MCV 4U1 Grade 12 Calculus and Vectors Derivatives of Trigonometric and Exponential Functions Review 1. Differentiate each of the following: a) y = 6 β ex b) y = 2x + 3e βx d) y = π β3π₯ c) y = e 2x + 3 x e) y = x e f) s = Answer: a) β ex ππ¦ ππ₯ ππ‘ β 1 ππ‘ + 1 b) 2 + 3ex d) (β 6x + 5) π 2. Determine 2 + 5π₯ β2π₯ 2 + 5π₯ c) 2e2x + 3 x e) (x + 1) e for each of the following: 2 a) y = 10x b) y = 43π₯ c) y = (5x)5x d) y = (x4)2x 2π π‘ f) (π π‘ + 1)2 e) y = 4π₯ f) y = 4π₯ Answer: a) 10x ln 10 c) 5x + 1 (x ln 5 + 1) 4 β 4π₯ ln 4 e) π₯ 4 1 2 β cos π₯ e) y = sin 2x e3x π₯ 2 b) (6 ln 4) (x43π₯ ) d) x32x (x ln 2 + 4) 1 ln 5 f) 5βπ₯ (β 2 + ) 3. Differentiate each of the following: a) y = 3sin2x β 4cos2x c) y = 5 βπ₯ π₯ 2π₯βπ₯ b) y = tan 3x d) y = x tan 2x f) y = cos2 2x Answer: a) 6 cos 2x + 8 sin 2x sin π₯ c) β (2βcos 2 b) 3 sec2 3x d) 2x sec2 2x + tan 2x π₯) f) β2 sin 4x 3x e) e (3sin 2x + 2 cos 2x) ππ₯ 4. Given the function f (x) = , solve the equation f' (x) = 0. Discuss the π₯ significance of the solution you found. Solution (π π₯ )β² (π₯) β (π π₯ )(π₯)β² f' (x) = π₯2 f' (x) = 0 β x = 1. = π π₯ (π₯ β 1) π₯2 The function has a horizontal tangent at (1, e). It is a local minimum point. f' (x) β + β 1 β 5. If f (x) = xe β2x, find f ' (0.5). Explain what this number represents. Solution f' (x) = e β2x β 2xe β2x = (1 β 2x) e β2x f ' (0.5) = 0 β΄ The slope of the tangent to at the point with x-coordinate 0.5 is 0. 6. Determine the second derivative of each of the following: a) y = xex β ex b) y = xe10x Answer: a) ex (x + 1) b) 20 e10x (5x + 1) π 2π₯ β 1 7. If y = 2π₯ π + Solution 1 prove that ππ¦ ππ₯ = 1 β y2. 8. Determine the equation of the tangent to the curve defined by y = x β e β x that is parallel to the line represented by 3x β y β 9 = 0. Solution Determine the slope of the tangent: 3x β y β 9 = 0 β y = 3x β 9 β m = 3 Determine the tangency point: y' = 1 + e β x y' = m β 1 + e β x = 3 β e β x = 2 β β x = ln 2 β x = β ln 2 y = x β e β x = β ln 2 β 2 The tangency point is: (β ln 2, β ln 2 β 2) Determine the equation of the tangent: y = m (x β x1) + y1 β y = 3(x + ln 2) β ln 2 β 2 y = 3x + 2 ln 2 β 2 9. Determine the equation of the tangent to the curve y = x sin x at the point π where x = . 2 Solution π π π π π π y = y( ) = ( ) sin( ) = β΄ the tangency point is: ( , ) 2 2 2 2 2 2 y' = sin x + x cos x π π π π m = y' ( ) = sin ( ) + ( ) cos ( ) = 1 2 2 2 2 π π 2 2 y = m (x β x1) + y1 β y = 1(π₯ β ) + β y = x. 10. An object moves along a line so that, at time t, in seconds, its position is sin π‘ s= , 3 + cos 2π‘ where s is the displacement in metres. Calculate the object's velocity at t = π . 