PowerPoint - ORB Education

Probability Spaces
© ORB Education Quality Teaching Resources
Visit http://www.orbeducation.co.uk for the other
resources in this pack.
MaP028 - PowerPoint Selection 2
Probability Spaces
This slide show will demonstrate how to
draw a probability space and use it to
calculate probabilities.
The example will draw a probability
space for a 6 sided and a 12 sided dice.
First we need a table
Probability Space
Now consider the 6 sided dice
6 Sided Dice
Probability Space
There are 6 possible outcomes
Probability Space
6 Sided Dice
1
2
3
4
5
6
Now consider the 12 sided dice
Probability Space
12 Sided Dice
6 Sided Dice
1
2
3
4
5
6
There are 12 possible outcomes
Probability Space
12 Sided Dice
1
6 Sided Dice
1
2
3
4
5
6
2
3
4
5
6
7
8
9
10
11
12
Add the scores per combination
Probability Space
12 Sided Dice
1
6 Sided Dice
1
2
3
4
5
6
2
3
4
5
6
7
8
9
10
11
12
1+1=2
Probability Space
12 Sided Dice
1
6 Sided Dice
1
2
3
4
5
6
2
2
3
4
5
6
7
8
9
10
11
12
1+2=3
Probability Space
12 Sided Dice
6 Sided Dice
1
2
3
4
5
6
1
2
2
3
3
4
5
6
7
8
9
10
11
12
1+3=4
Probability Space
12 Sided Dice
6 Sided Dice
1
2
3
4
5
6
1
2
3
2
3
4
4
5
6
7
8
9
10
11
12
And so on …
Probability Space
12 Sided Dice
6 Sided Dice
1
2
3
4
5
6
1
2
3
4
5
6
7
8
9
10
11
12
2
3
4
5
6
7
8
9
10 11
12
13
… until the table is filled.
Probability Space
6 Sided Dice
12 Sided Dice
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10 11
12
13
2
3
4
5
6
7
8
9
10
11 12 13
14
3
4
5
6
7
8
9
10 11
12 13 14
15
4
5
6
7
8
9
10
11 12 13 14 15
16
5
6
7
8
9
10 11
12 13 14 15 16
17
6
7
8
9
10
11 12 13 14 15 16 17
18
What use is this?
Probability Space
6 Sided Dice
12 Sided Dice
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10 11
12
13
2
3
4
5
6
7
8
9
10
11 12 13
14
3
4
5
6
7
8
9
10 11
12 13 14
15
4
5
6
7
8
9
10
11 12 13 14 15
16
5
6
7
8
9
10 11
12 13 14 15 16
17
6
7
8
9
10
11 12 13 14 15 16 17
18
Consider the question below.
What is the probability of rolling the two dice
and getting a total score of 2?
Probability Space
6 Sided Dice
12 Sided Dice
1
2
3
4
5
6
7
8
9
10 11 12
1
2
3
4
5
6
7
8
9
2
3
4
5
6
7
8
9
10 11 12 13 14
3
4
5
6
7
8
9
10 11 12 13 14 15
4
5
6
7
8
9
10 11 12 13 14 15 16
5
6
7
8
9
10 11 12 13 14 15 16 17
6
7
8
9
10 11 12 13 14 15 16 17 18
10 11 12 13
There are 72
possible
outcomes
shown in this
table.
Only one of
them results in
a total of 2.
Consider the question below.
What is the probability of rolling the two dice
and getting a total score of 2?
Probability Space
6 Sided Dice
12 Sided Dice
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
2
3
4
5
6
7
8
9
10 11 12 13 14
3
4
5
6
7
8
9
10 11 12 13 14 15
4
5
6
7
8
9
10 11 12 13 14 15 16
5
6
7
8
9
10 11 12 13 14 15 16 17
6
7
8
9
10 11 12 13 14 15 16 17 18
So the
probability is…
10 11 12
10 11 12 13
1
72
Now consider this question.
What is the probability of rolling the two dice
and getting a total score of 8?
Probability Space
6 Sided Dice
12 Sided Dice
1
2
3
4
5
6
7
8
9
10 11 12
1
2
3
4
5
6
7
8
9
2
3
4
5
6
7
8
9
10 11 12 13 14
3
4
5
6
7
8
9
10 11 12 13 14 15
4
5
6
7
8
9
10 11 12 13 14 15 16
5
6
7
8
9
10 11 12 13 14 15 16 17
6
7
8
9
10 11 12 13 14 15 16 17 18
10 11 12 13
72 outcomes
6 of them result
in a total of 8
8 1

72 9
PowerPoints
By S. Howarth
© ORB Education Quality Teaching Resources
Visit http://www.orbeducation.co.uk for the other
resources in this pack.
MaP028 - PowerPoint Selection 2