LECTURE 6: INTRODUCTION TO HEAT EXCHANGER NETWORK SYNTHESIS 1 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Schedule – Introduction to HEN Synthesis • Unit 1. Introduction: Capital vs. Energy – What is an optimal HEN design – A Simple Example (Class Exercise 1) – Setting Energy Targets • Unit 2. The Pinch and MER Design – The Heat Recovery Pinch – HEN Representation – Class Exercise 2 • Unit 3. The Problem Table – Class Exercises 3 and 4 2 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Schedule – Advanced HEN Synthesis • Unit 4. Loops and Splits – – – – Minimum Number of Units by Loop Breaking Class Exercise 5 Stream Split Designs Class Exercise 6 • Unit 5. Threshold Problems – Class Exercise 7 3 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Schedule – Heat and Power Integration • Unit 6. Data Extraction – Class Exercise 8 • Unit 7. Heat Integration in Design – – – – 4 Grand Composite Curve Heat-integrated Distillation Heat Engines Heat Pumps DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Part One: Objectives • The first part of this three-part Unit on HEN synthesis serves as an introduction to the subject, and covers: – The “pinch” – The design of HEN to meet Maximum Energy Recovery (MER) targets – The use of the Problem Table to systematically compute MER targets • Instructional Objectives: Given data on hot and cold streams, you should be able to: – Compute the pinch temperatures – Compute MER targets – Design a simple HEN to meet the MER targets 5 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 UNIT 1: Introduction - Capital vs. Energy • The design of Heat Exchanger Networks deals with the following problem: • Given: – NH hot streams, with given heat capacity flowrate, each having to be cooled from supply temperature THS to targets THT. – NC cold streams, with given heat capacity flowrate, each having to be heated from supply temperature TCS to targets TCT. • Design: An optimum network of heat exchangers, connecting between the hot and cold streams and between the streams and cold/hot utilities (furnace, hot-oil, steam, cooling water or refrigerant, depending on the required duty temperature). • What is optimal? Implies a trade-off between CAPITAL COSTS (Cost of equipment) and ENERGY COSTS (Cost of utilities). 6 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Example Tout Tout Tout H H H in T Tin Tin Tin Tin Steam Cooling Water out C T C Tout C Tout Tin Tout Network for minimal equipment cost ? Tout Tout Cooling Water out T Tin Network for minimal energy cost ? Tin Tout Tin Tout Tin 7 Steam Tin DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Tin Intro HEN Synthesis - 6 Numerical Example 150o 150o 100 150o CP = 1.0 300o 300o 0 50 CP = 1.0 50 0 CP = 1.0 Cooling Water (90-110oF) 100 100 o CP = 1.0 300 CP = 1.0 Steam (400oF) 50 100 200o 100 200o 100 200o Design A: (AREA) = 20.4 [ A = Q/UTlm ] 150o 0 CP = 1.0 CP = 1.0 200o 100 300o 200o 100 300o 100 500 500 CP = 1.0 8 150o CP = 1.0 o CP = 1.0 300 Design B: (AREA) = 13.3 150o CP = 1.0 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin 200o 500 CP = 1.0 Intro HEN Synthesis - 6 Some Definitions T TT TS TT H CP T TS H 9 H = Stream supply temperature (oC) = Stream target temperature (oC) = Stream enthalpy (MW) = m Cp (MW/ oC) = Heat capacity flowrate (MW/ oC) = Stream flowrate specific heat capacity DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Tmin - Example Tmin = Lowest permissible temperature difference Which of the two counter-current heat exchangers illustrated below violates T 20 oF (i.e. Tmin = 20 oF) ? 20o 100 30o 80o 60o o 50o A 10o 100 70o 60o o 40o 20o B Clearly, exchanger A violates the Tmin constraint. 