CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
AL Pure Mathematics Informal Summary
Limit of Functions ........................................................................................... 1
Differentiation ................................................................................................. 2
Applications of Differentiation ....................................................................... 4
Indefinite Integral ............................................................................................ 6
Definite Integral ............................................................................................ 10
Applications of Definite Integrals ................................................................. 13
Limit of Sequences ........................................................................................ 14
Binomial Theorem......................................................................................... 17
Polynomials ................................................................................................... 18
Inequalities .................................................................................................... 20
Complex Numbers......................................................................................... 21
System of Linear Equations .......................................................................... 27
Coordinate Geometry .................................................................................... 29
Limit of Functions
Two Important Limits
sin x
1
x 0
x
1.
lim
(also, lim
x 0
2.
1
lim 1 e
x
x
tan x
1)
x
x
Sandwich Theorem:
f ( x) lim h( x) L, then lim g ( x) L .
If f ( x) g ( x) h( x) and lim
x a
x a
xa
Continuity
f ( x) is continuous at x a
P. 1
lim f (a h) lim f (a h) f (a)
x 0
x 0
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Differentiation
Definition (First Principle)
f ( x) lim
h 0
f ( x h) f ( x )
h
Formula of Differentiation
1.
2.
3.
4.
5.
6.
7.
8.
9.
d n
x nx n 1
dx
d x
e ex
dx
d
1
ln x
dx
x
d
sin x cos x
dx
d
cos x sin x
dx
d
tan x sec 2 x
dx
d
sec x sec x tan x
dx
d
1
sin 1 x
dx
1 x2
d
1
tan 1 x
dx
1 x2
Rules of Differentiation
1. Product Rule:
d
du
dv
(uv) v
u
dx
dx
dx
2. Quotient Rule:
du
dv
u
d u
( ) dx 2 dx
dx v
v
3. Chain Rule:
d
d
du
f u
f u
dx
du
dx
v
e.g.
d
1
ln( x 2 1) 2
2x
dx
x 1
P. 2
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Logarithmic Differentiation
Take ln before differentiate:
e.g.
yx
1
x
1
3
f ( x) x ( x 1)
e.g.
1
ln x
x
ln x
(ln y ) (
)
x
1
x 1 ln x
1 dy x
y dx
x2
2
3
1
2
ln f ( x) ln x ln( x 1)
3
3
1
1
2
f ( x)
f ( x)
3 x 3( x 1)
ln y
f ( x)
dy 1 ln x 1x
x
dx
x2
2
( x 1) 2 x 13
x ( x 1) 3
3 x( x 1)
(3 x 1)
2
1
3 x 3 ( x 1) 3
Leibniz’s Theorem
[ f ( x) g ( x)]( n ) C0n f ( x) g n ( ( x) ) C1n f
( (x1) g)
n
)
( x( ) 1 ......
Cnn f
OR
n
[ f ( x ) g ( x( n))
]
r 0
C ( rf ) ( x )n( g r
n
r
where C0n 1, C1n n, C2n
)
(x )
n(n 1) n n(n 1)(n 2)
, C3
, etc
2
3 2
Differentiability
f ( x) is differentiable at x a if
lim
h 0
f ( a h) f ( a )
f ( a h) f ( a )
lim
h 0
h
h
Note: differentiable continuous
not continuous not differentiable
P. 3
n
( x) g (( x))
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Applications of Differentiation
L’Hospital’s Rule
For
0
f ( x)
f ( x)
or , lim
lim
0
xa g ( x) xa g ( x)
For 0 ,1 , etc, take ln first
e.g. lim(sin x) x
x 0
e.g. lim x ln x
y (sin x) x
x 0
ln x
x 0 1/ x
1/ x
lim
2
x 0 1/ x
lim x
ln y x ln(sin x)
lim
ln( lim y ) lim x ln(sin x)
x 0
ln(sin x)
x 0
1
x
1
cos x
sin
x
lim
x 0
1
2
x
2
x cos x
lim
x 0
sin x
x
lim(
)( x cos x)
x 0 sin x
0
lim
x 0
0
e.g. lim
x 1 x 1
ln x
x
x 0
1
x ln x ( x 1)
x 1
( x 1) ln x
x(1/ x) ln x 1
lim
x 1 ( x 1) / x ln x
ln x
lim
x 1 1 1/ x ln x
1/ x
lim
x 1 1/ x 2 1/ x
1
2
lim
lim y e 0 1
x 0
Proving Inequalities
To prove f ( x) g ( x) , let F ( x) f ( x) g ( x) and find F ( x)
e.g. Prove ln x x 1 for all x 0 .
