given image f =(f1,f2,…,f|V|) in which each state variable fi takes integers between 0 and q1 by according to the following conditional probability distribution of the additive white Gaussian noise: PrG g F f iV 1 2 exp 2 f i gi 2 2 2 1 Give some numerical experiments for =20 and 40. Original Image f Gaussian Noise n Degraded Image g Histogram of Gaussian Random Numbers Physical Fluctuomatics (Tohoku University) 40 Practice 10-3 Make a program for estimating q-valued original images f =(f1,f2,…,f|V|) from a given degraded image g =(g1,g2,…,g|V|) by using a belief propagation algorithm for the following posterior probability distribution for q valued images: PrF f G g 1 f , f Z Posterior ijB ij i j fi {0,1,2,, q 1} 1 1 1 2 2 2 ij f i , f j exp f i g i f j g j f i f j 8 2 8 Z Posterior q 1 q 1 q 1 1 1 1 2 2 2 exp z g z g z z i i j j i j 8 8 2 z1 0 z 2 0 z|V | 0 Give some numerical experiments. K. Tanaka: Introduction of Image Processing by Probabilistic Models, Morikita Publishing Co., Ltd., 2006 (in Japanese) , Chapter 8 . M. Yasuda, S. Kataoka and K. Tanaka: Computer Vision and Image Processing 3 (Edited by Y. Yagi and H. Saito): Chapter 6. Stochastic Image Processing, pp.137-179, Advanced Communication Media CO., Ltd., December 2010 (in Japanese). Physical Fluctuomatics (Tohoku University) 41 Practice 10-4 Make a program for estimating original images f =(f1,f2,…,f|V|) from a given degraded image g =(g1,g2,…,g|V|) by using a belief propagation algorithm for the following posterior probability distribution based on the Gaussian graphical model: PrF f G g 1 f , f Z Posterior {i , j}E {i , j } i j fi (,) 1 1 1 2 2 2 {i , j} f i , f j exp f i g i f j g j f i f j 8 2 8 1 1 1 2 2 2 exp z g z g z z 8 i i 8 j j 2 i j dz1dz2 dz|V | Z Posterior Give some numerical experiments. Kazuyuki Tanaka: Introduction of Image Processing by Probabilistic Models, Morikita Publishing Co., Ltd., 2006 (in Japanese) , Chapter 8 and Appendix G. Physical Fluctuomatics (Tohoku University) 42
© Copyright 2026 Paperzz