10 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Definitions (Cont’d) Exchanger Duty. Data: Hot stream CP = 0.3 MW/ oC Cold stream CP = 0.4 MW/ oC T1 = 70o OK 60o 100o Check: T1 = 40 + (100 - 60)(0.3/0.4) = 70oC 40o OK Q = 0.4(70 - 40) = 0.3(100 - 60) = 12 MW Heat Transfer Area (A): A = Q/(UTlm) Data: Overall heat transfer coefficient, U=1.7 kW/m2 oC (Alternative formulation in terms of film coefficients) Tlm = (30 - 20)/loge(30/20) = 24.66 So, A = Q/(UTlm) = 12000/(1.724.66) = 286.2 m2 11 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Class Exercise 1 Tmin = 10 oC H=100 Cond 180o o 60 80o R2 C1 H=160 Reb 100o 130 40o TT (oC) H1 H2 C1 C2 180 130 60 30 80 40 100 120 CP H o (kW) (kW/ C) 100 1.0 180 2.0 160 4.0 162 1.8 Utilities. Steam@150 oC, CW@25oC o H=180 R1 Stream TS (oC) 120o H=162 Design a network of steam heaters, water coolers and exchangers for the o 30 process streams. Where possible, use exchangers in preference to utilities. . 12 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Setting Energy Targets Cond 80 60 180o o Summary of proposed design: 100 o R2 C1 60 H 130 Reb o CW Units 60 kW 18 kW 4 R1 100o 162 C 18 Steam Are 60 kW of Steam Necessary? 120o 30o 40o 13 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 The Temperature-Enthalpy Diagram T T 130oC 200oC 40oC 100oC H=180 One hot stream 14 H=300 H H H=100 Two hot streams DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 The Temperature-Enthalpy Diagram C CW Tmin = 20 10 Steam Steam T H 120oC 110oC 100oC CW QCmin = 30 50 H 50 QHmin = 70 Correlation between Tmin, QHmin and QCmin More in, More out! QHmin + x QCmin + x 15 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 The Composite Curve Hot Composite Curve H interval o 180 C H=100 Cond o 180 60o 80o R2 C1 CP=1.0 50 130oC 150 o 80 C CP=2.0 o 40 C 80 H=160 Reb 100o 120o 130 C H=180 16 180oC o 130o 40o R1 H=162 CP=1.0 50 CP=3.0 150 o 80 C 30o o 40 C CP=2.0 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin 80 Intro HEN Synthesis - 6 The Composite Curve (Cont’d) Cold Composite Curve H interval o 120 C H=100 Cond 180o o 60 CP=1.8 100oC 232 80o 60oC R2 C1 CP=4.0 30oC H=160 Reb 100o 130o 40 17 o 120oC R1 CP=1.8 o 100 C 120o H=180 36 H=162 CP=5.8 60oC 30 o 30oC CP=1.8 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin 54 36 232 54 Intro HEN Synthesis - 6 The Composite Curve (Cont’d) T QHmin = 54 48 130oC Result: QCmin and QHmin for desired Tmin MER Target 100oC o 80 C o T = 20 min Tmin = 10oC C 60oC QQ Cmin Cmin==6 12 H Here, hot pinch is at 70 oC, cold pinch is at 60 oC QHmin = 48 kW and QCmin = 6 kW Method: manipulate hot and cold composite curves until required Tmin is satisfied. This defines hot and cold pinch temperatures. 18 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 UNIT 2: The Pinch QHmin T Heat Source QCmin QHmin +x Tmin “PINCH” x Heat Sink +x H H The “pinch” separates the HEN problem into two parts: – Heat sink - above the pinch, where at least QHmin utility must be used – Heat source - below the pinch, where at least QCmin utility must be used. 19 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Significance of the Pinch Do not transfer heat across pinch Do not use cold utilities above the pinch Do not use hot utilities below the pinch Cond 100 Summary of modified design: R2 C1 Steam CW Units ~49 kW ~7 kW 5 R1 Reb H 49 111 62 C 7 20 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 HEN Representation 100 Cond 60oC 180oC 80oC H1 R2 C1 H2 130oC 100oC o 100 C Reb o 130 C R1 120oC H 49 111 120oC 40 C 21 C 7 30oC 40oC C 7 60oC H 49 111 100 62 o 80oC 180oC 30oC C1 C2 62 Where is the pinch ? DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 HEN Representation with the Pinch Thot H1 H2 H Thot