Playing Anonymous Games Using Simple Strategies

Playing Anonymous Games
Using Simple Strategies
Yu Cheng
Ilias Diakonikolas
Alistair Stewart
University of Southern California
Anonymous Games
β€’ 𝑛 players, π‘˜ = 𝑂(1) strategies
β€’ Payoff of each player depends on
β€’ Her identity and strategy
β€’ The number of other players who play each of the strategy
β€’ NOT the identity of other players
Jan16,2017
Yu Cheng (USC)
Anonymous Games
Jan16,2017
Yu Cheng (USC)
Nash Equilibrium
β€’ Players have no incentive to deviate
β€’ πœ–-Approximate Nash Equilibrium (πœ–-ANE):
Players can gain at most πœ– by deviation
Jan16,2017
Yu Cheng (USC)
Previous Work
πœ–-ANE of 𝑛-player π‘˜-strategy anonymous games:
β€’ [DP’08]:
𝑛
First PTAS
.
,
)/+
012
β€’ [CDO’14]: PPAD-Complete when πœ– = 2
Jan16,2017
Yu Cheng (USC)
and π‘˜ = 5
How small can πœ– be
so that an πœ–-ANE
can be computed in polynomial time?
Running time
[DP’08a]
[CDO’14]
[DP’08b]
[GT’15]
[DKS’16a]
𝑛
)/+
Jan16,2017
# of strategies
, -.
π‘˜>2
PPAD Complete
πœ–=2
012
:(;<=> (?/+))
poly 𝑛 β‹… 1/πœ–
π‘˜=5
π‘˜=2
πœ– = 𝑛0?/@
poly 𝑛
π‘˜=2
:(;<=(?/+))
π‘˜=2
);<= ?/+ ,(-) π‘˜>2
poly 𝑛 β‹… 1/πœ–
[DKS’16b] B<;C())
β‹… 1/πœ–
[DDKT’16] 𝑛
πœ–
Yu Cheng (USC)
Our Results
Fix any π‘˜ > 2, 𝛿 > 0
β€’ First poly-time algorithm when πœ– =
β€’ A poly-time algorithm for πœ– =
πœ–=1
πœ–=1
Jan16,2017
πœ– = 0.01
?
1GJI
?
1GHI
⟹ FPTAS
πœ– = 1/21
πœ– = 1/𝑛?/@
πœ– = 1/𝑛
Yu Cheng (USC)
πœ– = 1/𝑛L
L
πœ– = 1/21
L
Our Results
Fix any π‘˜ > 2, 𝛿 > 0
β€’ First poly-time algorithm when πœ– =
β€’ A poly-time algorithm for πœ– =
?
1GJI
?
1GHI
⟹ FPTAS
β€’ A faster algorithm that computes an πœ– β‰ˆ
Jan16,2017
Yu Cheng (USC)
?
1G/.
equilibrium
Anonymous Games
β€’ Player 𝑖’s payoff when she plays strategy π‘Ž
𝑒RS = 0.3
𝑒RS = 0.7
)
β€’ 𝑒RS :Ξ 10?
β†’ 0, 1
)
β€’ Ξ 10?
= {(π‘₯? , … , π‘₯) )| βˆ‘S π‘₯S = 𝑛 βˆ’ 1}
Jan16,2017
Yu Cheng (USC)
Poisson Multinomial Distributions
β€’ π‘˜-Categorical Random Variable (π‘˜-CRV) 𝑋S is a vector
random variable ∈ {π‘˜-dimensional basis vectors}
β€’ An (𝑛, π‘˜)-Poisson Multinomial Distribution (PMD) is
the sum of 𝑛 independent π‘˜-CRVs 𝑋 = βˆ‘ 𝑋S
Jan16,2017
Yu Cheng (USC)
Player 1 plays strategy 1
Player 2 plays strategy 1 or 2
Player 3 plays strategy 2 or 3
Jan16,2017
Yu Cheng (USC)
Poisson Multinomial Distributions
Jan16,2017
Yu Cheng (USC)
Poisson Multinomial Distributions (PMDs)
=
Sum of independent random (basis) vectors
=
Mixed strategy profiles of anonymous games
Jan16,2017
Yu Cheng (USC)
Better understanding of PMDs
Faster algorithms for πœ–-ANE
of anonymous games
Jan16,2017
Yu Cheng (USC)
Our Results
Fix any π‘˜ > 2, 𝛿 > 0
β€’ First poly-time algorithm when πœ– =
β€’ A poly-time algorithm for πœ– =
?
1GJI
?
1GHI
⟹ FPTAS
β€’ A faster algorithm that computes an πœ– β‰ˆ
Jan16,2017
Yu Cheng (USC)
?
1G/.
equilibrium
Pure Nash Equilibrium
Player 1
Player 2
Strategy 1
…
Strategy 2
Strategy 3
Player n
Jan16,2017
Yu Cheng (USC)
Lipschitz Games
β€’ An anonymous game is πœ†-Lipschitz if
𝑒RS βˆ’ 𝑒RS () ≀ πœ† βˆ’
?