Let F ( x) ln x x 1
1
1
x
When F ( x) 0 , x 1
F ( x)
x
1
f ' ( x)
--------- 0 ++++++
F ( x) is max. at x 1
F ( x) F (1) for all x 0
ln x x 1 ln1 1 1
ln x x 1
P. 4
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Curve Sketching
Steps:
(1) Find f '( x) and f ''( x)
─ fully simplify and factorize them
─ take ln may be useful
(2) Draw table
e.g.
includes values of x
(1) at which f ( x) 0 and f ( x) 0
(2) at which f ( x), f ( x ) or f ( x)
is undefined
(3) the expression inside absolute value
sign is zero
x 1
e.g. f ( x)
x( x 2)
include x 1
3
x
f ( x )
--------------
f ( x)
+++++++++++++++++++++++
f ( x)
0
++++++++++
2
f ( x) 0
f ( x) 0
increasing
decreasing
f ( x) 0
Concave upward
f ( x) 0
Concave downward
(3) identify vertical asymptote(s) x k
f ( x)
m lim
x
x
find oblique asymptote(s) y mx b by
b lim f ( x ) mx
x
(4) Draw and label asymptotes/ extreme points/point of inflexions/
intercepts
Then draw the curve
P. 5
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Indefinite Integral
Definition:
If
d
F ( x) f ( x), then
dx
f ( x)dx F ( x) C
Integration Formula
1.
kdx kx C
2.
n
x dx
3.
x dx ln x C
4.
8.
e dx e C
sin xdx cos x C
cos xdx sin x C
sec xdx tan x C
sec x tan xdx sec x C
9.
10.
x
5.
6.
7.
x n1
C
n 1
1
x
x
2
1
a2 x2
2
dx sin 1
x
C
a
1
1
x
dx tan 1 C
2
a
a
a
Rules of Partial Fractions
e.g.
(1)
(2)
(3)
(4)
5x 3
A
B
( x 1)( x 2) x 1 x 2
2x 1
A
Bx C
2
2
( x 1)( x 1) x 1 x 1
3x 2 A B
C
2
2
x ( x 1) x x
x 1
x 1
A
Bx C Dx E
2
2
2
( x 2)( x 1)
x 2 x 1 ( x 2 1) 2
P. 6
(Linear factor)
(Quadratic factor)
(Repeated linear factor)
(Repeated quadratic factor)
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Method of Substitution
e.g.
x( x
2
1)5 dx
x u5
x( x
du
2x
1 5
u du
2
1
u6 C
12
1
( x 2 1)6 C
12
1)5 dx
2
1
( x 2 1)5 d ( x 2 1)
2
1
( x 2 1)6 C
12
OR
Integration of Rational Functions (
P( x)
dx )
Q( x)
─ do long division if deg P( x) deg Q( x)
─ then use partial fractions
x3 x 2
x 3 dx
( x 2 3x 10)( x 3) 32
dx
x 3
32
x 2 3x 10
dx
x 3
1
3x 2
x3
10 x 32 ln x 3 C
3
2
e.g.
e.g.
5x 1
dx
x 1
5
3
(2 x 1)
0
2 dx
2 2
completing square
x x 1
5 d ( x 2 x 1) 3
1
2
dx
1
2
x x 1
2 ( x )2 3
2
4
1
x
5
3 1
2
1
2)C
ln x x 1
tan (
2
2 3
3
2
2
5
2x 1
ln x 2 x 1 3 tan 1 (
)C
2
3
e.g.
x
2
2x
2
1
dx
5x 3
1
dx
(2 x 1)( x 3)
2
1
7
7
dx
2x 1 x 3
2 1
1
ln 2 x 1 ln x 3 C
7 2
7
1 2x 1
ln
C
7
x3
5x 1
dx
x 1
5
3
(2 x 1)
2 dx
2 2
x x 1
5
3
1
ln x 2 x 1
dx
0
2
2 ( x 1 )2 5
partial fractions
2
4
5
3
1
ln x 2 x 1
dx
2
2
1
5
1
5
(x
)( x
)
2 2
2 2
5
3
1
1
1
ln x 2 x 1 (
)[
]dx
2
2
5
1
5
1
5
(x
) (x
)
2 2
2 2
e.g.
x
2
5
3
1
5
1
5
ln x 2 x 1
[ln x
ln x
] C
2
2 2
2 2
2 5
P. 7
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Integration of Rational Functions of sin x / cos x
e.g.
