2 - ELTE

BIBLIOGRAPHY FOR LATIN SQUARES
[Abel2007] Abel, R. Julian R.; Cavenagh, Nicholas Concerning eight mutually orthogonal
Latin squares. J. Combin. Des. 15 (2007), no. 3, 255–261. MR2311192 (2007m:05039)
[AdamsBB2008] Adams, Peter; Darryn, Briant; Buchanan, Melinda: Completing partial
Latin squares with two filled rows and two filled columns. Elect. J. Comb. 15 (2008), #R56.
26 pages. http://www.combinatorics.org/
[AdamsBBM2002] Adams, Peter; Billington, Elizabeth J.; Bryant, Darryn E.; Mahmoodian,
Ebadollah S. On the possible volumes of $µ$-way Latin trades. Aequationes Math. 63
(2002), no. 3, 303–320. MR1904722 (2003c:05041) http://www.sciencedirect.om.hu
[AdamsBK2001] Adams, Peter; Bean, Richard; Khodkar, Abdollah Disjoint critical sets in
Latin squares. Proceedings of the Thirty-second Southeastern International Conference on
Combinatorics, Graph Theory and Computing (Baton Rouge, LA, 2001). Congr. Numer. 153
(2001), 33–48. MR1887468 (2002k:05041) http://citeseer.ist.psu.edu/441794.html
[AdamsBK2003] Adams, Peter; Bean, Richard; Khodkar, Abdollah A census of critical sets
in the Latin squares of order at most six. Ars Combin. 68 (2003), 203–223. MR1991049
(2004d:05035) http://citeseer.ist.psu.edu/441076.html
[BaileyC2003] Bailey, R. A.; Cameron, Peter J.: Latin squares: Equivalents and
equivalence. In: The Encyclopaedia of Design Theory (ed. by Cameron, Peter J.).
http://designtheory.org/library/encyc/#l
[BateR1999] Bate, J. A.; van Rees, G. H. J.: A note on critical sets. Australas. J. Combin.
25 (2002), 299–302. MR1884054 (2002j:05026)
http://www.cs.umanitoba.ca/~vanrees/ozpap.pdf
[BateR1999] Bate, J. A.; van Rees, G. H. J. The size of the smallest strong critical set in a
Latin square. Ars Combin. 53 (1999), 73–83. MR1724489 (2000g:05034)
http://www.cs.umanitoba.ca/~vanrees/ArsCritSet.pdf
[BateR2003] Bate, J. A.; van Rees, G. H. J. Minimal and near-minimal critical sets in backcirculant Latin squares. Australas. J. Combin. 27 (2003), 47–61. MR1955387
(2003m:05038)
[BeanD2000] Bean, Richard; Donovan, Diane Closing a gap in the spectrum of critical sets.
Australas. J. Combin. 22 (2000), 191–200. MR1795335 (2001f:05030)
http://ajc.maths.uq.edu.au/
[Bean2001] Bean, Richard Winston: Critical Sets in Latin Squares and Associated
Structures. PhD thesis. The University of Queensland, 2001. 131 pages.
http://eprint.uq.edu.au/archive/00000969/
[BeanDKP2002] Bean, Richard; Donovan, Diane; Khodkar, Abdollah; Penfold Street, Anne:
Steiner trades that give rise to completely decomposable Latin interchanges. In 11th
Australasian Workshop on Combinatorial Algorithms (Hunter Valley, 2000).
Int. J. Comput. Math. 79 (2002), no. 12, 1273–1284. MR1950935 (2003j:05025)
http://citeseer.ist.psu.edu/bean00steiner.html
[Bean2005] Bean, Richard Winston: The size of the smallest uniquely completable set in
order 8 Latin squares. Journal of Combinatorics and Mathematical Combin. Comput. 52,
159–168 (2005). MR2120419 (2005m:05037)
[Bean2006] Bean, Richard Latin trades on three or four rows. Discrete Math. 306 (2006),
no. 23, 3028--3041. MR2273131 (2007h:05026) http://www.sciencedirect.om.hu
[BeanM2003] Bean, Richard; Mahmoodian, E. S. A new bound on the size of the largest
critical set in a Latin square. Combinatorics 2000 (Gaeta). Discrete Math. 267 (2003), no. 13, 13–21. MR1991558 (2004f:05029) http://www.sciencedirect.om.hu
[BedfordJ2000] Bedford, David; Johnson, Matthew Weak uniquely completable sets for
finite groups. Bull. London Math. Soc. 32 (2000), no. 2, 155–162. MR1734194
(2001c:05028) http://blms.oxfordjournals.org/cgi/reprint/32/2/155
[BedfordJO2003] Bedford, David; Johnson, Matthew; Ollis, M. A. Defining sets for Latin
squares given that they are based on groups. European J. Combin. 24 (2003), no. 1, 129–
135. MR1957971 (2004d:05037) http://www.sciencedirect.com/
1
[Behrens1956] W. U. Behrens: Feldversuchsanordnungen mit verbessertem Ausgleich der
Bodenunterschiede. Zeitschrift für Landwirtschaftliches Versuchs- und Untersuchungswesen
2 (1956) 176–193.
