show that

Name of the school
Grade: ----
Chapter Name – Work Sheet number
Date: --------
Time: Estimated Time to Complete
Name of Student:
Date of Submission:
Maths assignment XII
RELATIONS AND FUNCTIONS
5
βˆ’7
1. If 𝑓(π‘₯) = [π‘₯] and (π‘₯) = |π‘₯| , then evaluate (π‘“π‘œπ‘”) (2) βˆ’ (π‘”π‘œπ‘“) ( 2 ).
1
2. If 𝑓(π‘₯) = (3 βˆ’ π‘₯ 3 )3 and (π‘₯) = log 𝑒 π‘₯ , find π‘“π‘œπ‘“(π‘₯).
3. Let * be a binary operation defined by a*b = 2ab – 7. Is * associative?
4. Let 𝐴 = {1,2,3} and = {4,5,6} , 𝑓: 𝐴 β†’ 𝐡 is a function defined on 𝑓(1) = 4 , 𝑓(2) =
5 and 𝑓(3) = 6. Write the inverse of f as a set of ordered pairs.
5. Let β€˜*’ be a binary operation defined on the set Z as a a*b = a+b+1 for a,b ∈ I. find
the identity element.
π‘₯βˆ’1
6. If 𝑓(π‘₯) =
; π‘₯ β‰  βˆ’1 , then find 𝑓 βˆ’1 (π‘₯).
π‘₯+1
7. Show that the signum function given by 𝑓(π‘₯) = 1, if x is greater than 0, if x=0, -1 , if
x is less than 0 is neither one-to-one nor onto.
8. If 𝑓: 𝑅 β†’ 𝑅, a,b,c,d ∈ R such that ( a,b ) * ( c,d ) = (ac, b+ad ). Find the identity
element.
9. Give an example for a relation which is neither reflexive nor symmetric.
10. Consider 𝑓, 𝑔 ∢ 𝑁 β†’ 𝑁 and β„Ž ∢ 𝑁 β†’ 𝑅 defined as 𝑓(π‘₯) = 2π‘₯ , 𝑔(𝑦) = 3𝑦 + 4 ,
and β„Ž(𝑧) = 𝑠𝑖𝑛𝑧 for all x,y,z ∈ N. Show that ho(gof) = (hog)of.
11. Let A = R X R and let * be a binary operation on A defined by ( a,b )*( c,d ) = ( ad+bc ,
bd ) for all ( a,b ) , ( c,d ) ∈ R X R. Determine if * is commutative , associative , has
identity and inverse.
12. Let A = {-1 , 0 , 1 , 2 } , B = [ -4 , -2 , 0 , 2 } and 𝑓, 𝑔 ∢ 𝐴 β†’ 𝐡 be the function defined by
1
𝑓(π‘₯) = π‘₯ 2 βˆ’ π‘₯, π‘₯ ∈ 𝐴 and 𝑔(π‘₯) = 2 |π‘₯ βˆ’ 2| βˆ’ 1 , π‘₯ ∈ 𝐴 ; are f and g equal ? Justify
your answer.
5π‘₯+3
13. If 𝑓(π‘₯) = 4π‘₯βˆ’5, show that f(f(x)) is an identity function.
14. Let 𝑓(π‘₯) = [π‘₯] and 𝑔(π‘₯) = |π‘₯|. Find
βˆ’5
βˆ’5
(i) (π‘”π‘œπ‘“) ( ) βˆ’ (π‘“π‘œπ‘”) ( )
3
5
5
3
(ii) (π‘”π‘œπ‘“) (3) βˆ’ (π‘“π‘œπ‘”) (3)
Subject / Grade / Work Sheet Number / Chapter Number / 2012-2013
Page 1
(iii) (𝑓 + 2𝑔)(βˆ’1)
15. Check whether the relation R defined in the set {1,2,3,4,5,6} as R = { (a,b) : b = a+1 }
is reflexive, symmetric or transitive.
16. Show that the relation S in the set given by S = { (a,b : |a-b| is even } is an
equivalence relation. Also find the set of all elements related to 4.
1
17. If f(x) = (3 βˆ’ π‘₯ 3 )3 , find f(f(x)).
18. If 𝑓, 𝑔: 𝑅 β†’ 𝑅 are defined respectively by 𝑓(π‘₯) = π‘₯ 2 + 3π‘₯ + 1 , 𝑔(π‘₯) = 2π‘₯ βˆ’ 3. Find
(i) fog (ii) gof (iii) fof (iv) gog.
19. If the function 𝑓: 𝑅 β†’ 𝑅 defined by 𝑓(π‘₯) = 2π‘₯ 3 + 7, prove that f is one-one and
onto function. Also find the inverse of the function 𝑓 and 𝑓 βˆ’1 (23).
20. If P(X) is the power set of the set X, and A*B=AβˆͺB, find the identity if it exists.
π‘Ž+𝑏
π‘Ž+𝑏
21. Examine if the following are binary operations (i) a*b = 2 , a,b ∈ N (ii) a*b = 2 ,
a,b ∈ Q.
