Duration Dependence of Donation Behavior: Explaining Heterogeneity in Donation Incidence and Amount through Community Characteristics Shameek Sinha – IE Business School, IE University Vijay Mahajan and Frenkel ter Hofstede – McCombs School of Business, University of Texas at Austin 1 Non-Profit Charities (NPC): Why do we Marketers even Care? • Total charitable giving of $290.89 billion which is around 2% of GDP ** • 73% of total fundraising are individual donors ** • 3.8% growth in charitable giving and 2.7% growth in individual contributions ** • 1,280,739 NPCs out of which 65% raise more than $10 million or more * • Significant majority of NPCs (89%) use direct response methods for solicitation and 45% of those increased their direct mail fundraising * • However, 41% of NPC’s fail to meet their fundraising goals * * Source: Guidestar Survey for Direct mail Nonprofit Fundraising (2012) ** Source: Giving USA (2011) 2 Background on Empirical Context and Data • Non-profit organization uses direct mail to solicit contributions from past donors (Source: DMEF). • Contributions and solicitations in Texas: Weekly data for 13767 donors. • Time span covering a period of approximately 15 years (unbalanced – average ~ 521 weeks). • Contributions and solicitations by date, amount on each incidence and costs of each solicitation. • History of solicitations and contributions – censored data. • Community characteristics: (Sources: uselectionatlas.org, FBI Crime Statistics, ARDA, TEA) – ZIPCODE-level – Counties-level 3 Donor Heterogeneity: How Communities Differ? El Paso - 79912 Houston - 77024 Mission - 78572 4 78572 : 79912 : 77024 – A Visual Comparison Mission - 78572 Houston - 77024 El Paso - 79912 5 78572 : 79912 : 77024 – A Numerical Comparison Variables Texas Mission (78572) El Paso (79912) Houston (77024) No. of Appeals 19.89 17.5 19.72 22.34 No. of Gifts 3.64 3.86 3.46 3.24 Duration from Appeal to Gift (in weeks) 4.01 3.87 3.76 4.16 Duration from Gift to Gift (in weeks) 43.96 34.99 45.42 61.16 Gift Amount per incidence (in dollars) 33.42 21.17 27.82 57.02 6 Community Characteristics: What Matters? • ZIPCODE-level: – Socio-Demographics: race; household-size; household-type; age; education level; income level; wealth-rating; home-value; homeownership. – Credit-Financials: age of tradelines; balance of tradelines; tradelines with satisfactory ratings; tradelines with derogatory ratings; no. of tradelines delinquent. • County-level: - Political Beliefs: % of republican votes. - Religious Beliefs: % of Mainline Christians; % of Evangelical Christians; % of Catholic Christians; % of Other Christians. - Community Security: % of violent crimes. - Educational Quality: no. of public schools; school rating. 7 Targeting Potential Donors Using Donor Profiles within Communities Amount of contributions Inter-contribution duration Low (≤ 20 weeks) Mean = 10.97 Medium (21-50 weeks) Mean = 34.35 High (≥ 51 weeks) Mean = 89.80 Low Medium High (≤ $15) Mean = $9.80 ($16-$30) Mean = $24.02 (≥ $31) Mean = $77.43 Segment 1 (N = 5465) Segment 2 (N = 4945) Segment 3 (N = 3283) Segment 4 (N = 3640) Segment 5 (N = 4133) Segment 6 (N = 3154) Segment 7 (N = 3435) Segment 8 (N = 4637) Segment 9 (N = 4075) 8 Communities – Why they matter? (ZIPCODE-level) Variables