[BéjarMCFG2007] Béjar, Ramón; Manyà, Felip; Cabiscol, Alba; Fernández, Cèsar; Gomes,
Carla Regular-SAT: a many-valued approach to solving combinatorial problems. Discrete
Appl. Math. 155 (2007), no. 12, 1613--1626. MR2341632 (2008f:68135)
http://www.sciencedirect.com/
[BillingtonC2007] Billington, Elizabeth J.; Cavenagh, Nicholas J. Decomposing complete
tripartite graphs into closed trails of arbitrary lengths. Czechoslovak Math. J. 57 (132)
(2007), no. 2, 523–551.. MR2337613 (2008e:05107)
http://www.springerlink.com/content/106594/
[BrankovicHM2002] Brankovic, Ljiljana; Horak, Peter; Miller, Mirka; Rosa, Alexander
Premature partial Latin squares. Ars Combin. 63 (2002), 175–184. MR1898236
(2002m:05045) http://citeseer.ist.psu.edu/299450.html
[BurgessK2001] Burgess, D. R. B.; Keedwell, A. D.: Weakly completable critical sets for
proper vertex and edge colourings of graphs. Australas. J. Combin. 24 (2001), 35–45.
MR1852807 (2002e:05052) http://ajc.maths.uq.edu.au/pdf/24/ajc-v24-p35.pdf
[Cadoli2006] Marco Cadoli, Marco Schaerf: Partial solutions with unique completion. Stock and M.
Schaerf (szerkesztők): Aiello Festschrift, Lecture Notes in Artificial Intelligence 4155 (2006), 101–115.
Springer-Verlag, Berlin, 2006. http://www.springerlink.com/content/7682866276861105/fulltext.pdf
[Cavenagh2004] Cavenagh, Nicholas J.: Embedding 3-homogeneous Latin trades into
abelian 2-groups. Comment. Math. Univ. Carolin. 45 (2004), no. 2, 191–212. MR2075269
(2005d:05028)
[Cavenagh2002] Cavenagh, Nicholas J. A new bound on the size of the largest 2-critical
set in a Latin square. Australas. J. Combin. 26 (2002), 255--263. MR1918160
(2003e:05025) http://ajc.maths.uq.edu.au/
[Cavenagh2003JL] MR2069074 (2005a:05042) Cavenagh, Nicholas J.: Latin trade
algorithms and the smallest critical set in a Latin square. J. Autom. Lang. Comb. 8 (2003),
no. 4, 567–578. MR2069074 (2005a:05042) http://citeseer.ist.psu.edu/583276.html
[Cavenagh2003BI] Cavenagh, Nicholas J. The size of the smallest Latin trade in a back
circulant Latin square. Bull. Inst. Combin. Appl. 38 (2003), 11–18. MR1977014
(2004c:05037) http://www.maths.uq.edu.au/~njc/ http://www.maths.uq.edu.au/~njc/
[Cavenagh2003UM] Cavenagh, Nicholas J. Decompositions of complete tripartite graphs into
triangles with an edge attached. Util. Math. 63 (2003), 197–211. MR1976256
(2004b:05158)
[Cavenagh2006CM] Cavenagh, Nicholas J.: A uniqueness result for 3-homogeneous Latin
trades. Comment. Math. Univ. Carolin. 47 (2006), no. 2, 337--358. A uniqueness result for
3-homogeneous latin trades. MR2241536 (2007m:05040)
[CavenaghKhodkar2003] Cavenagh, Nicholas J.; Khodkar, Abdollah Balanced critical sets
in Latin squares. Util. Math. 64 (2003), 229–249. MR2012551 (2004h:05021)
http://citeseer.ist.psu.edu/583514.html
[CavenaghDR2004] Cavenagh, Nicholas J.; Donovan, Diane; van Rees, G. H. J.: A note on
the completion of partial Latin squares. Proceedings of the Thirty-Fifth Southeastern
International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer.