22. Consider 𝑓: 𝑅 β†’ [5, ∞) given by 𝑓(π‘₯) = 9π‘₯ 2 + 6π‘₯ βˆ’ 5. Show that f is invertible and
(𝑦+6)βˆ’1
𝑓 βˆ’1 (𝑦) = √
3
.
23. Let A = N X N and R be the relation on A defined by ( a,b ) R ( c,d ) => (π‘Žπ‘‘(𝑏 + 𝑐) =
𝑏𝑐(π‘Ž + 𝑑)). Show that R is an equivalence relation.
24. Let A = N X N and * be the binary operation on A defined by ( a,b )*( c,d ) = ( a+c,b+d
). Show that * is commutative and associative. Find the identity element for * on A, if
any.
βˆ’3
2π‘₯
25. Let 𝑓: 𝑅 βˆ’ { 5 } β†’ 𝑅 be a function define as 𝑓(π‘₯) = 5π‘₯+3 , find 𝑓 βˆ’1 : range of f: 𝑅 βˆ’
βˆ’3
{ 5 }.
26. Consider 𝑓: {1,2,3} β†’ {π‘Ž, 𝑏, 𝑐} and 𝑔: (π‘Ž, 𝑏, 𝑐} β†’ {π‘Žπ‘π‘π‘™π‘’, π‘π‘Žπ‘™π‘™, π‘π‘Žπ‘‘} defined by f(1)=
a, f(2) =b . f(3)=c , g(a)= apple, g(b)=ball , g(c)=cat. Show that f,g and gof are
invertible. Find out 𝑓 βˆ’1 , π‘”βˆ’1 and (π‘”π‘œπ‘“)βˆ’1 and show that (π‘”π‘œπ‘“)βˆ’1 = 𝑓 βˆ’1 o π‘”βˆ’1 .
27. Prove that the function 𝑓: 𝑅 β†’ 𝑅 defined as 𝑓(π‘₯) = 2π‘₯ βˆ’ 3 is invertible and 𝑓 βˆ’1 (π‘₯).
28. Show that the relation are in the set a = { x : x ∈ w , x≀ 10 } given by R = { (a,b) : |ab| is a multiple of 3 } is an equivalence relation , find the elements related to 3.
INVERSE TRIGONOMETRIC FUNCTIONS
1
5 √2
1. Find 2π‘‘π‘Žπ‘›βˆ’1 ( ) + 𝑠𝑒𝑐 βˆ’1 (
5
2. Solve for x :
π‘₯βˆ’1
7
1
) + 2π‘‘π‘Žπ‘›βˆ’1 (8)
π‘₯+1
(i) π‘‘π‘Žπ‘›βˆ’1 (
) + π‘‘π‘Žπ‘›βˆ’1 (π‘₯+2) =
π‘₯βˆ’2
1βˆ’π‘₯
1
π‘‘π‘Žπ‘›βˆ’1 ( ) = π‘‘π‘Žπ‘›βˆ’1 π‘₯
1+π‘₯
2
βˆ’1 (π‘π‘œπ‘ π‘₯)
βˆ’1
πœ‹
4
(ii)
(iii) 2π‘‘π‘Žπ‘›
= π‘‘π‘Žπ‘› (2π‘π‘œπ‘ π‘’π‘π‘₯)
πœ‹
βˆ’1
βˆ’1
(iv) 𝑠𝑖𝑛 π‘₯ + 𝑠𝑖𝑛 2π‘₯ =
(v) 𝑠𝑖𝑛
βˆ’1 (1
(vi)π‘π‘œπ‘‘
βˆ’1
3
βˆ’1
βˆ’ π‘₯) βˆ’ 2𝑠𝑖𝑛 π‘₯ =
π‘₯ βˆ’ π‘π‘œπ‘‘
βˆ’1 (π‘₯
+ 2) =
πœ‹
2
πœ‹
12
Subject / Grade / Work Sheet Number / Chapter Number / 2012-2013
Page 2
(vii) π‘‘π‘Žπ‘›βˆ’1 (
2π‘₯+1
1βˆ’4 π‘₯
βˆ’1 2
)
(viii) 𝑠𝑖𝑛 (π‘₯ √1 βˆ’ π‘₯ 2 βˆ’ π‘₯√1 βˆ’ π‘₯ 4
3. Simplify :
1
(i) π‘‘π‘Žπ‘›βˆ’1 ( π‘ π‘–π‘›βˆ’1 (
2π‘₯
1
1βˆ’π‘¦ 3
)) + 2 π‘π‘œπ‘  βˆ’1 (1+𝑦2 )
1+π‘₯ 2
2
π‘₯βˆ’π‘₯ βˆ’1
(ii) π‘π‘œπ‘  βˆ’1 ( βˆ’1)
π‘₯+π‘₯
βˆ’1
(iii) π‘‘π‘Žπ‘› (√1 + π‘₯ 2
βˆ’ π‘₯)
4. Prove that:
12
4
63
(i) π‘ π‘–π‘›βˆ’1 ( ) + π‘π‘œπ‘  βˆ’1 ( ) + π‘‘π‘Žπ‘›βˆ’1 ( ) = πœ‹
13
5
16
(ii) π‘π‘œπ‘  βˆ’1 π‘₯ + π‘π‘œπ‘  βˆ’1 𝑦 + π‘π‘œπ‘  βˆ’1 𝑧 = πœ‹ , prove that π‘₯ 2 + 𝑦 2 + 𝑧 2 +
2π‘₯𝑦𝑧 = 1
π‘₯
π‘₯2
𝑦
(iii) π‘π‘œπ‘  βˆ’1 ( ) + π‘π‘œπ‘  βˆ’1 ( )=𝛼, prove that 2 βˆ’