1
2 sin x dx
Put t tan
2dt
2t 1 t 2
2
1 t2
2
dt
2(1 t 2 ) 2t
1
2
dt
t t 1
1
dt
1 2 3
(t )
2
4
1
t
1
tan 1 2 C
3
3
2
2
x
2 tan 1
2
2
tan 1
C
3
3
1
1 t 2
x
2
t
1
x
x
sin x 2sin cos
2
2
t
1
2(
)(
)
2
1 t
1 t2
2t
1 t2
x 1
dt sec 2 dx
2 2
x 1
(1 tan 2 ) dx
2 2
2dt
dx
1 t2
Integration of Irrational Functions
For a2 x2 , try to put x a sin
For a2 x2 , try to put x a tan
For x2 a2 , try to put x a sec
Integration by Parts
f ( x) g ( x) d x
x
2
f( )x g' ( x) d x
“derivative transfer”
P. 8
x
x
sin 2
2
2
2
1
t
2
1 t 1 t2
1 t2
1 t2
cos x cos 2
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
x2
) ln xdx
2
x2
x2 1
ln x dx
2
2 x
2
2
x
x
ln x C
2
4
e.g.
x ln xdx (
e.g.
e
x
sin xdx e x ( cos x)dx
e x cos x e x ( cos x)dx
e x cos x e x (sin x)dx
(by parts twice)
e x cos x e x sin x e x sin xdx
x
e sin xdx
e x sin x e x cos x
C
2
Reduction Formula
─ usually generated by Integration by Parts
e.g.
I n sin n xdx
sin n 1 x( cos x)dx
sin n 1 x cos x (n 1) sin n 2 x(cos x)( cos x)dx
sin n 1 x cos x (n 1) sin n 2 x cos 2 xdx
sin n 1 x cos x (n 1) sin n 2 x(1 sin 2 x) dx
sin n 1 x cos x (n 1)[ I n 2 I n ]
nI n sin n 1 x cos x (n 1) I n 2
P. 9
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Definite Integral
Second Fundamental Theorem
b
d
F ( x) f ( x), f ( x)dx F (b) F (a )
a
dx
If
Method of Substitution
e.g.
2
1
x( x 1)3 dx
3
(u 1)u 3du
Put u = x + 1
2
3
(u 4 u 3 )du
du = dx
2
1
1
[ u 5 u 4 ]32
5
4
1 5 1 4
1
1
519
( 3 3 ) ( 25 2 4 )
5
4
5
4
20
x
u
Integration by Parts
e.g.
2
0
2
xe x 1dx x(e x 1 )dx
0
2
[ xe x 1 ]02 (1)e x 1dx
0
2e [e x 1 ]02
2e e e 1
e
1
e
Reduction Formula
1
e.g. I n x n 1 x 2 dx
0
1
xn
0
3
2 2
[(1 x ) ]
dx
3x
3
1 1 n 1
2 2
x
[(1
x
)
]dx
3 0
1
3
3
1
1 1
x n 1 (1 x 2 ) 2 (n 1) x n 2 (1 x 2 ) 2 dx
3
3 0
0
n 1 1 n2
x (1 x 2 ) 1 x 2 dx
0
3
P. 10
2
3
1
2
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
n 1
[ I n2 I n ]
3
3I n (n 1) I n 2 (n 1) I n
In
n 1
I n2
n2
When n is odd,
When n is even,
n 1
I n2
n2
n3
I n4
n
M
In
I n2
n 1
I n2
n2
n3
I n4
n
M
In
I n2
2
I1
5
(n 1)(n 3)...2
In
I1
(n 2)(n)...5
1
I0
4
(n 1)(n 3)...1
In
I0
(n 2)(n)...4
) I 3
) I 2
First Fundamental Theorem
d x
f (t )dt f ( x)
dx a
e.g.
d x
cos(t 2 ) dt cos( x 2 )
0
dx
Sum an Infinite Series by Definite Integrals
n
1
k 1
lim f ( ) f ( x)dx
0
n
n n
k 1
e.g.