Thot Tcold Tcold Tcold Tcold C C1 C2 The pinch divides the HEN into two parts: the left hand side (above the pinch) the right hand side (below the pinch) At the pinch, ALL hot streams are hotter than ALL cold streams by Tmin. 22 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Class Exercise 2 • • • For this network, draw the grid representation Given pinch temperatures at 480 oC /460 oC, and MER targets: QHmin= 40, QCmin= 106, redraw the network separating the sections above and below the pinch. Why is QH > QHmin ? H1 320o C1 240 o 140 o C2 100 170 S 50 500o 320o CP = 1.0 CP = 1.5 116 CW 290o 200o CP = 1.8 CP = 2.0 H1 480oC 500oC 320oC 23 480o 210 320oC H2 H2 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin CP 200oC 1.8 290oC 2.0 240oC 140oC C1 1.0 C2 1.5 Intro HEN Synthesis - 6 Class Exercise 2 - Solution H2 H1 320o C1 240 o 140 o C2 480o 210 100 S 50 170 500o 320o CP = 1.0 CP = 1.5 116 CW 290o 200o CP = 1.8 CP = 2.0 CP 320oC H1 H2 500oC H 40 480oC 290oC 460oC 240oC H 10 210 320oC 24 o C 200 C 1.8 116 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin 140oC 170 2.0 C1 1.0 C2 1.5 100 Intro HEN Synthesis - 6 Class Exercise 2 - Solution (Cont’d) This can be fixed by reducing the cooling duty by 10 units, and eliminate the excess 10 units of heating below the pinch. CP H1 H2 320oC C 116 106 480oC 500oC 320oC H H 40 10 1.8 290oC 2.0 240oC 460o 450 210 220 140oC 170 160 25 200oC C1 1.0 C2 1.5 100 110 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Design for Maximum Energy Recovery(MER) Example CP 170oC 60oC 3.0 150oC 30oC 1.5 H1 H2 135oC 140oC 20oC 80oC C1 2.0 C2 4.0 Step 1: MER Targeting. Pinch at 90o (Hot) and 80o (Cold) Energy Targets: Total Hot Utilities: 20 kW Total Cold Utilities: 60 kW 26 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Design for MER (Cont’d) Step 2: Divide the problem at the pinch 170oC 90oC 90oC 60oC 3.0 150oC 90oC 90oC 30oC 1.5 80oC 80oC 20oC H1 H2 135oC 140oC 27 CP 80oC C2 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin C1 2.0 4.0 Intro HEN Synthesis - 6 Design for MER (Cont’d) Step 3: Design hot-end, starting at the pinch: Pair up exchangers according to CP-constraints. Immediately above the pinch, pair up streams such that: CPHOT CPCOLD (This ensures that TH TC Tmin) CP H1 3.0 H2 1.5 C1 2.0 C2 4.0 Tmin Meets Tmin Violates Tminconstraint constraint 28 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Design for MER (Cont’d) Step 3 (Cont’d): Complete hot-end design, by ticking-off streams. CP H1 QHmin = 20 kW H2 170o 150o 90o 3.0 90o 135o 140o H 20 80o 90 80o 1.5 C1 2.0 C2 4.0 240 Add heating utilities as needed (MER target) 29 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Design for MER (Cont’d) Step 4: Design cold-end, starting at the pinch: Pair up exchangers according to CP-constraints. Immediately above the pinch, pair up streams such that: CPHOT CPCOLD (This ensures that TH TC Tmin) CP H1 3.0 H2 1.5 C1 Tmin 2.0 Violates Meets TT constraint constraint minmin 30 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Design for MER (Cont’d) Step 4 (Cont’d): Complete cold-end design, by ticking-off streams. CP H1 H2 90o 60o 90o C 60 80o 35o 90 30o 20o C1 3.0 1.5 QCmin = 60 kW 2.0 30 Add cooling utilities as needed (MER target) 31 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Design for MER (Cont’d) Completed Design: CP H1 H2 170o 90o 150o 135o H 140o 60o 90o 20 80o 125o 90 30o 70o C 60 20o 35o 90 30 80o 3.0 1.5 C1 2.0 C2 4.0 240 Note that this design meets the MER targets: QHmin = 20 kW and QCmin = 60 kW 32 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Design for MER (Cont’d) Design for MER - Summary: MER Targeting. Define pinch temperatures, Qhmin and QCmin