168 (2004), 109–118. MR2122046 http://www.cs.umanitoba.ca/~vanrees/jvr.html#articles
[CavenaghDD2004] Cavenagh, Nicholas; Donovan, Diane; Drápal, Ale\v s Constructing
and deconstructing Latin trades. Discrete Math. 284 (2004), no. 1-3, 97–105. MR2071900
(2005b:05037) http://www.sciencedirect.om.hu
[CavenaghDD2005DM] Cavenagh, Nicholas; Donovan, Diane; Drápal, Ale\v s 3homogeneous Latin trades. Discrete Math. 300 (2005), no. 1-3, 57–70. MR2170114
(2006j:05027) http://www.sciencedirect.om.hu
[CavenaghDD2005AJC] Cavenagh, Nicholas; Donovan, Diane; Drápal, Ale\v s 4-homogeneous Latin trades. Australas. J. Combin. 32 (2005), 285–303. MR2139816 (2006e:05027)
[CavenaghDG2005] Cavenagh, Nicholas J.; Donovan, Diane; Gower, Rebecca A. H. A new
class of critical sets in Latin squares. Util. Math. 67 (2005), 285–300. MR2137940
(2005k:05045)
2
[Cavenagh2006AJC] Cavenagh, Nicholas J. A lower bound for the size of a critical set in the
back circulant Latin square. Australas. J. Combin. 36 (2006), 231–239. MR2262622
[Cavenagh2006CM] Cavenagh, Nicholas J. A uniqueness result for 3-homogeneous Latin
trades. Comment. Math. Univ. Carolin. 47 (2006), no. 2, 337–358. MR2241536
(2007m:05040)
[CavenaghDS2006] Cavenagh, Nicholas J.; Donovan, Diane M.; \c Sule Yaz\i c\i, Emine
Minimal homogeneous Latin trades. Discrete Math. 306 (2006), no. 17, 2047–2055.
MR2251823 (2007g:05025) http://www.sciencedirect.om.hu
[Cavenagh2007] Cavenagh, Nicholas J. A superlinear lower bound for the size of a critical
set in a Latin square. J. Combin. Des. 15 (2007), no. 4, 269–282. MR2330083
(2008d:05033)
[CavenaghDK2007] Cavenagh, Nicholas; Donovan, Diane; Khodkar, Abdollah On the
spectrum of critical sets in back circulant Latin squares. Ars Combin. 82 (2007), 287–319.
MR2292326 (2007j:05028)
[CavenaghDKR2008] Cavenagh, Nicholas; Donovan, Diane; Khodkar, Abdollah; van Rees,
G. H. J.: When is a partial Latin square uniquely completable, but not its completable
product? Discrete Math. 308 (2008), 2830–2843. MR ????
[CavenaghDY2008] Cavenagh, Nicholas J.; Donovan, Diane M.; Yaz\i c\i, Emine \c Sule:
Minimal homogeneous Steiner $2$-$(v,3)$ trades. Discrete Math. 308 (2008), no. 5-6, 741–
752. MR2378908 http://www.sciencedirect.om.hu
[CavenaghL2008] Cavenagh, Nicholas; Lison\v ek, Petr Planar Eulerian triangulations are
equivalent to spherical Latin bitrades. J. Combin. Theory Ser. A 115 (2008), no. 1, 193–197.
MR2378864 http://www.sciencedirect.om.hu
[Cerny2001] \v Cern\'y, Anton: On maximal premature partial Latin squares. Australas. J.
Combin. 24 (2001), 5–12. MR1852805 (2002e:05029)
[Colbourn1984] Charles J. Colbourn: The complexity of completing partial Latin squares
Discrete Applied Mathematics, Volume 8, Issue 1, April 1984, 25–30. MR0739595
(85d:05055) Library
[ColbournCS1984] Charles J. Colbourn, M. J. Colbourn, D. R. Stinson: The computational
complexity of recognizing critical sets. Lecture Notes in Mathematics 1073 (1984), 248−253.
MR0761025 (85k:68035) Library
[ColbournD1996] Colbourn, Charles J.; Dinitz J. (editors): CRC Handbook of Combinatorial
Design, CRC Press, Boca Raton, 1996.