Texas Mission (78572) El Paso (79912) Houston (77024) Race (% of whites) 78.59 39 63 90 Household Size 2.75 3.4 2.7 2.3 Household Type (% of families) 72.53 84 71 65 Age 43.68 52 42 50 Education Level (in years) 13.84 11.7 14.4 16.5 Income Level (in ‘000 dollars) 64.75 31.5 62.3 143.4 Wealth Rating 6.56 2 7 9 Home Value (in ‘000 dollars) 98.04 45.3 97.4 311.5 Home Ownership (in %) 64.65 76 59 66 Age of Tradelines (in months) 74.10 56 68 102 Balance of Tradelines (in dollars) 5122.96 1676 5360 8903 Tradelines – Satisfactory Ratings 11.24 7.4 12.1 13 Tradelines – Derogatory Ratings 0.89 0.97 0.98 0.69 No. of Delinquent Tradelines 1.24 1.24 1.32 0.92 9 Communities – Why they matter? (County-level) Variables Texas Mission (78572) El Paso (79912) Houston (77024) No. of Violent Crimes 4.23 2.17 0.38 2.36 % of Republican Votes 60.32 44.93 43.50 55.14 Mainstream Christians (per ‘000) 84.10 28.18 25.63 81.86 Evangelical Christians (per ‘000) 234.06 73.40 75.28 204.81 Catholic Christians (per ‘000) 198.54 390.10 514.80 181.92 Other Christians (per ‘000) 142.62 69.35 104.96 179.42 No. of Public Schools 475.63 318 264 1083 School Rating (SAT Scores + Dropout Rates) 2.71 2.47 2 2.75 10 Literature: Donor Characteristics Influencing Donation Behavior? • Demographics (Lee and Chang, 2007) e.g. age, gender, education, race, income, marital status, religion, family size etc. • Psychographics (Bussell and Forbes, 2002) e.g. self-esteem, empathy, guilt, social-justice, familiarity with causes, awareness, responsibility, generosity etc. • Past experience with charities ( Schlegelmilch, Love and Diamantopoulos, 1996) e.g. previous experience, no. of times approached etc. • Community Effects (Corcoran et al., 1990; Schultz, 1984; Datcher, 1982, DeMarzo et al., 2005) e.g. demographic composition, financial composition etc. 11 Duration Dependence of Contribution and Solicitation Behavior Duration between two contributions (Budgetary Implications) Contribution1 Solicitation1 Solicitation2 Contribution2 Solicitation3 Solicitation4 Solicitation5 Duration between solicitation and contribution (Wait/ Gather Information) 12 Donation Response Framework Periods 1,2,…, (t-1) Period t Seasonality Solicitation/ No Solicitation for Cause Decision to Contribute for Cause Donation Response: Interval-Censored Proportional Hazard With Complimentary Log-log Link Amount of Contribution for Cause Donation amount: Censored log-Normal Distribution Durations Contribution/ No Contribution for Cause Modeling Incidence and Amount ZIPCODE and County -Level Community Characteristics Donor heterogeneity - Hierarchical Specification 13 Relevant Literature Customer Response Models, Direct Marketing and Customer Management Schmmitlein and Peterson (1994, Mkt. Sc.) Basu, Basu and Batra (1995, JMR) Rossi, McCulloch and Allenby (1996, Mkt. Sc.) Allenby, Leone and Jen (1999, JASA) Manchanda, Ansari and Gupta (1999, Mkt. Sc.) Fader, Hardie and Lee (2005, Mkt. Sc.) Reinartz, Thomas and Kumar (2005, JM) Rust and Verhoef (2005, Mkt. Sc.) Gonul and Ter-Hofstede (2006, Mkt. Sc.) Neslin, Novak, Baker and Hoffman (2009, Mgmt. Sc.) Diepen, Donkers and Francses (2009, JMR) 14 Donation Incidence Model • Donors: i = 1, 2… n • Time Periods: t = 1, 2… T • Model: P(Yit ,Zit ) P(Yit )P( Zit |Yit ) where