π‘Ž
𝑏
π‘Ž
1
2
1
3
(iv) π‘‘π‘Žπ‘›βˆ’1 ( ) + π‘‘π‘Žπ‘›βˆ’1 ( ) = π‘π‘œπ‘  βˆ’1 ( )
4
9
2
5
4
5
16
2π‘₯𝑦
π‘Žπ‘
π‘π‘œπ‘ π›Ό +
𝑦2
𝑏2
= 𝑠𝑖𝑛2 𝛼
πœ‹
(v) π‘ π‘–π‘›βˆ’1 ( ) + π‘ π‘–π‘›βˆ’1 ( ) + π‘ π‘–π‘›βˆ’1 ( ) =
5
13
65
2
2 (π‘‘π‘Žπ‘›βˆ’1
2 (π‘π‘œπ‘‘ βˆ’1
(vi) 𝑠𝑒𝑐
2) + π‘π‘œπ‘ π‘’π‘
3) = 15
βˆ’1
βˆ’1
βˆ’1
(vii) π‘‘π‘Žπ‘› π‘₯ + π‘‘π‘Žπ‘› 𝑦 + π‘‘π‘Žπ‘› 𝑧 = πœ‹, prove that π‘₯ + 𝑦 + 𝑧 = π‘₯𝑦𝑧
MATRICES
1. If A = [π‘Žπ‘–π‘— ] , where [π‘Žπ‘–π‘— ] = {
𝑖 + 𝑗 , 𝑖𝑓 𝑖 β‰₯ 𝑗
, construct a 3 X 2 matrix A.
𝑖 βˆ’ 𝑗 𝑖𝑓 𝑖 < 𝑗
3 βˆ’2
) , then find k if 𝐴2 = kA – 2I.
4 βˆ’2
Construct a 3 X 2 matrix whose elements in the ith row and jth column are given by
𝑖+4𝑗
π‘Žπ‘–π‘— = 2 .
2 3
If f(x) = π‘₯ 2 βˆ’ 4π‘₯ + 1 , find f(A) , when A = [
].
1 2
1 βˆ’2
5 4
Find the matrix X , for which [
] X=[
].
1 3 𝑛
1 1
𝑏(π‘Ž βˆ’1)
𝑛
π‘Ž 𝑏
If A = [
] , π‘Ž β‰  1 , prove that 𝐴𝑛 = [ π‘Ž
π‘Žβˆ’1 ] , n∈N .
0 1
0
1
3 1
For the matrix A = [
] , find a and b such that 𝐴2 + π‘ŽπΌ = π‘π‘Ž , where I is a 2 X 2
7 5
identity matrix .
0 βˆ’1
1 βˆ’1
Find X and Y , given that 3X - Y = [
] and X - 3Y = [
].
0 βˆ’1
βˆ’1 1
3 1
If A = [
] , show that 𝐴2 -5A + 7I = 0 , hence find π΄βˆ’1 .
βˆ’1 2
2. If A = (
3.
4.
5.
6.
7.
8.
9.
Subject / Grade / Work Sheet Number / Chapter Number / 2012-2013
Page 3
βˆ’1
10. If A = [ 2 ] , B = [-2 -1 -4] , verify that (AB)’= B’A’ .
3
11. If A = (
cos πœƒ
𝑖 sin πœƒ
𝑖 sin πœƒ
) , then prove by principle of Mathematical Induction that
cos πœƒ
cos π‘›πœƒ 𝑖 sin π‘›πœƒ
𝐴𝑛 = [
].
𝑖 sin π‘›πœƒ cos π‘›πœƒ
12. Express the following matrix as the sum of a symmetric and a skew-symmetric matrix
1 3 5
: [βˆ’6 8 3] .
βˆ’4 6 5
2 4
5 4
13. If A = [
] , B =[
] , then verify that (AB)’= B’A’.
3 5
3 2
3 2 5
14. Let A = [4 1 3] . Express A as a sum of two matrices such that one is symmetric
0 6 7
and the other is skew-symmetric.
15. Using elementary transformations , find the inverse of the following matrix :
1
2
3
[2
5
7 ].
βˆ’2 βˆ’4 βˆ’5
3 6
5 2
16. Find the matrices X and Y , if X + Y =[
] and X – Y = [
] and hence find 𝑋 2 βˆ’
0 βˆ’1
0 9
π‘Œ2 .
17. Show that the matrix B’AB is symmetric or skew symmetric according as A is
symmetric or skew symmetric.
DETERMINANTS
π‘Ž2 + 2π‘Ž
1. Using properties of determinants, prove that : | 2π‘Ž + 1
3
π‘Ž2 2π‘Žπ‘ 𝑏 2
2. Show that : | 𝑏 2
π‘Ž2 2π‘Žπ‘ | = (π‘Ž3 + 𝑏 3 )2 .