[ComputationalC2008] Computational Complexity. Weblog page, where the sudoku
problems are often discussed: http://weblog.fortnow.com/ (editor was earlier Lance
Fortnow, actually it is edited by Bill Gasarch).
[CooperDS1991] Cooper, Joan; Donovan, Diane; Seberry, Jennifer Latin squares and
critical sets of minimal size. Combinatorial mathematics and combinatorial computing
(Palmerston North, 1990). Australas. J. Combin. 4 (1991), 113—120. MR1129273
(92i:05049) http://ajc.maths.uq.edu.au/pdf/4/ajc-v4-p113.pdf
[DénesK1974] Dénes, J.; Keedwell, A. D. Latin squares and their applications. Academic
Press, New York-London, 1974. 547 pages, 604 references. MR0351850 (50 #4338) Library
[DénesK1991] Dénes, J.; Keedwell, A. D. Latin squares. New developments in the theory
and applications. With contributions by G. B. Belyavskaya, A. E. Brouwer, T. Evans, K.
Heinrich, C. C. Lindner and D. A. Preece. With a foreword by Paul Erdös. Annals of Discrete
Mathematics, 46. North-Holland Publishing Co., Amsterdam, 1991. xiv+454 pages, 756
references. MR1096296 (92h:05022) Library
[DénesK1992] Dénes, J.; Keedwell, A. D. A new authentication scheme based on Latin
squares. A collection of contributions in honour of Jack van Lint. Discrete Math. 106/107
(1992), 157–161. MR1181910 (93g:05025)
[DilkinaG2007] Bistra Dilkina, Carla P. Gomes, Ashish Sabharwal: Tradeoffs in the
Complexity of Backdoor Detection. Proc. 13th International Conference on Principles and
Practice of Constraint Programming, Providence, RI, Sep 2007.
http://www.cs.cornell.edu/gomes/new-papers.htm
[DonovanC1996] Donovan, Diane; Cooper, Joan Critical sets in back circulant Latin
squares. Aequationes Math. 52 (1996), no. 1-2, 157–179. MR1406629 (97g:05032)
http://www.maths.uq.edu.au/~dmd/research.html
3
[Donovan1999] Donovan, Diane: Critical sets in Latin squares of order less than 11, J.
Combin. Math. Combin. Computing, 29 (1999), 223–240.
http://www.maths.uq.edu.au/~dmd/research.html
[DonovanFK2004] Donovan, Diane; Fu, Chin-Mei; Khodkar, Abdollah: An investigation of
2-critical sets in Latin squares. Ars Combin. 72 (2004), 223--234. MR2069062
(2005b:05040) http://www.maths.uq.edu.au/~dmd/research.html
[DonowanH2000] Donovan, Diane; Howse, Adelle Towards the spectrum of critical sets.
Australas. J. Combin. 21 (2000), 107–130. MR1758263 (2000m:05041)
http://www.maths.uq.edu.au/~dmd/research.html
[DonovanK2003] Donovan, Diane; Khodkar, Abdollah Product constructions for critical sets
in Latin squares. 15th MCCCC (Las Vegas, NV, 2001). J. Combin. Math. Combin. Comput. 46
(2003), 227–254. MR2004852 (2004g:05036)
http://www.maths.uq.edu.au/~dmd/research.html
[DonovanM2002] Donovan, Diane; Mahmoodian, E. S. An algorithm for writing any Latin
interchange as a sum of intercalates. Bull. Inst. Combin. Appl. 34 (2002), 90–98.
http://www.maths.uq.edu.au/~dmd/research/ebad10.pdf Correction to a paper on critical
sets: "An algorithm for writing any Latin interchange as a sum of intercalates" [Bull. Inst.
Combin. Appl. 34 (2002), 90–98; MR1880972 (2002j:05028)]. Bull. Inst. Combin. Appl. 37
(2003), 44. MR1954525 (2003m:05039)
[DonovanK2004AC] Donovan, Diane; Fu, Chin-Mei; Khodkar, Abdollah An investigation of
2-critical sets in Latin squares. Ars Combin. 72 (2004), 223–234. MR2069062
(2005b:05040) http://www.maths.uq.edu.au/~dmd/research.html
[DonovanK2004JCM] Donovan, Diane; Khodkar, Abdollah Uniform critical sets in Latin
squares. J. Combin. Math. Combin. Comput. 48 (2004), 3–23. MR2034897 (2004k:05044)
http://www.maths.uq.edu.au/~dmd/research.html
[DonovanLR2008] Donovan, Diane; LeFevre, James; van Rees, G. H. John On the
spectrum of critical sets in Latin squares of order $2\sp n$. J. Combin. Des. 16 (2008), no.