Divide problem at the pinch Design hot-end, starting at the pinch: Pair up exchangers according to CP-constraints. Immediately above the pinch, pair up streams such that: CPHOT CPCOLD. “Tick off” streams in order to minimize costs. Add heating utilities as needed (up to QHmin). Do not use cold utilities above the pinch. Design cold-end, starting at the pinch: Pair up exchangers according to CP-constraints. Immediately below the pinch, pair up streams such that: CPHOT CPCOLD. “Tick off” streams in order to minimize costs. Add heating utilities as needed (up to QCmin). Do not use hot utilities below the pinch. Done! 33 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Class Exercise 3 Stream TS (oC) TT (oC) H1 H2 C1 C2 180 130 60 30 80 40 100 120 CP H o (kW/ C) (kW) 100 1.0 180 2.0 160 4.0 162 1.8 Tmin = 10 oC. Utilities: Steam@150 oC, CW@25oC Design a network of steam heaters, water coolers and exchangers for the process streams. Where possible, use exchangers in preference to utilities. CP H1 QHmin=48 H2 o 180oC 130oC 100 C 120oC 40 34 80oC 80oC 70oC 43oC 60 C H H 8 120 60oC 100 40 C C o 6 o 1.0 54 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin 2.0 o 60 C 30oC C1 4.0 C2 1.8 QCmin=6 Intro HEN Synthesis - 6 UNIT 3: The Problem Table Example: H Stream TS (oF) TT (oF) (kBtu/h) (kBtu/h oF) H1 H2 C1 C2 260 250 120 180 160 130 235 240 3000 1800 2300 2400 30 15 20 40 CP Tmin = 10 oF. Step 1: Temperature Intervals (subtract Tmin from hot temperatures) Temperature intervals: 250F 240F 235F 180F 150F 120F 35 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 UNIT 3: The Problem Table (Cont’d) Step 2: Interval heat balances For each interval, compute: Hi = (Ti Ti+1)(CPHot CPCold ) 36 Interval Ti Ti Ti+1 CPHot CPCold Hi 1 2 3 4 5 6 250 240 235 180 150 120 10 5 55 30 30 30 5 15 25 5 300 25 825 750 150 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 UNIT 3: The Problem Table (Cont’d) Step 3: Form enthalpy cascade. QH Assume QH = 0 Eliminate infeasible (negative) heat transfer QH = 500 T1 = 250oF H = 300 Q1 300 800 325 825 -500 0 250 750 100 600 o T2 = 240 F H = 25 Q2 o T3 = 235 F H = -825 Q3 o T4 = 180 F H = 750 Q4 This defines: Cold pinch temp. = 180 oF QHmin = 500 kBtu/h QCmin = 600 kBtu/h 37 o T5 = 150 F H = -150 QC T6 = 120oF DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Class Exercise 4 - Now try again! Stream TS (oC) TT (oC) H1 H2 C1 C2 180 130 60 30 80 40 100 120 CP H o (kW/ C) (kW) 100 1.0 180 2.0 160 4.0 162 1.8 Tmin = 10 oC. Calculate the Problem Table. Predict QHmin and QCmin. Draw the Enthalpy Cascade. Step 1: Temperature Intervals (subtract Tmin from hot temperatures) Temperature intervals: 38 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Class Exercise 4 (Cont’d) Step 2: Interval heat balances For each interval, compute: Hi = (Ti Ti+1)(CPHot CPCold ) Interval Ti Ti Ti+1 CPHot CPCold Hi 1 2 3 4 5 6 39 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Class Exercise 4 (Cont’d) Step 3: Form enthalpy T cascade. QH Assume QH = 0 Eliminate infeasible (negative) heat transfer QH = 1= H = Q1 T2 = H = Q2 T3 = H = Q3 T4 = H = This defines: Cold pinch temp. = QHmin = kW QCmin = kW 40 Q4 T5 = oC H = QC QC T6 = DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6 Introduction to HEN Synthesis - Summary • Unit 1. Introduction: Capital vs. Energy – What is an optimal HEN design – Setting Energy Targets • Unit 2. The Pinch and MER Design – The Heat Recovery Pinch – HEN Representation – MER Design: (a) MER Target; (b) Hot- and cold-side designs • Unit 3. The Problem Table – for MER Targeting Next week: Advanced HEN Synthesis 41 DESIGN AND ANALYSIS II - (c) Daniel R. Lewin Intro HEN Synthesis - 6
© Copyright 2026 Paperzz