4 Solution s' = = (sin π‘)β² (3 + cos 2π‘)β (sin π‘)(3 + cos 2π‘)β² (3 + cos 2π‘)2 (cos π‘) (3 + cos 2π‘) β (sin π‘)(β2 sin 2π‘) (3 + cos 2π‘)2 π π π cos ( 4 )(3 + cos ( 2 )) β sin( 4 )(β2 sin ( 2 )) 4 (3 + cos( 2 )) v = s' ( ) = = π π 2 β2 (3 + 0) β β (β2) 2 2 (3 + 0)2 π = 5β2 18 2 β 0.3928 m/s The object's velocity is about 0.3928 m/s. 11. The number of bacteria in a culture, N, at time t days is given by β π‘ 20 N (t) = 2000(30 + π‘π ) a) When is the rate of change of the number of bacteria equal to zero? Solution N' (t) = 2000(π π‘ β20 N' (t) = 0 β 1 β π‘ 20 β π‘ 20 π π‘ β20 ) = 2000π π‘ β20 (1 β π‘ 20 ) = 0 β t = 20 days. b) If the bacterial culture is placed in a colony of mice, the number of mice that become infected, M, is related to the number of bacteria present by the 3 equation M (t) = βπ + 1000. After 10 days, how many mice are infected per day? Solution 1 M (t) = (π(π‘) + 1000)3 1 2 β3 M' (t) = (π (π‘) + 1000) 3 β N' (t) 1 β 2 3 M' (10) = (π(10) + 1000) β N' (10) 3 N (10) = 2000(30 + 10π β0.5 ) β 72130.6132 π‘ N' (10) = 2000π β20 (1 β 1 π‘ ) β 606.53 20 2 β M' (10) = (73130.6132) 3 β (606.53) β 0.1156 3 After 10 days, about 0.1156 mice are infected per day. 12. The concentrations of two medicines in the bloodstream t hours after injection are c1 (t) = te β t and c2 (t) = t2 e β t. a) Which medicine has the larger maximum concentration? Solution c1' (t) = te β t = e β t β te β t = e β t (1 β t) c1' (t) = 0 β e β t (1 β t) = 0 β t = 1 t 0β€t<1 1 t >1 + 0 β c1' (t) β1 c1 (t) e β β max 1 β΄ max c1 (t) = c1 (1) = π‘ β₯0 π c2' (t) = 2t e β t e = t e β t (2 β t) c2' (t) = 0 β t = 0 or t = 2 t c2' (t) c2(t) βt 0 0 0 2 βt 0<t<2 + β 2 t>2 0 β 4e β 1 β max 4 β΄ max c2(t) = c2 (2) = β max c2(t) > max c1 (t) π π‘ β₯0 π‘ β₯0 π‘ β₯0 b) Within the first half hour, which medicine has the larger maximum concentration? Solution max c1 (t) = c1 (0.5) = 0.5e β 0.5 0β€π‘β€0.5 max c2 (t) = c2 (0.5) = 0.25e β 0.5 0β€π‘β€0.5 β΄ max c1 (t) > max c2 (t). 0β€π‘β€0.5 0β€π‘β€0.5 13. Differentiate. a) y = (2 + 3e βx)3 b) y = xe c) y = π π π₯ d) y = (1 β e5x)5 Answer: a) y = β 9 e βx (2 + 3e βx)2 b) e xe - 1 π₯ c) π π₯ + π d) β 25 e5x (1 β e5x)4 14. Differentiate. a) y = 5x b) y = 0.4x c) y = 52x d) y = 5 (2x) e) y = 4 (ex) f) y = β 2(103x) Answers 15. Determine y'. a) y = sin 2x b) y = x2 sin x c) y = sin (Ο/2 β x) d) y = cos x β sin x e) y = cos2 x f) y = cos x sin2 x Answers π 16. Determine the equation of the tangent to the curve y = cos x at ( , 0). 2 Solution y' = β sin x y' (Ο/2) = β sin (Ο/2) = β1 The equation of the tangent is: y = m(x β x1) + y1 y = β (x β Ο/2) + 0 x + y β Ο/2 = 0 17. An object is suspended from the end of a spring. Its displacement from the equilibrium position is s = 8 sin (10Οt) at time t. Calculate the velocity π2 π and acceleration of the object at any time t, and show that 2 + 100Ο2s = 0. ππ‘ Solution ππ v (t) = = 8 cos (10Οt) β (10Οt)' = 80Ο cos (10Οt) ππ‘ ππ π2 π a (t) = = 2 = β80Ο sin (10Οt) β (10Οt)' ππ‘ ππ‘ = β800 Ο2 sin (10Οt) = β100 Ο2 [8 sin (10Οt)] = β100 Ο2s β΄ π2 π π2 π ππ‘ ππ‘ 2 2 2 = β100 Ο s β + 100Ο2s = 0. 