1, 25–43. MR2369994 http://www.cs.umanitoba.ca/~vanrees/p1v5.pdf
[EndresSchimmel2005] Franz Karl Endres, Annemarie Schimmel: Das Mysterium der Zahl.
Zahlensymbolik im Kulturvergleich. 9. Aufl., Eugen Diederichs Verlag, München, 1984. 343
pages.
[Euler1799] Leonhard Euler: Recherches sur une nouvelle espéce de quarrés magiques. In
Leonardi Euleri Opera Omnia, Serie 1, 7 (1923), 291−392.
[Evans1960] Trevor Evans: Embedding incomplete latin squares. Amer. Math. Monthly 67
(1960), 958−961. MR0122728 (23 \#A68)
[FitinaS1999] Fitina, L. F.; Seberry, Jennifer; Sarvate, Dinesh On F-squares and their
critical sets. Australas. J. Combin. 19 (1999), 209--230. MR1695840 (2000c:05029)
http://ajc.maths.uq.edu.au/pdf/19/ajc-v19-p209.pdf
[FitinaSC1999] Fitina, L. F.; Seberry, Jennifer; Chaudhry, Ghulam R. Back circulant Latin
squares and the influence of a set. Australas. J. Combin. 20 (1999), 163−180. MR1723870
(2000i:05034)
[Ghandehari2005] Ghandehari, M., Hatami, H., Mahmoodian, E. S.: On the size of the
minimum critical set of a Latin square. Discrete Math. 293 (2005), no. 1-3, 121–127.
MR2136056 (2005m:05038) http://www.sciencedirect.om.hu
[Gomes 2003] Gomes, Carla; Regis, Rommel; Shmoys, David: An Improved Approximation
for the Partial Latin Square Extension Problem. In Proceeding of the ACM-SIAM Symposium
on Discrete Algorithms (SODA-2003), Baltimore, MD, 2003. 3 pages.
http://www.cs.cornell.edu/gomes/new-papers.htm
[Hall1948] Hall, Marshall, Jr.: Distinct representatives of subsets. Bull. Amer. Math. Soc.
54, (1948). 922−926. MR0027033 (10,238g)
[HatamiM2003] Hatami, Hamed; Mahmoodian, Ebadollah S. A lower bound for the size of
the largest critical sets in Latin squares. Bull. Inst. Combin. Appl. 38 (2003), 19−22.
MR1977015 (2004d:05038) http://citeseer.ist.psu.edu/hatami03lower.html
http://www.cs.toronto.edu/~hamed/publications.html
4
[Häggkvist1978] Häggkvist, R. A solution of the Evans conjecture for Latin squares of
large size. Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, pp.
495−513, Colloq. Math. Soc. János Bolyai, 18, North-Holland, Amsterdam-New York, 1978.
MR0519287 (80j:05023)
[Howse1998] Howse, Adelle Minimal critical sets for some small Latin squares. Australas.
J. Combin. 17 (1998), 275−288. MR1626260 (98m:05026)
http://ajc.maths.uq.edu.au/pdf/17/ajc-v17-p275.pdf
[JohnsonB2001] Johnson, Matthew; Bedford, David Weak critical sets in cyclic Latin
squares. Australas. J. Combin. 23 (2001), 301−316. MR1815020 (2001i:05041)
[Keedwell2004] Keedwell, A. D. Critical sets in latin squares and related matters: an
update. Util. Math. 65 (2004), 97−131. MR2048415 (2005k:05047)
[KhodkarL2008] Khodkar, Abdollah; de Launey, Warwick: Ont he range of influences in
back-cirkculant Latin squares. Discrete Math. 308 (2008) 2896−2900.
http://www.sciencedirect.om.hu
[Knuth2000] Donald Ervin Knuth: Dancing links. In: Millenial Perspectives in Computer
Science (ed. by Jim Davies, Bill Roscoe, and Jim Woodcock). Palgrave, Houndmills, 2000.
187−214. http://www-cs-faculty.stanford.edu/~knuth/preprints.html#ref
[Knuth2008] Donald Ervin Knuth: The Art of Computer Programming. Volume 4A, Fascicle
0, 1, 2, 3 és 4. A 0, 2, 3 és 4 füzetek megjelentek nyomtatásban (Addison-Wesley
Professional, Reading), Manuscripts: http://www.cs.utsa.edu/~wagner/knuth/. In
Hungarian: Fascicle 2 and 4 appear in 2008.