12
22
n2
lim( 3 3 3 3 ... 3
)
n n 1
n 2
n n3
n
k2
lim 3
use summation notation
3
n
k 1 n k
k 2n 1
3
3
n
n
k 1 n k
k
( )2
n
1
lim n
n
k
k 1
1 ( )3 n
n
n
lim
‘make’
1
n
‘make’
k
n
P. 11
CCC Tam Lee Lai Fun Memorial Secondary School
1
n dx
k
x
n
n
1
lim
0
n k 1
x2
dx
0 1 x3
1 1 1
d (1 x 3 )
3
0
3 1 x
1
[ln 1 x 3 ]10
3
1
ln 2
3
AL Pure Mathematics Informal Summary
1
Inequalities on Definite integrals
b
b
1. lf f(x) g(x) x [a, b], a f ( x)dx a g ( x)dx
2.
b
a
b
f ( x)dx f ( x) dx
a
P. 12
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Applications of Definite Integrals
Plane Area
3
4
4
8
Area 2 2 xdx
( x 1) 2 dx
0
1
27
or Area
8
0
1
2 3
y
27 y
dy
1
2
8
2
Volume: Disc Method
4 8
4
Volume 2 x dx
( x 1)3 dx
0
1 27
Volume 4 x x 2 3 dx
3
2
1
Volume: Shell Method
2
Volume 2 xy dx
Volume 2 x x 2 3 x 1 x 2 dx
3
0
1
2
2 x x(2 x) dx
0
P. 13
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Limit of Sequences
Sandwich Theorem
If
an bn cn for all n , and lim an lim cn L, then lim bn L .
n
n
n
1
nn 1.
e.g. Prove lim
n
1
Let n n 1 h
n (1 h)n
n 1 nh
n
n(n 1) 2
h ...
2
n(n 1) 2
h
2
2
n 1
0 h
lim
n
( h 0)
2
0
n 1
lim h 0
n
1
lim n n lim h
n
n
1
Monotone Convergence Theorem:
Monotonic increasing + bounded above
(an 1 an n)
Convergent
(an K )
Monotonic decreasing + bounded below Convergent
(an 1 an n)
(an K )
usually proved by Method of Difference or M.I.
P. 14
CCC Tam Lee Lai Fun Memorial Secondary School
e.g.
AL Pure Mathematics Informal Summary
Let {an } be a sequence of positive numbers, where
a1 1 and an
12an 1 12
an 1 13
(a) Prove that an 3 for all positive integers n.
Try Method of Difference:
an 3
1 2an 1 1 2
3
an 1 13
12an 1 12 3an 39
an 1 13
9( an 3)
an 13
need to have an 3
try M.I.
When n = 1, a1 1 3
an 3
is true for n = 1
Assume ak 31
ak 1 3
12ak 12
3
ak 13
=
12ak 12 3ak 39
ak 13
=
9(ak 3)
ak 13
0
an 3
is true for n = k+1
By M.I., an 3 n
P. 15
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
an exists.
(b) Prove that lim
n
Need to prove monotonic increasing,
try method of difference:
an 1 an
12an 12
an
an 13
=
12an 12 an 2 13an
an 13
=
an 2 an 12
an 13
=
(an 3)(an 4)
an 13
( ( 0 an 3)
0
{an }
is monotonic increasing and, by(a), bounded above by 3
{an }
is convergent
an .
(c) Find lim
n
an L
Let lim
n
lim an
n
12 lim an 1 12
n
lim an 1 13
n
L
12 L 12
L 13
L2 L 12 0
L 3 or L 4
an 0
bn b .
lf bn b for all n, then lim
n
cn C .
lf cn c for all n, then lim
n
L lim an 0
n
L 3
P. 16
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Binomial Theorem
n1
(a b)n C0n a n C1n a b C2n a n2b2 ... Cnnbn
n
C rn a n r b r
total (n+1) terms
Crn
r 0
n!