2π‘Žπ‘ 𝑏 2
π‘Ž2
0 1 1
3. Find π΄βˆ’1 , if 𝐴 = [1 0 1]. Also show that π΄βˆ’1 =
1 1 0
𝐴2 βˆ’3𝐼
2
2π‘Ž + 1 1
π‘Ž + 2 1| = (π‘Ž βˆ’ 1)3 .
3
1
.
4. Using properties of determinants, prove that :
𝑏+𝑐
|𝑐 + π‘Ž
π‘Ž+𝑏
𝑐+π‘Ž
π‘Ž+𝑏
𝑏+𝑐
π‘Ž+𝑏
𝑏 + 𝑐 | = 2(π‘Ž + 𝑏 + 𝑐)(π‘Žπ‘ + 𝑏𝑐 + π‘π‘Ž βˆ’ π‘Ž2 βˆ’ 𝑏 2 βˆ’ 𝑐 2 ).
𝑐+π‘Ž
Subject / Grade / Work Sheet Number / Chapter Number / 2012-2013
Page 4
𝑠𝑖𝑛(𝐴 + 𝐡 + 𝐢)
βˆ’π‘ π‘–π‘›π΅
5. If 𝐴 + 𝐡 + 𝐢 = πœ‹ , show that [
cos(𝐴 + 𝐡)
𝑠𝑖𝑛𝐡
0
βˆ’π‘‘π‘Žπ‘›π΄
π‘Ž+𝑏
6. Prove using the properties of determinants : | 𝑏 + 𝑐
𝑐+π‘Ž
.
π‘π‘œπ‘ πΆ
π‘‘π‘Žπ‘›π΄] = 0 .
0
𝑏+𝑐
𝑐+π‘Ž
π‘Ž+𝑏
𝑐+π‘Ž
π‘Ž
|
=
2
|
π‘Ž+𝑏
𝑏
𝑏+𝑐
𝑐
𝑏
𝑐
π‘Ž
𝑐
π‘Ž|
𝑏
7. Using the properties of determinants prove that :
(𝑏 + 𝑐)2
| 𝑏2
𝑐2
π‘Ž2
(𝑐 + π‘Ž)2
𝑐2
π‘Ž2 +𝑏 2
𝑐
𝑐
8. Show that :
π‘Ž2
𝑏 2 | = 2π‘Žπ‘π‘ (π‘Ž + 𝑏 + 𝑐)3 .
(π‘Ž + 𝑏)2
|
| π‘Ž
𝑐
|
π‘Ž |
π‘Ž2 +𝑏 2
π‘Ž
𝑐 2 +π‘Ž2
𝑏
𝑏
𝑏
9. Using the properties of determinants , show that :
π‘Ž
|π‘Ž + 2𝑏
π‘Ž+𝑏
π‘Ž+𝑏
π‘Ž
π‘Ž + 2𝑏
π‘Ž + 2𝑏
π‘Ž + 𝑏 | = 9𝑏 2 (π‘Ž + 𝑏).
π‘Ž
2
3
10
π‘₯
𝑦
𝑧
10. Solve for x,y,z : βˆ’ +
4
6
5
6
9
20
π‘₯
𝑦
𝑧
π‘₯
𝑦
𝑧
=4; βˆ’ + =1; + βˆ’
=2.
11. Using the properties of determinants , prove the following :
π‘Ž
|π‘Ž βˆ’ 𝑏
𝑏+𝑐
𝑏
π‘βˆ’π‘
𝑐+π‘Ž
12. Solve for x , |
13. If A = [
𝑐
𝑐 βˆ’ π‘Ž | = π‘Ž3 + 𝑏 3 + 𝑐 3 βˆ’ 3π‘Žπ‘π‘.
π‘Ž+𝑏
3π‘₯ βˆ’ 8
3
3
1
βˆ’π‘‘π‘Žπ‘›π‘₯
3
3π‘₯ βˆ’ 8
3
3
3 | = 0.
3π‘₯ βˆ’ 8
π‘‘π‘Žπ‘›π‘₯
π‘π‘œπ‘ 2π‘₯
] , show that 𝐴′ π΄βˆ’1 = [
1
𝑠𝑖𝑛2π‘₯
βˆ’π‘ π‘–π‘›2π‘₯
].
π‘π‘œπ‘ 2π‘₯
14. Using the properties of determinants, prove that :
βˆ’π‘π‘
2
(i) | π‘Ž + π‘Žπ‘
π‘Ž2 + π‘Žπ‘
𝑏 2 + 𝑏𝑐
βˆ’π‘Žπ‘
𝑏 2 + π‘Žπ‘
𝑐 2 + 𝑏𝑐
𝑐 2 + π‘Žπ‘| = (π‘Žπ‘ + 𝑏𝑐 + π‘π‘Ž)3 .
βˆ’π‘Žπ‘
Subject / Grade / Work Sheet Number / Chapter Number / 2012-2013
Page 5
π‘Ž
(ii) | 𝑏
π‘Žπ‘₯ + 𝑏𝑦
𝑏
𝑐
𝑏π‘₯ + 𝑐𝑦
𝑏+𝑐
15. Show that : |𝑐 + π‘Ž
π‘Ž+𝑏
π‘Žπ‘₯ + 𝑏𝑦
𝑏π‘₯ + 𝑐𝑦 | = (𝑏 2 βˆ’ π‘Žπ‘)(π‘Žπ‘₯ 2 + 2𝑏π‘₯𝑦 + 𝑐𝑦 2 ).
