DOC/LP/O1/28.02.02 LESSON PLAN Sub Code & Name : MA2161 - MATHEMATICS – II Year : First Year Semester: II UNIT - I LP- FY-MA2161 LP Rev. No: 00 Date:01.02.2012 Page: 1 of 6 Unit Syllabus: UNIT I: ORDINARY DIFFERENTIAL EQUATIONS (ODE) Higher order linear differential equations with constant coefficients – Method of variation of parameters – Cauchy’s and Legendre’s linear equations – Simultaneous first order linear equations with constant coefficients. . OBJECTIVE: To solve differential equations of certain types, including systems of differential equations that they might encounter in the same or higher semesters. Session No. Topics to be covered Time (min.) Ref Teaching Method 1 Solution of second and higher order linear ODE with constant coefficients Particular integrals of exponential and trigonometric functions Particular integrals of algebraic expression Tutorial class Particular integrals of the combinations of exponential and trigonometric expressions Particular integrals of the combinations of exponential and algebraic expressions Tutorial class Method of Variation of parameters Cauchy’s homogeneous linear differential equation Extra problems Legendre’s linear differential equation Tutorial class Simultaneous first order linear equations with constant coefficients Extra problems CAT I 50 1,2,3,5 BB 50 1,2,3,5 BB 50 50 50 1,2,3,5 1,2,3,5 1,2,3,5 BB BB BB 50 1,2,3,5 BB 50 50 50 50 50 50 50 1,2,3,5 1,2,3,5 1,2,3,5 1,2,3,5 1,2,3,5 1,2,3,5 1,2,3,5 BB BB BB BB BB BB BB 50 40 1,2,3,5 BB 2 3 4 5 6 7 8 9 10 11 12 13 14 15 DOC/LP/O1/28.02.02 LESSON PLAN Sub Code & Name : MA2161 - MATHEMATICS – II Year : First Year Semester: II UNIT - II LP- FY-MA2161 LP Rev. No: 00 Date: 01.02.2012 Page : 2 of 6 Unit syllabus: UNIT II: VECTOR CALCULUS. Gradient Divergence and Curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green’s theorem in a plane, Gauss divergence theorem and stokes’ theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelpipeds. OBJECTIVE: To know the basics of vector calculus comprising of gradient, divergence and curl and line, surface and volume integrals along with the classical theorems involving them Session No. Topics to be covered Time (min.) Ref Teaching Method 16 Introduction to Gradient ,Divergence ,Curl 50 1,2,3,6 BB 17 18 19 20 21 22 23 24 Problems in Gradient ,Divergence, Curl Directional derivative Tutorial class Irrotational and solenoidal vector fields 50 50 50 50 50 50 50 50 1,2,3,6 1,2,3,6 1,2,3,6 1,2,3,6 1,2,3,6 1,2,3,6 1,2,3,6 1,2,3,6 BB BB BB BB BB BB BB BB 25 Simple applications involving parallelpipeds. Problems on Green’s theorem 50 1,2,3,6 BB 26 Problems on Gauss divergence Theorem 50 1,2,3,6 BB 27 28 29 Problems on Stoke’s Theorem Verifications and Extra Problems Tutorial class 50 50 50 1,2,3,6 1,2,3,6 1,2,3,6 BB BB BB 30 CAT II 40 Vector integration Extra Problems Tutorial class Green’s Theorem, Gauss divergence Theorem and Stoke’s Theorem (excluding proof) cubes and rectangular DOC/LP/O1/28.02.02 LESSON PLAN Sub Code & Name : MA2161 - MATHEMATICS – II Year : First Year Semester: II UNIT - III LP- FY-MA2161 LP Rev. No: 00 Date: 01.02.2012 Page: 3 of 6 Unit Syllabus: UNIT III: ANALYTIC FUNCTIONS Functions of a complex variable – Analytic functions – Necessary conditions, Cauchy – Riemann equation and Sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping : w= z+c, cz, 1/z, and bilinear transformation. OBJECTIVE: To understand analytic functions and their interesting properties. To know conformal mappings with a few standard examples that have direct application Session No Topics to be covered Time (min.) Ref Teaching Method 31 Introduction to functions of a complex variable 50 1,2,5,6 BB 32 50 1,2,5,6 BB 50 1,2,5,6 BB 50 50 50 50 50 50 1,2,5,6 1,2,5,6 1,2,5,6 1,2,5,6 1,2,5,6 1,2,5,6 BB BB BB BB BB BB 40 41 Definition – Analytic Function, Derivatives of Analytic Function Necessary and Sufficient conditions for a function to be analytic Problem using Cauchy Riemann Equations Tutorial class Properties of Analytic Function Harmonic Function and Harmonic conjugate Extra problems Construction of Analytic Functions by using Milne’s Thomson Method Tutorial class Conformal Mapping 50 50 1,2,5,6 1,2,5,6 BB BB 42 43 44 45 Transformation: z + a, az ,1/z Bilinear transformation Tutorial class CAT- III 50 50 50 40 1,2,5,6 1,2,5,6 1,2,5,6 BB BB BB 33 34 