(n r )!r !
(1 x) n C0n C1n x C2n x 2 ... Cnn x n
n
C rn x r
r 0
Differentiation and Integration may help you find properties of Binomial
coefficients.
n
e.g.
n (1 x) n1 r C rn x r 1
r 1
n
Put x = 1,
r C
r 1
e.g.
n
r
n (2 n1 )
n Cn
(1 x) n 1
r
x r 1 C
n 1
r
1
r 0
Put x = 0, C
1
n 1
n Cn
2n 1
1
r
Put x = 1,
n 1 r 0 r 1 n 1
n
r 0
C rn
r 1
2n 1 1
n 1
P. 17
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Polynomials
q( x)
g ( x) f ( x)
Division Algorithm
f ( x) g ( x) q ( x) r ( x)
Remainder
r ( x)
Quotient
deg [ r ( x) ] < deg [ g ( x ) ]
or r ( x) 0 (that is, f ( x) divisible by g ( x ) )
Remainder Theorem
When a polynomial f ( x) is divided by (ax b) , the remainder is f (
b
).
a
Factor Theorem
When f ( ) 0 , ( x ) is a factor of the polynomial f ( x) .
Generally, if 1 , 2 , , n are the roots of a polynomial f ( x) of degree n ,
then f ( x) A( x 1 )( x 2 ) ( x n ) , where A is the leading coefficient.
Euclidean Algorithm (輾轉相除法)
q( x)
g ( x) f ( x)
r ( x) g ( x)
r ( x)
G.C.D. of f ( x) and g ( x ) = G.C.D. of g ( x ) and r ( x)
Complex Roots Theorem
Let f ( x) be a polynomial with real coefficients.
If ( p qi) is a root of f ( x) 0 ( p, q R ), ( p qi) is also a root of
f ( x) 0 .
P. 18
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Implications:
1. A polynomial of degree 3 can be factorized into real linear and/or
quadratic factors.
2. A polynomial of odd degree has at least one real root.
Multiple Roots
f ( x) has a multiple root
f ( ) 0 and f ( ) 0
Relation between Roots and Coefficients
Let , , be the roots of ax3 bx 2 cx d 0
b
a
c
a
d
a
Tips:
2 2 2 ( )2 2( )
2 2 2 2 2 2 ( )2 2 ( )
Transformations of Polynomial Equations
Old Roots
e.g.
e.g.
e.g.
New Roots
3 , 3 , 3
2, 2, 2
, ,
, ,
, ,
,
,
,
,
2 2 2
( d / a ) ( d / a) ( d / a)
,
,
2
2
2
P. 19
Put
y 3x
y x2
(d / a)
y
x2
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Inequalities
Triangle Inequality
x y x y
Inequalities involving absolute values
x a a x a
x a
x a or
x a
A.M. G.M.
a1 a2
n
an
(a1a2
an )
1
n
(ai 0)
1
OR
1 n
n n
ai ai
n i 1
i 1
Cauchy – Schwarz’s Inequality
(a1b1 a2b2
anbn ) 2 (a12 a2 2
an 2 )(b12 b2 2
OR
n
n 2 n 2
2
a
b
i
i
ai bi
i 1
i 1 i 1
Proof:
x R,
n
(a x b )
i 1
i
i
2
bn 2 )
0
n 2 2
n
n 2
a
x
2
a
b
x
i
i i
bi 0
i 1
i 1
i 1
n
If
a
i 1
2
0, a1 a2
2
0, 0
i
n
If
a
i 1
i
an 0, the result is trivial.
2
n
n 2 n 2
2
a
b
4
i
i
ai bi 0
i 1
i 1 i 1
n
n 2 n 2
2
a
b
i
i
ai bi
i 1
i 1 i 1
P. 20
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Strategies to prove inequalities:
1. By Method of Difference/ Ratio
2. M.I.
3. By Differentiation
4. Use known results
Complex Numbers
Definitions: i 1 ( i 2 1 )
Let z a bi
( a, b R )
1.
a Re( z ) ,
2.
z a 2 b2
3.
z a bi
4.
2 Re( z ) z z
5.
2i Im( z ) z z
6.
z zz
b Im( z )
Imaginary part is not imaginary!