0
π‘Žβˆ’π‘
π‘βˆ’π‘
π‘βˆ’π‘Ž
π‘Ž
𝑏 | = 3π‘Žπ‘π‘ βˆ’ π‘Ž3 βˆ’ 𝑏 3 βˆ’ 𝑐 3 .
𝑐
CONTINUITY AND DIFFERENTIABILITY
1. Discuss the continuity :
π‘₯
,π‘₯ β‰  0
2|π‘₯|
(a) 𝑓(π‘₯) = { 1
,π‘₯ = 0
2
3
2
1
βˆ’π‘₯,
3
(b) 𝑓(π‘₯) =
2
3
≀π‘₯<1
2
,π‘₯ = 1
+π‘₯ ,π‘₯ > 1
{
2
π‘π‘œπ‘ 3π‘₯βˆ’π‘π‘œπ‘ π‘₯
(c) 𝑓(π‘₯) = {
,π‘₯ β‰  0
π‘₯2
βˆ’4 , π‘₯ = 0
, π‘₯β‰ 1
π‘₯βˆ’1
[π‘₯]βˆ’1
(d) 𝑓(π‘₯) = {
βˆ’1 , π‘₯ = 1
2. Find the value of k such that the function β€˜f’ is continuous :
π‘˜π‘π‘œπ‘ π‘₯
πœ‹
,π‘₯ β‰  2
πœ‹βˆ’2π‘₯
(a) 𝑓(π‘₯) = {
πœ‹
3,π‘₯ = 2
1βˆ’π‘ π‘–π‘›3 π‘₯
3π‘π‘œπ‘ 2 π‘₯
,π‘₯ <
π‘Ž ,π‘₯ =
(b) 𝑓(π‘₯) =
𝑏(1βˆ’π‘ π‘–π‘›π‘₯)
{
(πœ‹βˆ’2π‘₯)2
1βˆ’π‘π‘œπ‘ 4π‘₯
πœ‹
πœ‹
2
2
,π‘₯ >
πœ‹
2
,π‘₯ < 0
π‘Ž ,π‘₯ = 0
π‘₯2
(c) 𝑓(π‘₯) =
√π‘₯
{√16+√π‘₯βˆ’4
,π‘₯ > 0
sin(π‘Ž+1)π‘₯+𝑠𝑖𝑛π‘₯
π‘₯
𝑐 ,π‘₯ = 0
(d) 𝑓(π‘₯) =
{
√π‘₯+𝑏π‘₯ 2 βˆ’βˆšπ‘₯
π‘₯βˆ’5
π‘₯βˆ’|5|
(e) 𝑓(π‘₯) =
,π‘₯ < 0
π‘βˆšπ‘₯ 3
,π‘₯ > 0
+ π‘Ž ,π‘₯ < 5
π‘Ž + 𝑏 ,π‘₯ = 5
π‘₯βˆ’5
{π‘₯βˆ’|5| + 𝑏 , π‘₯ > 5
Subject / Grade / Work Sheet Number / Chapter Number / 2012-2013
Page 6
π‘₯ 2 βˆ’3π‘₯+2
(f) 𝑓(π‘₯) = {
π‘₯ 2 βˆ’1
2
3
,π‘₯ β‰  1
π‘˜ ,π‘₯ = 1
1. If y=sinβˆ’1 (π‘₯√1 βˆ’ π‘₯ βˆ’ √π‘₯ √1 βˆ’ π‘₯ 2 )
or
sinβˆ’1(π‘₯ 2 √1 βˆ’ π‘₯ 2 βˆ’ π‘₯√1 βˆ’ π‘₯ 4 )
𝑦
𝑑𝑦
π‘₯+𝑦
2. If log(π‘₯ 2 + 𝑦 2 ) = 2 tanβˆ’1 (π‘₯ ) , show that 𝑑π‘₯ = π‘₯βˆ’π‘¦
3. If π‘₯ = π‘Ž(π‘π‘œπ‘ πœƒ + πœƒπ‘ π‘–π‘›πœƒ), 𝑦 = π‘Ž(π‘ π‘–π‘›πœƒ βˆ’ πœƒπ‘π‘œπ‘ πœƒ), find
𝑠𝑖𝑛2 (π‘Ž+𝑦)
𝑑𝑦
𝑑2 𝑦
𝑑π‘₯ 2
4. If 𝑠𝑖𝑛𝑦 = π‘₯𝑠𝑖𝑛(π‘Ž + 𝑦), prove that 𝑑π‘₯ = π‘ π‘–π‘›π‘Ž
5. Differentiate π‘₯ π‘π‘œπ‘ π‘₯ + 𝑠𝑖𝑛π‘₯ π‘‘π‘Žπ‘›π‘₯
𝑑𝑦
βˆ’π‘¦
βˆ’1
βˆ’1