β€’ [DP’15, AS’13] Every πœ†-Lipschitz π‘˜-strategy anonymous
game admits a 2π‘˜πœ† -approximate pure equilibrium
Jan16,2017
Yu Cheng (USC)
Lipschitz Games
β€’ 2π‘˜πœ† -approximate pure equilibrium
Bad case: πœ† = 1
𝑒RS = 0
Jan16,2017
Yu Cheng (USC)
𝑒RS = 1
𝑒RS = 0
𝑒RS = 1
Nov11,2016
Yu Cheng (USC)
𝑒RS = 0
𝑒RS = 1
𝑑 fg = 1
Jan16,2017
Yu Cheng (USC)
𝑑 fg β‰ͺ 1
Smoothed Game [GT’15]
β€’ Given a game 𝐺, construct a new game 𝐺j
𝑒’ = 𝔼 𝑒()
β€’ Gj is 𝑂n
Jan16,2017
?
1j
-Lipschitz
Yu Cheng (USC)
?/q
p
O(1/𝑛 )-ANE in Polynomial Time
β€’ A 2π‘˜πœ† -ANE of 𝐺j is a 2π‘˜πœ† + 𝛿 -equilibrium of 𝐺
β€’ Gain at most 2π‘˜πœ† by switching to 1 βˆ’ 𝛿,
j
)0?
,…,
β€’ Gain at most 2π‘˜πœ† + 𝛿 by switching to 1, 0 … 0
β€’ πœ† = 𝑂n
Jan16,2017
?
1j
⟹ πœ– = 𝑂n
?
1j
Yu Cheng (USC)
+ 𝛿 = 𝑂n
?
1G/.
j
)0?
𝑑 fg , ≀ 𝑂n(
1
𝑛𝛿
) βˆ’
𝒩(πœ‡? , Ξ£? ) β‰ˆ 𝒩(πœ‡w , Ξ£w )
β€’ Size-free multivariate Central Limit Theorem [DKS’16]:
an (𝑛, π‘˜)-PMD is poly(π‘˜/𝜎) close to discrete Gaussians
β€’ Two Gaussians with similar mean and variance are close
Jan16,2017
Yu Cheng (USC)
?
Our Results
Fix any π‘˜ > 2, 𝛿 > 0
β€’ First poly-time algorithm when πœ– =
β€’ A poly-time algorithm for πœ– =
?
1GJI
?
1GHI
⟹ FPTAS
β€’ A faster algorithm that computes an πœ– β‰ˆ
Jan16,2017
Yu Cheng (USC)
?
1G/.
equilibrium
O(1/𝑛
Jan16,2017
x.yy
)-ANE
Yu Cheng (USC)
Player 1
Player 2
…
Player n
Jan16,2017
Yu Cheng (USC)
L
Quasi-PTAS when πœ– = O(1/𝑛 )
β€’ Small dTV ⟹ Similar payoffs
β€’ Limitation:
β€’ Cover-size lower bound [DKS’16]: even when π‘˜ = 2
Any proper πœ–-cover 𝑆 must have 𝑆 β‰₯ 𝑛(1/πœ–)|(;<=
Jan16,2017
Yu Cheng (USC)
?/+ )
?/q
πœ– = 1/𝑛
Two moments
Jan16,2017
log(1/πœ–) moments
Yu Cheng (USC)
πœ– = 1/𝑛x.yy
𝑂 1 moments
Moment Matching Lemma
β€’ For two PMDs to be πœ–-close in dTV
[DP’08, DKS’16] need first log(1/πœ–) moments to match
β€’ We provide quantitative tradeoff between
β€’ The number of moments we need to match
β€’ The size of the variance
Jan16,2017
Yu Cheng (USC)
Moment Matching Lemma
β€’ Multidimensional Fourier transform
β€’ Exploit the sparsity of the Fourier transform
β€’ Taylor approximations of the log Fourier transform
β€’ Large variance ⟹ Truncate with fewer terms
Jan16,2017
Yu Cheng (USC)
O(1/𝑛
x.yy
)-ANE in Polynomial Time
β€’ There always exists an equilibrium with variance
πœ–π‘› = 𝑛0x.yy β‹… 𝑛 = 𝑛x.x?
β€’ Construct a poly-size πœ–-cover of large variance PMDs
β€’ Polynomial-size: Match only degree 𝑂(1) moments
Jan16,2017
Yu Cheng (USC)
NE
All (𝑛, π‘˜)-PMDs
𝑆 β‰₯ 𝑛(1/πœ–)|(;<=
Jan16,2017
Yu Cheng (USC)
?/+ )
𝑋S =
?
1 βˆ’ 𝑝 𝒆𝒋 + 𝑝𝒆0𝒋
𝑋 = βˆ‘π‘‹S
𝑆 ≀𝑛
Jan16,2017
)0?
?
1G/.
1~.β€’β€’
PMDs with
large variance
-ANE
𝑆 =𝑛
Yu Cheng (USC)
) , G/(GH~.β€’β€’ )
-ANE
Conclusion
Computing πœ–-ANE of 𝑛-player anonymous games
β€’ First poly-time algorithm when πœ– =
?
1GHI
β€’ New moment-matching lemma for PMDs
β€’ A poly-time algorithm for πœ– =
πœ–=1
Jan16,2017
?
1GJI
πœ– = 1/𝑛
Yu Cheng (USC)
⟹ FPTAS
πœ– = 1/𝑛L
πœ– = 1/21
L
Open Problems
FPTAS ?
πœ–=1
Jan16,2017
πœ– = 1/𝑛
Yu Cheng (USC)
πœ– = 1/𝑛L
πœ– = 1/21
L