35 36 37 38 39 DOC/LP/O1/28.02.02 LESSON PLAN Sub Code & Name : MA2161 - MATHEMATICS – II Year : First Year Semester: II UNIT - IV LP- FY-MA2161 LP Rev. No: 00 Date: 01.02.2012 Page: 4 of 6 Unit Syllabus: UNIT IV: COMPLEX INTEGRATION Complex integration – Statement and applications of Cauchy’s integral theorem and Cauchy’s integral formula – Taylor and Laurent expansions – Singular points – Residues – Residue theorem – Application of residue theorem to evaluate real integrals – Unit circle and semicircular contour(excluding poles on boundaries). OBJECTIVE: To grasp the basics of complex integration and the concept of contour integration which is important for evaluation of certain integrals encountered in practice. Session no. Topics to be covered Time (min) Ref Teaching Method 46 Complex Integration 50 1,2,3,5 BB 47 48 49 50 51 52 53 54 Statement and Applications of Cauchy integral Theorem Tutorial class Taylor Series expansion Laurent series expansion Tutorial class Singularities and Residues Cauchy’s Residue Theorem 50 50 50 50 50 50 50 50 1,2,3,5 1,2,3,5 1,2,3,5 1,2,3,5 1,2,3,5 1,2,3,5 1,2,3,5 1,2,3,5 BB BB BB BB BB BB BB BB 55 56 Tutorial class Contour integration over unit circle 50 50 1,2,3,5 1,2,3,5 BB BB 57 50 1,2,3,5 BB 58 Contour integration over semicircular contours (excluding poles on boundaries) Extra Problems 50 1,2,3,5 BB 59 Tutorial class 50 1,2,3,5 BB 60 CAT IV 40 Cauchy’s integral formula DOC/LP/O1/28.02.02 LESSON PLAN Sub Code & Name : MA2161 - MATHEMATICS – II Year : First Year Semester: II UNIT - V LP- FY-MA2161 LP Rev. No: 00 Date: 01.02.2012 Page: 5 of 6 Unit Syllabus: UNIT V:LAPLACE TRANSFORM Laplace transform – Conditions for existence – Transform of elementary functions – Basic properties – Transform of derivatives and integrals – Transform of unit step function and impulse functions – Transform of periodic functions. Definition of Inverse Laplace transform as contour integral – Convolution theorem (excluding proof) – Initial and Final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques. OBJECTIVE: To have a sound knowledge of Laplace transform and its properties. To solve certain linear differential equations using the Laplace transform technique which have applications in other subjects of the current and higher semesters. Session No. Topics to be covered Time (min.) Ref Teaching Method 61 Definition of laplace transform and conditions for existence 50 1,2,5,6 BB 62 63 64 65 66 67 68 Transform of elementary functions Basic properties Extra problems Transform of derivatives and integrals Tutorial Class Transform of unit step function and unit impulse function Transform of periodic function 50 50 50 50 50 50 50 1,2,5,6 1,2,5,6 1,2,5,6 1,2,5,6 1,2,5,6 1,2,5,6 1,2,5,6 BB BB BB BB BB BB BB 69 Definition of Inverse laplace transform as contour Integral 50 1,2,5,6 BB 70 71 Extra problems using properties of inverse laplace transform Convolution theorem(excluding proof) 50 50 1,2,5,6 1,2,5,6 BB BB 72 73 Initial and Final value theorems 50 50 1,2,5,6 1,2,5,6 BB BB 74 Tutorial class 50 1,2,5,6 BB 75 CAT-V 40 Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques DOC/LP/O1/28.02.02 LESSON PLAN Sub Code & Name : MA2161 - MATHEMATICS – II Year : First Year Semester: II LP- FY-MA2161 LP Rev. No: 00 Date: 01.02.2012 Page: 6 of 6 Course Delivery Plan: 1 Week I II 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I II I II I II I II I II I II I II I II I II I II I II I II I II I II U N I T - 1 U N I T - 2 U N I T - 3 U N I T - 4 U N I T Units Text book: rd 1. Bali N. P and Manish Goyal, “Text book of Engineering Mathematics”, 3 Edition, Laxmi Publications (p) Ltd., (2008). th 2. Grewal. B.S, “Higher Engineering Mathematics”, 40 Edition, Khanna Publications, Delhi, (2007). REFERENCES: 3. Ramana B.V, “Higher Engineering Mathematics”,Tata McGraw Hill Publishing Company, New Delhi, (2007). rd 4. Glyn James, “Advanced Engineering Mathematics”, 3 Edition, Pearson Education, (2007). th 5. Erwin Kreyszig, “Advanced Engineering Mathematics”, 7 Edition, Wiley India, (2007). rd 6. Jain R.K and Iyengar S.R.K, “Advanced Engineering Mathematics”, 3 Edition, Narosa Publishing House Pvt. Ltd., (2007). Prepared by Approved by Name SUBHA. E Dr.R.Muthucumaraswamy Designation Assistant Professor Professor & HOD – AM Date 01.02.2012 01.02.2012 Signature 5
© Copyright 2026 Paperzz