A Note on Fisher Separation Theorem

A Note on Fisher Separation Theorem
by De-Xing Guan
March 2007
Irving Fisher (The Theory of Interest) (credit market) , , ! (" #
$ ) % & '
(" # ( ) ) * + , - . / 0 ) 1 ; " 2 3 ! )
* % $ " 4 5 6 7 , 8 9 % & ' : ; ) < = > $ " 4 5 ? @ A 9 B - C 1 D
(Fisher Separation Theorem)?
E
V
W
,
F
X
G
Y
Z
[
possibility set)
possibility set)
? @ q ,
y z , { t x
Š
‹
Œ
>
\
f
(
g
j
k
r
s
<
, K < =
] , @ ^ % U _ ` a b (
h i W % U _ ` a b ( g
, < 2 l F G m n
t , MRS=MRT=1+r, A U | } ~ ?  € $ o Y 
H
[
$
i
W
I
J
>
Ž
’

N
O
M
8
N
9
h
O
+
+
c
c
d
6

ž
]
Q
d
e
, I J p =
8 9 u v w
= ‚ ƒ „ …
o
R
Y2
C
= C1 + 2
1+ r
1+ r
P
Q
o

$
‘
k ?Š
‰

€
‹
g
”
h
_
i
W
Yt = f ( K t −1 ), !
1
C1 , Y1 , K 1 (A • [ – — ),
™
%
L
U
–
M
—
N
O
¡
]
Ÿ
, K0 2
r
S
s
§
, `
q
MRS=1+r?
g
,
¢
, <
1
2
Y1 £ 2 q g ¢ 1 , @ ¤ ¥
: Y2 = C 2 + K 2 − (1 − δ ) K 1 , ©
¨
+
n
¬« F ( K 1 , K 2 ) = f ( K 1 ) − Y2 = f ( K 1 ) − C 2 − K 2 + (1 − δ ) K 1 = 0 ­ «@
®
, S T U e
(consumption
(production
> $ 2 Z
I x < u v
( 3 † Z ‡ ˆ ‰ ?
P
C 2 , Y2 , K 2 (A • ™ – — ) X Y Z H š , › K < 8 9 œ $ ‘ k t ,
_
•
M
: I t = K t − (1 − δ ) K t −1 , t=1,2, “
˜
¦
L
L
U (C1 , C 2 ) , U 8 9 i W ,  L M N O P Q :
Y1 +
@
>
¯
R
? °
±
²
i
W
1
D
(Implicit Function Theorem), g
1
h
ª
g
+
R
h
c
A
+
]
g
c
h
³
]
+
?«
c
]
:
∂F
∂K 1 df ( K 1 )
dK 2
=−
=
+ (1 − δ ) = MPK + 1 − δ «
MRT =
∂F
dK 1
dK 1
∂K 2
«
K
<
´
–
µ
‘
k
t
­ «g
+
MRT = MPK + 1 − δ = 1 + r , ¶
MU C1
¸
½
¹
¸
Á
2
}
Ð
l
Ý
, ¸
¹
{
9
œ
' ? ¾
, ÄÅ
l
Æ
“
F
G
R
Â
f
F
C
¶
à
\
@
D
2
Ñ
Ò
Ô
1
{
D
O
P
t
Q
r
R
s
S
§
, `
Ÿ
¨
·
0
,
+
:
j
l
r
[
1
%
œ
=
[
&
Â
‘
U
&
©
2
2
À
(+
'
[
,
¼
R
, <
Ê
¸
s
®
=
r
'
»
) %
2
k
&
'
Ã
, 
{
µ
, ¿
[
~
S
h
t
É
}
¦
g
È
(À Á
¸
¼
, Ç
t
), ©
s
Ó
$
?
¨
k
!
Õ
Ø
[
, Ä
Í
1
N
k
‘
&
Ì
M
‘
$
l
Ë
L
$
-
ß
œ
%
B
×
, 8
S
9
9
Ö
8
]
2
®
A
Ã
Þ
Ã
F
³
, 
, @
*
]
¼
Â
Ï
Ÿ
[
:
»
{
~
Î
º
c
= MRS = MRT = MPK + 1 − δ = 1 + r
MU C 2
)
h
m
C
Ù
? l
(separation principle), ÄÚ
D
á
â
{
ã
+
ä
å
,
o
æ
ç
l
Û
Ü
:
Irving Fisher (1930): The Theory of Interest, London: Macmillan.
Stephen A. Ross, Randolph W. Westerfield, and Jeffrey Jaffe (2005): Corporate
Finance, 7th edition, New York: McGraw-Hill, p. 100 and pp. 279-280.
http://en.wikipedia.org/wiki/Fisher_separation_theorem
2
¸
{