6. π‘₯ = βˆšπ‘Žsin 𝑑 , 𝑦 = βˆšπ‘Žcos 𝑑 , prove that =
𝑑π‘₯
π‘₯
7. 𝑦 = 3 cos(π‘™π‘œπ‘”π‘₯) + 4 sin(π‘™π‘œπ‘”π‘₯), prove that π‘₯ 2 𝑦2 + π‘₯𝑦1 + 𝑦 = 0
βˆ’1
8. 𝑦 = 𝑒 π‘š sin π‘₯ , prove that (1 βˆ’ π‘₯ 2 )𝑦2 βˆ’ π‘₯𝑦1 βˆ’ π‘š2 𝑦 = 0
3π‘₯+4√1βˆ’π‘₯ 2
9. 𝑦 = cosβˆ’1 (
5
𝑑𝑦
) , find 𝑑π‘₯
2π‘₯+1
𝑑𝑦
10. 𝑦 = cosβˆ’1 (1+4π‘₯ ) , find 𝑑π‘₯
𝑑𝑦
11. 𝑦 = log10 (π‘™π‘œπ‘”π‘ π‘–π‘›π‘₯) , find 𝑑π‘₯
πœ‹
πœ‹
12. 𝑦 = log tan ( + ), show that
13. 𝑓(π‘₯) =
4
2
βˆ’1 1βˆ’π‘₯
tan (1+π‘₯)
𝑑𝑦
𝑑π‘₯
π‘₯+2
= 𝑠𝑒𝑐π‘₯
βˆ’ tanβˆ’1 (1βˆ’2π‘₯) , find 𝑓 β€² (π‘₯)
𝑑
𝑑2 𝑦
14. π‘₯ = π‘Ž(π‘π‘œπ‘ π‘‘ + log π‘‘π‘Žπ‘› 2 ) , 𝑦 = π‘Ž(1 + 𝑠𝑖𝑛𝑑), find 𝑑π‘₯ 2
15. 𝑦 = (cot βˆ’1 π‘₯)2 , prove that (π‘₯ 2 + 1)2 𝑦2 + (2π‘₯)(π‘₯ 2 + 1)𝑦1 βˆ’ 2 = 0
1. If π‘₯ = 𝑠𝑖𝑛𝑑 , 𝑦 = 𝑠𝑖𝑛𝑝𝑑 , prove that (1 βˆ’ π‘₯ 2 )𝑦2 π‘₯. 𝑦1 + 𝑝2 𝑦 = 0
𝑑𝑦
π‘™π‘œπ‘”π‘₯
2. π‘₯ 𝑦 = 𝑒 π‘₯βˆ’π‘¦ , prove that 𝑑π‘₯ = (1+π‘™π‘œπ‘”π‘₯)2
𝑑𝑦
βˆ’1
3. π‘₯√1 + 𝑦 + π‘¦βˆš1 + π‘₯ = 0 , prove that 𝑑π‘₯ = (1+π‘₯)2
4. √1 βˆ’ π‘₯ 6 + √1 βˆ’ 𝑦 6 = π‘Ž(π‘₯ 3 βˆ’ 𝑦 3 ), prove that
𝑑𝑦
𝑑𝑦
𝑑π‘₯
=
π‘₯ 2 √1βˆ’π‘¦6
𝑦 2 √1βˆ’π‘₯ 6
𝑦
5. π‘₯ 𝑝 𝑦 π‘ž = (π‘₯ + 𝑦)𝑝+π‘ž , prove that 𝑑π‘₯ = π‘₯
𝑑2 𝑦
6. 𝑦 = π‘π‘œπ‘‘π‘₯ + π‘π‘œπ‘ π‘’π‘π‘₯, prove that prove that (1 βˆ’ π‘π‘œπ‘ π‘₯)2 𝑑π‘₯ 2 = 𝑠𝑖𝑛π‘₯
1βˆ’π‘₯
𝑑𝑦
βˆ’π‘₯
7. If 𝑦 = 𝑠𝑖𝑛 (2 tanβˆ’1 (√1+π‘₯)) ,prove that 𝑑π‘₯ = √1βˆ’π‘₯ 2
√1+π‘₯ 2 βˆ’βˆš1βˆ’π‘₯ 2
8. Differentiate tanβˆ’1 (√1+π‘₯ 2
9. 𝑦 =
π‘₯.𝑠𝑖𝑛4 π‘₯
√1βˆ’π‘₯ 2
+√1βˆ’π‘₯ 2
) w.r.t tanβˆ’1(√1 + π‘₯ 2 βˆ’ π‘₯)
𝑑𝑦
+ π‘™π‘œπ‘”(√1 βˆ’ π‘₯ 2 ) prove that 𝑑π‘₯ =
sinβˆ’1 π‘₯
3
(1βˆ’π‘₯ 2 )2
Subject / Grade / Work Sheet Number / Chapter Number / 2012-2013
Page 7
..