2
Polar Form
principal argument
z r (cos i sin )
yi
( )
r z
or
z r cis
arg( z )
2
e.g. 1 3i 2 cis( )
3
P. 21
x
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Let z1 r1 cis1 , z2 r2 cis2
z1 z2 z1 z2 , arg( z1z2 ) arg( z1) arg( z2 ) 2k
z1 z2 r1r2 cis(1 2 )
z1 r1
cis(1 2 )
z2 r2
z
z
z1
1 , arg 1 arg( z1 ) arg( z2 ) 2k
z2
z2
z2
(k 0, 1, 2)
Geometric Relationship
w is purely imaginary w ik (k R) arg( w)
z2
is purely imaginary
z1
z2
ik
z1
(k R)
z
arg 2
2
z1
arg( z2 ) arg( z1 )
2
z2 z1
Locus Problems
z (a bi) r
z (a bi) z (c di)
(a , b)
r
(c , d )
(a , b)
General method: Put z x yi
P. 22
2
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
DeMoivre’s Theorem
(cos i sin )n cos n i sin n
(n is any integers)
Roots of z n r (cos i sin ) :
2 k
2k
z r cos
i sin
n
n
n
n
1
n
k 0, 1, 2,
, n 1
e.g. Solve z 5 32
z 5 32 cis
2k
z 32 cis
5
5
1
5
2
4
6
8
z 2 cis , 2 cis
, 2 cis
, 2 cis
, 2 cis
5
5
5
5
5
5
5
5 5
3
5
7
9
z 2 cis , 2 cis , 2 cis
, 2 cis
, 2 cis
5
5
5
5
5
3
z 2 cis , 2 cis
5
5
3
, 2 cis , 2 cis
5
3
2 cis
5
, 2 cis
5
yi
2 cis
5
2cis
x
3
2 cis
5
2 cis
5
Hence we can factorize z 5 32 into real linear/quadratic factors
z 5 32
3
3
z 2 cis z 2 cis z 2 cis z 2 cis z 2 cis
5
5
5
5
3
3
z 2 cis z 2 cis z 2cis z 2 cis z 2cis
5
5
5
5
3
( z 2) z 2 4 z Re cis 4 z 2 4 z Re cis 4
5
5
3
( z 2) z 2 4 cos 4 z 2 4 cos
5
5
P. 23
4
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Matrices & Determinants
Arithmetic of Matrices
2 3 3 2 2 3 3 2
4 1 1 0 4 1 1 0
Addition/Subtraction:
2 3 3 2 3 3
3
4 1 3 4 3 1
Scalar Multiplication:
2 3 3 2 2 3 3 (1) 2 2 3 0
4 1 1 0 4 3 1 (1) 4 2 1 0
Multiplication:
3 1 2 3 4 3
0 1 1 0 5
4
3 5 6 2 1 6
Note: In general,
AB BA
T
T
2 3
2 4
Transpose:
,
4 1 3 1
( AB)T BT AT
Determinants
a b
ad bc
c d
a b c
d
f a
e
g h i
e
f
h i
b
d
f
c
g i
d
e
g h
( expanded along 1st row )
* Can be expanded along any row/ column
Some properties:
1.
3
1
2
5
4
3 6
6 1 1
2.
3
1
2
1 1
5
4
3
2
4
6
1
2
3
1
2
3 21
2
3
2 5
1
2 5
1
Interchanging two rows gives negative sign
Common factor extracted from a row/ column
P. 24
CCC Tam Lee Lai Fun Memorial Secondary School
3.
3
1
6
2 5 6 2 3
4
3
4
1
3
1
4
2 2 (1) 5 2 4
4
3
3
1
4
0
0
3
4
3
1
(3)
4.
AL Pure Mathematics Informal Summary
1
3 1
4
3
AA1 I
det( AB) det( A) det( B)
det( A1 )
5.