[Lefevre2007] Lefevre, James; Donovan, Diane; Cavenagh, Nicholas; Drápal, Ale\v s
Minimal and minimum size Latin bitrades of each genus. Comment. Math. Univ. Carolin. 48
(2007), no. 2, 189−203. MR2338087 (2008f:05026)
[Lindner2006] Lindner, Charles A survey of finite embedding theorems for partial latin
squares and quasigroups. In Lecture Notes in Mathematics . 406 Springer Verlag, 1974.
Graphs and Combinatorics, 109−154.
[LiR2007] Li, P. C.; van Rees, G. H. J. Nearly orthogonal Latin squares. J. Combin. Math.
Combin. Comput. 62 (2007), 13−24. MR2343277
[LovászP1986] László Lovász, M. D. Plummer: Matching theory. North-Holland
Mathematics Studies, 121. Annals of Discrete Mathematics, 29. North-Holland Publishing
Co., Amsterdam; Akadémiai Kiadó (Publishing House of the Hungarian Academy of
Sciences), Budapest, 1986. MR0859549 (88b:90087)
[MahmoodianR1997] Mahmoodian, E. S.; van Rees, G. H. J. Critical sets in back circulant
Latin rectangles. Australas. J. Combin. 16 (1997), 45−50. MR1477518 (98e:05019)
http://ajc.maths.uq.edu.au/pdf/16/ajc-v16-p45.pdf
[McKayW2005] Brendan D. McKay, Ian M. Wanless: On the number of Latin squares.
Annals Comb. 9 (2005), 335−344. MR2176596 (2006f:05027)
http://cs.anu.edu.au/~bdm/papers/ls11.pdf
[MojdehR2007] Mojdeh, Doost Ali; Rad, Nader Jafari Critical sets in Latin squares given
that they are symmetric. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 18 (2007), 38-45. MR2311790 (2008b:05031) http://pefmath.etf.bg.ac.yu/accepted/38-45.pdf
[Origo2007] Origo: A matematika gondolkodásra nevel - vendégünk volt Lovász László
matematikus. http://www.origo.hu/vendegszoba/tudomany/20071016-az-origo-vendegevolt-lovasz-laszlo-matematikus.html
[Rees2008] van Rees, G. H. J.: More greedy defining sets in latin squares. Australas. J.
Combin. (submitted).
[Rónyai2003] Rónyai Lajos: Birkózás a bonyolultsággal: hatékony algoritmusok. Magyar
Tudomány 48 2003 (3), 356−362. http://www.matud.iif.hu/2003-03.pdf .
[SaharayS2003] SahaRay, Rita; Seberry, Jennifer Critical sets in orthogonal arrays.
Electronic notes in discrete mathematics. Vol. 15, 162 (electronic), Electron. Notes Discrete
Math., 15, Elsevier, Amsterdam, 2003. MR2159085 http://www.sciencedirect.om.hu
[Smetaniuk1981] Bohdan Smetaniuk: A new construction on Latin squares. I. A proof of
Evans conjecture. Ars Combin. 11 (1981), 155−172. MR0629869 (83b:05028) Library
[Staar 2000] Staar Gyula: Egy diszkrét matematikus. Beszélgetés a Wolf-díjas Lovász
László akadémikussal. Természet Világa 131 (4) (2000. április).
http://www.sulinet.hu/eletestudomany/archiv/2000/0015/lovasz/lovasz.html.
5
[Valiant1986] L. G. Valiant, V. V. Vazirani: NP is as easy as detecting unique solution. In
Annual ACM Symposium on Theory of Computing. Proceedings of the seventeenth annual
ACM symposium on Theory of computing (Providence, Rhode Island, United States, 458–
463 (1985) http://portal.acm.org/citation.cfm?id=22196.
[Valiant1986] L. G. Valiant, V. V. Vazirani: NP is as easy as detecting unique solution.
Theoretical Computer Science 47 (1) (1986), 85−93. Library
[vanRees2008] G. H. J. van Rees: More greedy defining sets in latin squares. Australas. J.
Combin. (submitted). http://www.cs.umanitoba.ca/~vanrees/mnols-nov9-05.pdf
Notations: bold identifier: I have a printed version
May 17, 2008.
Antal Iványi
6
([email protected])