Yit 1 if donor i makes a contribution in period t = 0 otherwise. and Zit : contribution amount of a donor i at time t. • Likelihood of contribution incidence for donor i – h(ti , X it ) it 1 h(ti , X it ) it Y Y • Proportional hazard function for donor i : P(ti Ti ti t | Ti ti ) h(ti , X it ) lim h0 (ti ) exp( i / X it ) t 0 t 15 Donation Incidence Model ti / • Survival Function: S (ti , X it ) exp h0 (ui ) exp( i X it )dui 0 exp[ exp( i / X it ) H (ti )] • Discrete analog of hazard specification: S / (ti , X it )d (ti ) S (ti 1, X it ) S (ti , X it ) h(ti , X it ) P(Ti ti | Ti ti 1) S (ti , X it ) S (ti 1, X it ) S (ti , X it ) 1 1 exp exp( i / X it ) H (ti 1) H (ti ) S (ti 1, X it ) / log log(1 h ( t , X )) • Re-arranging: i it i X it log( H (ti ) H (ti 1)) • Baseline Hazard: ti log log(1 h0 (ti )) log( H (ti ) H (ti 1)) log h0 (ui )dui it ti 1 / h ( t , X ) 1 exp[ exp( X )] • Hazard function: 16 Donation Incidence Model i iy0 iy1ditc iy2 log(ditc ) i/ X it i1y dits iy2 log(dits ) iy sit with d c : Duration from last contribution at time t it d : Duration from last solicitation at time t sit : Seasonality dummy (months November – January) s it 0y y y 1 i1 y y i 2 2 y y ~ N w , i y y i1 1 y y 2 i2 y y i Heterogeneity specification – iy0 where wi : demographic and financial variables y : vector of parameters for the donor level covariates y : variance-covariance matrix 17 Donation Amount Model • Censored Log-Normal distribution of contribution amount – log N( it , z2 ) if Yit 1 [ Z it |Yit , it , ] : I( Z 0 ) otherwise it 2 z • Specification for mean – it iz0 iz1ditc iz2 log(ditc ) iz1dits iz2 log(dits ) iz sit • Heterogeneity specification 0z iz0 z z 1 i1 z – z i 2 ~ N 2 z w , z i z z i1 1 z z 2 i2 z z i z : vector of parameters for the donor level covariates z : variance-covariance matrix 18 Bayesian MCMC Estimation • Priors on donor-specific parameters – [ iy0 , iy1 , iy2 , i1y , iy2 , iy ]/ ~ N ([( 0y , 1y , 2y , 1 y , 2y , y , y )]/ , y ) [ iz0 , iz1 , iz2 , iz1 , iz2 , iz ]/ ~ N ([( 0z , 1z , 2z , 1z , 2z , z , z )]/ , z ) • Priors on population-level parameters – ( 0y , 1y , 2y , 1y , 2y , y , y ) / ~ N (( 00y , 01y , 02y , 01y , 02y , 0y , 0 y ) / , 0 ); y ~ Wishart (0y , 0y ) ( 0z , 1z , 2z , 1z , 2z , z , z ) / ~ N (( 00z , 01z , 02z , 01z , 02z , 0z , 0 z ) / , 0 ); • z ~ Wishart (0z , 0z ) y i0 , iy1 , iy2 , i1y , iy2 , iy : Non-conjugate Incidence Model Random-walk Metropolis Hastings • iz0 , iz1 , iz2 , iz1 , iz2 , iz : Conjugate Amount Model Gibbs Sampler • 45000 draws; 22500 burn-in samples; thinning parameter:15 19 Donation Incidence and Amount Model Results Incidence Amount Intercept -5.655* 3.0185* Duration – Gift to Gift 0.055* 0.0004 Log (Duration – Gift to Gift) -0.757* 0.0080* Duration – Appeal to Gift -1.549* 0.0055* Log (Duration – Appeal to Gift) 6.890* -0.0140 Seasonality Effect 5.678* 20 Duration Dependence of Donation Incidence 21 Duration Dependence of Donation Amount 22 Community Effects on Donation Incidence Community Characteristics (ZIPCODE-level) Intercept (Duration - Gift to Gift) Log(Dur. Gift to Gift) (DurationAppeal to Gift) Intercept -5.6548023 0.0545959 -0.7573065 -1.5492686 6.8902848 5.6785942 Race (% of whites) 0.0040277 0.0000735 -0.0000648 -0.0010115 0.0017850 -0.0040177 Household Size -0.0285814 0.0004487 -0.0151614 -0.0197261 0.0614435 0.0127006 Household Type (% of families) 0.0040426 0.0000173 -0.0000458 0.0012528 -0.0077002 -0.0023192 Age 0.0012143 0.0002699 0.0000053 -0.0113843 0.0317153 0.0015703 Education Level (in years) -0.0176359 0.0003271 0.0109337 -0.0242744 0.1353052 0.0696306 Income Level (in ‘000 dollars) -0.0018932 0.0001048 -0.0040509 0.0028751 -0.0106646 -0.0036782 Wealth Rating -0.0578916 -0.0007786 0.0131131 -0.0091663 0.0816178 0.1028209 Home Value (in ‘000 dollars) 0.0002859 0.0000403 -0.0007553 0.0001005 -0.0007951 -0.0007979 Home Ownership (in %) 0.0003312 -0.0000568 0.0012439 0.0011314 -0.0012518 -0.0008817 Age of Tradelines (in months) -0.0059405 -0.0001890 0.0009466 0.0013966 -0.0024169 0.0060231 Balance of Tradelines (in dollars) 0.0000088 -0.0000012 0.0000218 -0.0000066 0.0000261 0.0000005 Tradelines – Satisfactory Ratings -0.0022249 0.0000763 -0.0003999 -0.0195011 0.0461571 -0.0021922 Tradelines – Derogatory Ratings -0.4444138 0.0276862 -0.4243750 -0.2173995 1.1924347 0.5032717 No. of Delinquent Tradelines 0.7691765 0.2657168 -1.3134540 -0.8715912 -0.0221876 0.4268442 Log(Dur. Appeal to Gift) Seasonal Effect 23 Community Effects on Donation Incidence Community Characteristics (County-level) Intercept (Duration– Gift to Gift) Log(Dur. Gift to Gift) (Duration - Appeal to Gift) Log(Dur. Appeal to Gift) Seasonal Effect No. of Violent Crimes 0.0009001 0.0001300 -0.0020267 0.0007786 -0.0046003 -0.0040102 % of Republican Votes 0.0004652 -0.0002205 0.0035310 -0.0008852 0.0035071 0.0041955 Mainstream Christians (per ‘000) -0.0006112 0.0000133 -0.0003035 0.0008095 -0.0017561 0.0002322 Evangelical Christians (per ‘000) 0.0000297 0.0000052 -0.0001057 -0.0001046 -0.0001125 -0.0005236 Catholic Christians (per ‘000) -0.0001643 -0.0000132 0.0002097 -0.0000126 0.0003505 0.0003472 Other Christians (per ‘000) 0.0008925 -0.0000290 0.0007337 0.0000069 0.0000427 -0.0000008 No. of Public Schools -0.0001629 -0.0000029 0.0000165 -0.0000609 0.0003154 0.0002604 School Rating (SAT Scores + Dropout Rates) -0.0383286 0.0027923 -0.0500683 0.0108848 0.0014005 0.0492250 24 Community Effects on Donation Amount Community Characteristics (ZIPCODE-level) Intercept (DurationGift to Gift) Log(Dur. Gift to Gift) (DurationAppeal to Gift) Log(Dur. Appeal to Gift) Intercept 3.0185213 0.0004018 0.0080055 0.0055162 -0.0139680 Race (% of whites) 0.0001357 0.0000227 -0.0002569 -0.0002354 0.0010621 Household Size 0.0675114 -0.0000333 0.0044736 -0.0105192 0.0203713 Household Type (% of families) -0.0089478 0.0000199 -0.0009420 0.0002197 -0.0005320 Age -0.0009603 0.0000100 0.0002324 -0.0003136 0.0009489 Education Level (in years) 0.0038578 -0.0002022 0.0034078 0.0028845 -0.0023037 Income Level (in ‘000 dollars) -0.0014282 0.0000273 -0.0004760 -0.0002861 0.0018774 Wealth Rating 0.0349815 -0.0001378 0.0042747 0.0009441 -0.0148661 Home Value (in ‘000 dollars) 0.0012085 -0.0000030 0.0000133 0.0000318 -0.0002779 Home Ownership (in %) 0.0028647 -0.0000172 0.0002348 0.0002095 -0.0006810 Age of Tradelines (in months) 0.0019144 0.0000216 -0.0006265 -0.0004666 0.0003478 Balance of Tradelines (in dollars) 0.0000326 0.0000001 -0.0000001 -0.0000027 0.0000023 Tradelines – Satisfactory Ratings -0.0236607 -0.0000965 0.0038958 0.0046234 -0.0074093 