1
det( A)
det( AT ) det( A)
Inverse
Definition: AB I A1 B
Existence:
det( A) 0
1
a b
1
a b
c d
c d
A1 exists
d b
c a
e
1
h
a b c
b
1
d
e
f
a b c h
g h i
d e f b
g h i e
f
i
d f
g i
c
a c
a c
i
c
f
g i
d
( AB)1 B1 A1
P. 25
f
T
d e
g h
a b
g h
a b
d e
R2 2 R1
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Applications in Cooradinate Transformation
“output”
x a b x
y c d y
“input”
transformation matrix
Rotation:
cos
sin
sin
cos
cos 2
Tips:
sin 2
Reflection:
sin 2 cos 2
slope tan
k
0
Enlargement:
0 k
P. 26
cos 2 2 cos 2 1
sin 2 2sin cos
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
System of Linear Equations
Notation
3x 2 y z 0
e.g.
yz 2
2 x y 3z 1
3 2 1 x 0
0 1 1 y 2
2 1 3 z 1
( AX B )
Finding Unique Solution by Cramer’s Rule
( 0)
3 2 1
e.g. 0
2
x
1
1
1 3
0 2 1
3 0
1
3 2 0
2
1
0 2
1
0
1
2
1
1 3
2
1
1
1
y
2 1 3
z
& Consistency
B0
B0
unique solution
obtained by
unique trivial solution
0 Cramer’s Rule
Method of Inverse Matrix
(0, 0, 0)
G. E.
no solution (inconsistent)
0
infinitely many solutions
(obtained by G. E.)
P. 27
infinitely many solutions
(obtained by G. E.)
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Gaussian Elimination
*
Goal: 0
0
p0
*
*
*
*
0
p
*
*
q
(row-echelon form)
unique solution
e.g.
p0
1
0
0
2
3
2
1
0
2
0
z 0
2
2
6
6
y 3
2
0
x 2 6 4
no solution
q0
e.g.
q0
1
0
0
4
3
3
2
0
0
2
6 no solution
1
infinite many solutions
e.g.
1
0
0
2
3
2
1
0
0
Let z t , t R
2
6t
6
y
2
0
6t
x 2 3t (
)
2
P. 28
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Coordinate Geometry
Angle between two straight lines
tan
slope m1
m1 m2
1 m1m2
slope m2
Distance from a point to a line
D
( x1 , y1 )
D
ax1 by1 c
a 2 b2
ax by c 0
Equations of straight lines
Point-slope form:
y y1
m
x x1
Slope-intercept form: y mx c
Equations of Circles
Standard form: ( x h)2 ( y k )2 r 2
General form x2 y 2 Dx Ey F 0
Centre (h , k ) (
D E
,
)
2
2
D
2
E
2
Radius r ( )2 ( )2 F
Equations of Parabola
focus
( a , 0)
(a , 0) focus
y 2at
y 4ax or
2
x at
x 2at
x 4ay or
2
y at
P. 29
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Equations of Ellipses
b
b (0 , b 2 a 2 )
( a 2 b 2 , 0)
a
a
x2 y 2
1
a 2 b2
x a cos
y b sin
or
Equations of Hyperbola
(0 , a 2 b2 )
y
b
y x
a
b
x
a
( a 2 b 2 , 0)
y
y
b
x
a
x2 y 2
1
a 2 b2
x a sec
y b tan
y2 x2
1
b2 a 2
x a tan
y b sec
Family of Straight Lines / Circles
A1 x B1 y C1 k ( A2 x B2 y C2 ) 0
x 2 y 2 Dx Ey F k ( Ax By C ) 0
x 2 y 2 D1 x E1 y F1 k ( x 2 y 2 D2 x E2 y F2 ) 0
Locus Problems
Let the movable point / variable point interested be (x, y).
Try to find an equation connecting x and y.
P. 30
b
x
a
CCC Tam Lee Lai Fun Memorial Secondary School
AL Pure Mathematics Informal Summary
Equations of Tangents and Chords
( x1 , y1 )
( x1 , y1 )
( x1 , y1 )
Tangent
Equation
:
y1 y 2a( x x1 )
x1 x y1 y
2 1
a2
b
x1 x y1 y
1
a 2 b2
Rule: x 2 x1 x
y 2 y1 y
x x1
)
2
y y1
y(
)
2
x(
chord
( x1 , y1 )
chord
( x1 , y1 )
( x1 , y1 )
chord
Chord
Equation
:
y1 y 2a( x x1 )
x1 x y1 y
2 1
a2
b
P. 31
x1 x y1 y
1
a 2 b2
© Copyright 2026 Paperzz