18. Determine f "(x). a) f (x) = 4 sin2 (x β 2) Solution f ' (x) = 8 sin (x β 2) cos (x β 2) = 4 sin (2x β 2) f '' (x) = 8 cos (2x β 2) b) f (x) = 2 cos x sec2 x Solution f (x) = 2 cos x sec2 x = 2 (cos x β sec x) sec x = 2 sec x f ' (x) = 2 tan x β sec x f '' (x) = 2 [(tan x)' β sec x + tan x β (sec x)'] = 2 (sec2 x β sec x + tan2 x β sec x) = 2 sec x β (sec2 x + tan2 x) 19. The position of a particle is given by s = 5cos (2t + Ο/4) at time t. What are the maximum values of the displacement, the velocity, and the acceleration? Solution β1 β€ cos (2t + Ο/4) β€ 1 β β5 β€ 5cos (2t + Ο/4) β€ 5 β΄ the maximum values of the displacement is 5. ππ v (t) = = β10 sin (2t + Ο/4) ππ‘ β1 β€ sin (2t + Ο/4) β€ 1 β β10 β€ β10 sin (2t + Ο/4) β€ 10 β΄ the maximum values of the velocity is 10. ππ π2 π a (t) = = 2 = β20 cos (2t + Ο/4) ππ‘ ππ‘ β1 β€ cos (2t + Ο/4) β€ 1 β β20 β€ β20 cos (2t + Ο/4) β€ 20 β΄ the maximum values of the acceleration is 20. 20. The hypotenuse of a right triangle is l2 cm in length. Calculate the measures of the unknown angles in the triangle that will maximize its perimeter. Solution P (π³) = 12 + x + y = 12 + 12 cos π³ + 12 sin π³, 0 β€ π³ β€ Ο/2 P' (π³) = β12 sin π³ + 12 cos π³ P' (π³) = 0 β β12 sin π³ + 12 cos π³ = 0 sin π³ = cos π³ tan π³ = 1β π³ = Ο/4 P (0) = 12 + 12 cos 0 + 12 sin 0 = 24 P (Ο/2) = 12 + 12 cos (Ο/2) + 12 sin (Ο/2) = 24 P (Ο/4) = 12 + 12 cos (Ο/4) + 12 sin (Ο/4) = 12 + 12β2 β΄ max P (π³) = P (Ο/4) = 12 + 12β2 0 β€ Ο΄ β€ Ο/2 The measure of the acute angle π³ in the right triangle that maximizes its perimeter is Ο/4. Note: The problem could be solved without applying derivative: P (π³) = 12 + 12 cos π³ + 12 sin π³ 1 1 = 12 + 12β2 ( cos π³ + sin π³) β2 β2 Ο = 12 + 12β2 4 cos π³ + cos /4 sin π³) = 12 + 12β2 sin (Ο/4 + π³) sin (Ο/4 + π³) β€ 1 P (π³) would be maximal when sin (Ο/4 + π³) = 1 β΄ Ο/4 + π³ = Ο/2, π³ = Ο/4 β΄ max P (π³) = P (Ο/4) = 12 + 12β2 (sin Ο/ 0 β€ Ο΄ β€ Ο/2 21. A fence is 1.5 m high and is 1 m from a wall. A ladder must start from the ground, touch the top of the fence, and rest somewhere on the wall. Calculate the minimum length of the ladder. Solution From β³ABD determine AD: π΄π΅ cot π³ = β AB = 1.5 cot π³ π΅π· AC = AB + BC = 1.5 cot π³ + 1 From β³ACE determine AE: π΄πΆ π΄πΆ 1.5 cot Ο΄ + 1 cos π³ = β AE = = π΄πΈ cos π³ = cos π³ 1.5 1 sin π³ cos π³ + β΄ the length of the ladder equals: 1.5 1 L (π³) = + sin π³ cos π³ Determine the minimal value of L (π³). L' (π³) = β1.5 cos π³ sin2 π³ + sin π³ cos2 π³ = β1.5 cos3 π³ + sin3 π³ sin2 π³ β cos2 π³ L' (π³) = 0 β β1.5 cos3 π³ + sin3 π³ = 0 tan3 π³ = 1.5 π tan π³ = β1.5 β 1.1447 π π³ = tan β1 ( β1.5) β 48.86o L' (45o) L' (50o) L (π³) = = = β1.5 cos3 45° + sin3 45° sin2 45° β cos2 45° β1.5 cos3 50° + sin3 50° sin2 50° β cos2 50° 1.5 1 sin 48.86° + cos 48.86° <0 >0 β 3.5 m 48.86o π³ > 48.86o 0 + 3.5 β min β΄ the minimum length of the ladder is about 3.5 m. 0° < π³ < 48.86o π³ β L' (π³) L (π³) β 22. A thin rigid pole needs to be carried horizontally around a corner joining two corridors, which are I m and 0.8 m wide. Calculate the length of the longest pole that can be carried around this corner. Solution 0.8 1 L (π³) = y + x = + sin π³ cos π³ Determine the minimal value of L (π³). L' (π³) = β 0.8 cos π³ sin2 π³ + sin π³ cos2 π³ = β0.8 cos3 π³ + sin3 π³ sin2 π³ β cos2 π³ L' (π³) = 0 β β 0.8 cos3 π³ + sin3 π³ = 0 tan3 π³ = 0.8 π tan π³ = β0.8 β 0.9283 π π³ = tan β1 ( β0.8) β 42.87o L' (42o) L' (45o) L (π³) = = = β0.8 cos3 42° + sin3 42° sin2 42° β cos2 42° β0.8 cos3 45° + sin3 45° sin2 45° β cos2 45° 0.8 1 sin 42.87° + cos 42.87° <0 >0 β 2.5 m 42.87o π³ > 42.87o 0 + 2.5 β min β΄ the minimum length of the pole is about 2.5 m. β΄ the longest pole that can be carried around this corner is about 2.5 m. 0° < π³ < 42.87o π³ β L' (π³) L (π³) β 23. When the rules of hockey were developed, Canada did not use the metric system. Thus, the distance between the goal posts was designated to be six feet (slightly less than 2 m). If Sidney Crosby is on the goal line, three feet outside one of the goal posts, how far should he go out (perpendicular to the goal line) to maximize the angle in which he can shoot at the goal? Hint: Determine the values of x that maximize π in the following diagram. Solution By the Pythagorean Theorem, we get: a2 = x2 + 9 β a = βπ₯ 2 + 9 b2 = x2 + 81 β b = βπ₯ 2 + 81 By the Cosine Law, we get: 36 = a2 + b2 β 2ab cos π³ β cos π³ = π₯ 2 + 9 + π₯ 2 + 81 β 36 π2 + π2 β 36 2ππ π₯ 2 + 27 cos π³ = β cos π³ = 4 βπ₯ + 90π₯ 2 + 729 2βπ₯ 2 + 9 β βπ₯ 2 + 81 To maximize π, we should minimize cos π³. Determine the values of x that maximize 4 1 β2 2 f (x) = (x + 27) (π₯ + 90π₯ + 729 ) , x > 0 2 1 f '(x) = (x2 + 27)' (π₯ 4 + 90π₯ 2 + 729 )β2 + 4 1 β2 2 β² (x + 27) [(π₯ + 90π₯ + 729 ) ] 2 1 = 2x (π₯ 4 + 90π₯ 2 + 729)β2 1 2 4 2 β (π₯ + 27)(π₯ + 90π₯ + 729 ) 2 3 β2 (4x3 + 180x) 1 = 2x (π₯ 4 + 90π₯ 2 + 729)β2 2 4 2 β (π₯ + 27)(π₯ + 90π₯ + 729 ) 3 β2 (2x3 + 90x) 4 2 = 2x (π₯ + 90π₯ + 729 ) = 2x (π₯ 4 + 90π₯ 2 + 729 ) 4 3 2 3 β2 β [x4 + 90x2 + 729 β (x2 + 27)(x2 + 45)] (18x2 β 486) 3 β2 2 = 36x (π₯ + 90π₯ + 729 ) (x2 β 27) f '(x) = 0, x > 0 β x2 = 27 β x = 3β3 β 5.2 ft x 0 < x < 3β3 f '(x) β f (x) β 3β3 0 min x > 3β3 + β β΄ π¦π’π§ f (x) = f (3β3) βπ¦ax π³ (x) = π³ (3β3) π₯>0 π₯>0 To maximize the angle in which he can shoot at the goal, Sidney Crosby should he go out (perpendicular to the goal line) about 5.2 ft.
© Copyright 2026 Paperzz