Probability Spaces © ORB Education Quality Teaching Resources Visit http://www.orbeducation.co.uk for the other resources in this pack. MaP028 - PowerPoint Selection 2 Probability Spaces This slide show will demonstrate how to draw a probability space and use it to calculate probabilities. The example will draw a probability space for a 6 sided and a 12 sided dice. First we need a table Probability Space Now consider the 6 sided dice 6 Sided Dice Probability Space There are 6 possible outcomes Probability Space 6 Sided Dice 1 2 3 4 5 6 Now consider the 12 sided dice Probability Space 12 Sided Dice 6 Sided Dice 1 2 3 4 5 6 There are 12 possible outcomes Probability Space 12 Sided Dice 1 6 Sided Dice 1 2 3 4 5 6 2 3 4 5 6 7 8 9 10 11 12 Add the scores per combination Probability Space 12 Sided Dice 1 6 Sided Dice 1 2 3 4 5 6 2 3 4 5 6 7 8 9 10 11 12 1+1=2 Probability Space 12 Sided Dice 1 6 Sided Dice 1 2 3 4 5 6 2 2 3 4 5 6 7 8 9 10 11 12 1+2=3 Probability Space 12 Sided Dice 6 Sided Dice 1 2 3 4 5 6 1 2 2 3 3 4 5 6 7 8 9 10 11 12 1+3=4 Probability Space 12 Sided Dice 6 Sided Dice 1 2 3 4 5 6 1 2 3 2 3 4 4 5 6 7 8 9 10 11 12 And so on … Probability Space 12 Sided Dice 6 Sided Dice 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 13 … until the table is filled. Probability Space 6 Sided Dice 12 Sided Dice 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 2 3 4 5 6 7 8 9 10 11 12 13 14 3 4 5 6 7 8 9 10 11 12 13 14 15 4 5 6 7 8 9 10 11 12 13 14 15 16 5 6 7 8 9 10 11 12 13 14 15 16 17 6 7 8 9 10 11 12 13 14 15 16 17 18 What use is this? Probability Space 6 Sided Dice 12 Sided Dice 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 2 3 4 5 6 7 8 9 10 11 12 13 14 3 4 5 6 7 8 9 10 11 12 13 14 15 4 5 6 7 8 9 10 11 12 13 14 15 16 5 6 7 8 9 10 11 12 13 14 15 16 17 6 7 8 9 10 11 12 13 14 15 16 17 18 Consider the question below. What is the probability of rolling the two dice and getting a total score of 2? Probability Space 6 Sided Dice 12 Sided Dice 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 10 11 12 13 14 3 4 5 6 7 8 9 10 11 12 13 14 15 4 5 6 7 8 9 10 11 12 13 14 15 16 5 6 7 8 9 10 11 12 13 14 15 16 17 6 7 8 9 10 11 12 13 14 15 16 17 18 10 11 12 13 There are 72 possible outcomes shown in this table. Only one of them results in a total of 2. Consider the question below. What is the probability of rolling the two dice and getting a total score of 2? Probability Space 6 Sided Dice 12 Sided Dice 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 10 11 12 13 14 3 4 5 6 7 8 9 10 11 12 13 14 15 4 5 6 7 8 9 10 11 12 13 14 15 16 5 6 7 8 9 10 11 12 13 14 15 16 17 6 7 8 9 10 11 12 13 14 15 16 17 18 So the probability is… 10 11 12 10 11 12 13 1 72 Now consider this question. What is the probability of rolling the two dice and getting a total score of 8? Probability Space 6 Sided Dice 12 Sided Dice 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 10 11 12 13 14 3 4 5 6 7 8 9 10 11 12 13 14 15 4 5 6 7 8 9 10 11 12 13 14 15 16 5 6 7 8 9 10 11 12 13 14 15 16 17 6 7 8 9 10 11 12 13 14 15 16 17 18 10 11 12 13 72 outcomes 6 of them result in a total of 8 8 1 72 9 PowerPoints By S. Howarth © ORB Education Quality Teaching Resources Visit http://www.orbeducation.co.uk for the other resources in this pack. MaP028 - PowerPoint Selection 2
© Copyright 2026 Paperzz