Tradelines – Derogatory Ratings 0.3052949 -0.0006096 0.0216013 -0.1060769 0.1819225 No. of Delinquent Tradelines -0.4131844 0.0030482 -0.0750442 0.0330594 -0.0332528 25 Community Effects on Donation Amount Community Characteristics (County-level) Intercept No. of Violent Crimes -0.0006731 % of Republican Votes (Duration– Gift to Gift) Log(Dur. Gift to Gift) (DurationAppeal to Gift) Log(Dur. Appeal to Gift) 0.0000096 -0.0003637 -0.0000781 0.0004469 0.0034120 -0.0000196 0.0005379 -0.0005516 0.0014927 Mainstream Christians (per ‘000) -0.0005073 0.0000104 -0.0001715 -0.0000403 0.0000553 Evangelical Christians (per ‘000) -0.0002389 -0.0000002 -0.0000088 0.0000903 -0.0003893 Catholic Christians (per ‘000) -0.0002900 0.0000028 -0.0000373 0.0000068 -0.0000016 Other Christians (per ‘000) 0.0003482 -0.0000073 0.0001345 -0.0002006 0.0008020 No. of Public Schools 0.0000956 0.0000002 0.0000036 0.0000073 -0.0000480 School Rating (SAT Scores + Dropout Rates) 0.0357002 -0.0007928 0.0112964 0.0086440 -0.0309685 26 Incidence and Amount Model Predictions • Three sets of predictions: (for approximately 20% of the total donor-time observations) – In-sample for existing donors within the observation period (individual level parameters) . – Out-of-sample for existing donors outside the observation period (individual level parameters). – Out-of-sample for new donors outside the observation period (population level parameters). • Incidence model predictions: Dynamic method for incidence and duration (approximately 67% accuracy based on hit rate). • Amount model predictions: Conditional on incidence, static method (approximately 79 % accuracy based on hit rate). 27 Predictions – Representative Donors 3.5 25 3 20 2.5 2 El Paso (79912) 1.5 1 15 10 5 0.5 0 0 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 3.5 60 3 50 2.5 2 3 4 1 2 3 4 40 2 Houston (77024) 1.5 1 30 20 10 0 0 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 0.5 3.5 1 20 3 2.5 15 Mission (78572) 2 1.5 1 10 5 0.5 0 0 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 In-Sample Out-of-Sample giftdum 1 In-Sample 2 Out-of-Sample 3 giftdum 28 Lessons Learned about Donation Behavior • Durations from past gifts and past appeals have impact on current gift incidence and gift amount. • Evidence of both linear and non-linear effects more pronounced for donation incidence, not so much for donation amount. • Significant seasonal patterns evident in donation incidence, absent for donation amount. • Community characteristics impact incidence – race, age, income level, wealth rating, balance of tradelines, number of delinquent tradelines, political affiliation, crime rate, public education system. • Community interactions also matter for amount – household size, household with families, home value, home ownership, balance of tradelines, tradelines with satisfactory ratings, number of delinquent tradelines, wealth rating, political affiliations, public education system , religious beliefs (Catholics, Evangelicals and Other Christians). • In-sample predictions support targeting existing donors efficiently; out-ofsample predictions provides a compelling methodology for targeting existing and potential donors with donor portfolios. 29 Questions and Comments THANK YOU 30
© Copyright 2026 Paperzz