∞
𝑑𝑦
10. 𝑦 = 𝑠𝑖𝑛π‘₯ 𝑠𝑖𝑛π‘₯ , find 𝑑π‘₯
2
11. 𝑦 = (log(π‘₯ + √π‘₯ 2 + 1)) prove that (π‘₯ 2 + 1)𝑦2 + π‘₯𝑦1 βˆ’ 2 = 0
12. If 𝑦 = 𝑒 π‘Žπ‘₯ 𝑠𝑖𝑛𝑏π‘₯, prove that 𝑦2 βˆ’ 2π‘Žπ‘¦1 + (π‘Ž2 + 𝑏 2 )𝑦 = 0
13. If 𝑦 = sin(π‘š sinβˆ’1 π‘₯), prove that prove that (1 βˆ’ π‘₯ 2 )𝑦2 βˆ’ π‘₯𝑦1 + π‘š2 𝑦 = 0
1
14. If π‘₯ = sin (π‘Ž log 𝑦) , prove that (1 βˆ’ π‘₯ 2 )𝑦2 βˆ’ π‘₯𝑦1 + π‘Ž2 𝑦 = 0
15. Find the points of discontinuity , 𝑓(π‘₯) = |π‘₯| βˆ’ |π‘₯ + 1|
16. Verify mean value theorem , 𝑓(π‘₯) = 𝑠𝑖𝑛4 π‘₯ + π‘π‘œπ‘  4 π‘₯
𝑓(π‘₯) = (π‘₯ 2 βˆ’ 4π‘₯ + 3)𝑒 2π‘₯
17. Verify Rolle’s theorem , 𝑓(π‘₯) = (π‘₯ βˆ’ 1)(π‘₯ βˆ’ 2)2
𝑓(π‘₯) = π‘π‘œπ‘ π‘₯ + 𝑠𝑖𝑛π‘₯
πœ‹
[0, 2 ]
[1,3]
[1,2]
[0,2πœ‹]
VECTORS
1. If π‘Žβƒ— + 𝑏⃗⃗ + 𝑐⃗ = 0, show that π‘Žβƒ— × π‘βƒ—βƒ— = 𝑏⃗⃗ × π‘βƒ— = 𝑐⃗ × π‘Žβƒ—.
2. If π‘Žβƒ— × π‘βƒ—βƒ— = 𝑐⃗ × π‘‘βƒ—, π‘Žβƒ— × π‘βƒ— = 𝑏⃗⃗ × π‘‘βƒ—, prove that (π‘Žβƒ— βˆ’ 𝑑⃗) βˆ₯ (𝑏⃗⃗ βˆ’ 𝑐⃗) ,
π‘Žβƒ— β‰  𝑑 , 𝑏⃗⃗ β‰  𝑐⃗.
3. Prove that |π‘Žβƒ— × π‘βƒ—βƒ—|2 = |π‘Žβƒ—|2 |𝑏⃗⃗|2 βˆ’ (π‘Žβƒ—. 𝑏⃗⃗)2 , |π‘Žβƒ—| = 5 , |𝑏⃗⃗| = 3, |π‘Žβƒ— × π‘βƒ—βƒ—| =
25, find (π‘Žβƒ—. 𝑏⃗⃗).
4. The dot product of a vector with vectors 𝑖̂ + 𝑗̂ βˆ’ 3π‘˜Μ‚ , 𝑖̂ + 3𝑗̂ βˆ’ 2π‘˜Μ‚ ,
2𝑖̂ + 𝑗̂ + 4π‘˜Μ‚ are 0 , 5 and 8. Find the vector.
5. Show that 2𝑖̂ βˆ’ 𝑗̂ + π‘˜Μ‚ , 𝑖̂ βˆ’ 3𝑗̂ βˆ’ 5π‘˜Μ‚ and 3𝑖̂ βˆ’ 4𝑗̂ βˆ’ 4π‘˜Μ‚ form the sides of a
right angled triangle.
6. Find the unit vector perpendicular to the plane ABC , position vectors of
A , B and C are 2𝑖̂ βˆ’ 𝑗̂ + π‘˜Μ‚ , 𝑖̂ + 𝑗̂ + 2π‘˜Μ‚ and 2𝑖̂ + 3π‘˜Μ‚ respectively.
7. Express π‘Žβƒ— = 5𝑖̂ βˆ’ 2𝑗̂ + 5π‘˜Μ‚ as the sum of two vectors such that one is
βƒ—βƒ—βƒ—βƒ—
parallel to the vector 𝑏⃗⃗ = 3𝑖̂ + π‘˜Μ‚ and the other is perpendicular to 𝑏.
8. If π‘Žβƒ— = 𝑖̂ + 2𝑗̂ βˆ’ 3π‘˜Μ‚ , 𝑏⃗⃗ = 3𝑖̂ βˆ’ 𝑗̂ + 2π‘˜Μ‚ , show that
(i) (π‘Žβƒ— + 𝑏⃗⃗) βŠ₯ (π‘Žβƒ— βˆ’ 𝑏⃗⃗)
(ii) Find a unit vector perpendicular to both (π‘Žβƒ— + 𝑏⃗⃗) and (π‘Žβƒ— βˆ’ 𝑏⃗⃗).
9. Find the projection of 𝑏⃗⃗ + 𝑐⃗ on π‘Žβƒ— , where π‘Žβƒ— = 2𝑖̂ βˆ’ 2𝑗̂ + π‘˜Μ‚ , 𝑏⃗⃗ = 𝑖̂ + 2𝑗̂ βˆ’
2π‘˜Μ‚ and 𝑐⃗ = 2𝑖̂ βˆ’ 𝑗̂ + 4π‘˜Μ‚.
10.If π‘Žβƒ— = 𝑖̂ + 𝑗̂ + π‘˜Μ‚ , 𝑏⃗⃗ = 𝑗̂ βˆ’ π‘˜Μ‚ , find a vector 𝑐⃗ such that π‘Žβƒ— × π‘βƒ— = 𝑏⃗⃗ , π‘Žβƒ—. 𝑐⃗ =
3.
11.If π‘Žβƒ— + 𝑏⃗⃗ + 𝑐⃗ = 0 , |π‘Žβƒ—| = 3 , |𝑏⃗⃗| = 5 , |𝑐⃗| = 7 , find the angle between
π‘Žβƒ— π‘Žπ‘›π‘‘ 𝑏⃗⃗.
12.If π‘Žβƒ—. 𝑏⃗⃗ = π‘Žβƒ—. 𝑐⃗ and π‘Žβƒ— × π‘βƒ—βƒ— = π‘Žβƒ— × π‘βƒ— , π‘Žβƒ— β‰  0, prove that 𝑏⃗⃗ = 𝑐⃗.
Subject / Grade / Work Sheet Number / Chapter Number / 2012-2013
Page 8
13.If π‘Žβƒ— , 𝑏⃗⃗ , 𝑐⃗ are position vectors of A , B and C of βˆ†π΄π΅πΆ, show that
1
(i) area of βˆ†π΄π΅πΆ = |π‘Žβƒ— × π‘βƒ—βƒ— + 𝑏⃗⃗ × π‘βƒ— + 𝑐⃗ × π‘Žβƒ—|
2
(ii) deduce the condition of collinear.
14.If π‘Žβƒ— × π‘βƒ—βƒ— = 𝑏⃗⃗ × π‘βƒ—, show that π‘Žβƒ— + 𝑐⃗ = π‘šπ‘βƒ—βƒ— , where m is a scalar.
15.If π‘Žβƒ— is a unit vector , (π‘₯βƒ— βˆ’ π‘Žβƒ—). (π‘₯βƒ— + π‘Žβƒ—) = 8 , find |π‘₯|.
16.Find the area of βˆ†π΄π΅πΆ , A(1,1,1) , 𝐡(1,2,3), 𝐢(2,3,1).
17.If |π‘Žβƒ—| = 3 , |𝑏⃗⃗| = 4 , |𝑐⃗| = 5 and one of them is perpendicular to the sum
of other two, find |π‘Žβƒ— + 𝑏⃗⃗ + 𝑐⃗|.
βƒ—βƒ—βƒ—βƒ—, 𝑐⃗ are mutually
18.If If π‘Žβƒ— × π‘βƒ—βƒ— = 𝑐⃗ , 𝑏⃗⃗ × π‘βƒ— = π‘Žβƒ— , prove that π‘Žβƒ— , 𝑏
perpendicular, |𝑏⃗⃗| = 1 , |𝑐⃗| = |π‘Žβƒ—|.
πœƒ
1
πœƒ
1
19.If π‘ŽΜ‚ , 𝑏̂ are unit vectors , prove that sin = |π‘Žβƒ— βˆ’ 𝑏⃗⃗| , cos = |π‘Žβƒ— + 𝑏⃗⃗ |.
2
2
2
2
20.If π‘Žβƒ— , 𝑏⃗⃗ , 𝑐⃗ are of equal magnitude and mutually perpendicular , show
that π‘Žβƒ— + 𝑏⃗⃗ + 𝑐⃗ is equally inclined to π‘Žβƒ— , 𝑏⃗⃗ , 𝑐⃗ .
πœ‹
21.π‘Žβƒ— , 𝑏⃗⃗ , 𝑐⃗ are unit vectors π‘Žβƒ—. 𝑏⃗⃗ = π‘Žβƒ—. 𝑐⃗ = 0 , angle between 𝑏⃗⃗ π‘Žπ‘›π‘‘ 𝑐⃗ is .
6
Prove that π‘Žβƒ— = ±2(𝑏⃗⃗ × π‘βƒ—).
22.If the sum of two unit vectors is a unit vector , prove that magnitude of
their difference is √3.
23.Find the area of the parallelogram whose diagonals are 3𝑖̂ + 𝑗̂ βˆ’ 2π‘˜Μ‚ and
𝑖̂ βˆ’ 3𝑗̂ + 4π‘˜Μ‚.
24. Prove that π‘Žβƒ— × (𝑏⃗⃗ + 𝑐⃗) + 𝑏⃗⃗ × (𝑐⃗ + π‘Žβƒ—) + 𝑐⃗ × (π‘Žβƒ— + 𝑏⃗⃗) = βƒ—0βƒ—.
*************
Subject / Grade / Work Sheet Number / Chapter Number / 2012-2013
Page 9
Rubrics
Criteria being evaluated
Criteria being evaluated
Task is
complete
Task is
incomplete
Answers is
complete
Answer is not
complete with
some
confusion
Subject / Grade / Work Sheet Number / Chapter Number / 2012-2013
Task is not
completed
Answer is not
correct.
student needs
teachers
support to
complete the
task
Page 10