Algebra Through Examples

Algebra through Examples
Lesson 1
General Details
E-mail: [email protected]
Recommended reading:
- Basic Algebra 1/2 by Jacobs
- TODO: Fill from others
Administrative Details:
- There will be 5 assignments. Each around 5%
- 1 home exam โ€“ usually around 80% (best 4 assignments out of the 5 are chosen)
The Axiums of a Field
A field F has two binary operations: +, โˆ™ such that โˆ€๐‘Ž, ๐‘, ๐‘, ๐‘‘ โˆˆ ๐น: ๐น is closed under them
Addition
(1a) Commutativity: ๐‘Ž + ๐‘ = ๐‘ + ๐‘Ž
(1b) Associativity: (๐‘Ž + ๐‘) + ๐‘ = ๐‘Ž + (๐‘ + ๐‘)
(1c) Neutral element: ๐‘Ž + 0๐น = ๐‘Ž
(1d) Inverses โˆ€๐‘Žโˆƒ-๐‘Ž, ๐‘Ž + (-๐‘Ž) = 0๐น
Multiplication
(1m) Commutativity: ๐‘Ž โˆ™ ๐‘ = ๐‘ โˆ™ ๐‘Ž
(2m) Associativity: (๐‘Ž โˆ™ ๐‘) โˆ™ ๐‘ = ๐‘Ž โˆ™ (๐‘ โˆ™ ๐‘)
(3m) Identity: ๐‘Ž โˆ™ 1๐น = ๐‘Ž
(4m) Inverses: โˆ€๐‘Ž โ‰  0๐น โˆƒ๐‘Ž-1 . ๐‘Ž โˆ™ (๐‘Ž-1 ) = 1๐น
We also demand that 0๐น โ‰  1๐น
Distributivity
To connect the two definitions (as they can be independent according to the current
definition) we add distributivity, which states that:
๐‘Ž โˆ™ (๐‘ + ๐‘) = ๐‘Ž โˆ™ ๐‘ + ๐‘Ž โˆ™ ๐‘
Naming
Any set satisfying (โˆ—) is called a group (an additive group)
If also commutatibity is satisfied, we denote it as a commutative (abelian) group.
If the operation is denoted by multiplication, we call it a multiplication group.
(2m, 3m, 4m is satisfied).
Usually denote operation by + only for abelian groups.
A Ring
A ring is any structure that satisfies (1-4a), (2m), (3m) & Distribution.
If the multiplication is commutative, it is called a commutative ring.
If (4m) holds (not necessarily with(1m)), then it is called a division ring.
A ring without (3m) is sometimes referred to as a rng. (a ring without the i).
Examples
Fields
-
โ„š
โ„
โ„‚
โ„คp = {0,1, โ€ฆ , p โˆ’ 1} with respect to addition and multiplication ๐‘š๐‘œ๐‘‘ ๐‘.
For instance, in โ„ค5 โ€“ 2 โˆ™ 3 = 1(๐‘š๐‘œ๐‘‘ ๐‘)
Rings
Since fields support additional properties than ring, any field is a ring.
For instance - โ„ค
And in addition, here are a few "pure" rings:
- โ„[๐‘ฅ] = Ring of polynomials with real coefficients
- ๐‘€๐‘› (โ„) = Ring of ๐‘› × ๐‘› matrices over โ„ - Not commutative!
- ๐‘€๐‘› (๐”ฝ) = Ring of ๐‘› × ๐‘› matrices over some field ๐”ฝ - Not commutative!
- ๐”ฝ[๐‘ฅ] = Ring of polynomials over some field ๐”ฝ
- โ„ค[๐‘ฅ] = Ring of polynomials over โ„ค
- โ„ค × โ„ค = {(๐‘Ž, ๐‘)|๐‘Ž, ๐‘ โˆˆ โ„ค} with coordinate-wise addition and multiplication:
(๐‘Ž1 , ๐‘1 ) + (๐‘Ž1 + ๐‘1 ) = (๐‘Ž1 + ๐‘Ž2 , ๐‘1 + ๐‘2 )
- If ๐‘…, ๐‘† are Rings โ†’ ๐‘… × ๐‘† is a Ring.
- โ„ค[๐‘ฅ, ๐‘ฆ] = polynomials in ๐‘ฅ & ๐‘ฆ with coefficients in โ„ค.
Commutative Rings
- A sub-Ring if ๐‘… is a Ring.
๐‘† is a sub-Ring if 1๐น , 0๐น โˆˆ ๐‘† and ๐‘† is a Ring in respect of operations in R
for instance, ๐‘€๐‘› (โ„) is a sub-Ring of ๐‘€๐‘› (โ„š)
Ideals
If ๐‘… is a Ring, ๐ผ โŠ† ๐‘… is an Ideal if and only if:
- ๐ผ is an additive subgroup of ๐‘…
- โˆ€๐‘Ž โˆˆ ๐‘…, ๐‘ โˆˆ ๐ผ. ๐‘Ž โˆ™ ๐‘, ๐‘ โˆ™ ๐‘Ž โˆˆ ๐ผ
(๐‘… โˆ™ ๐ผ โŠ† ๐ผ & ๐ผ โˆ™ ๐‘… โŠ† ๐ผ)
Note that if 1๐น โˆˆ ๐ผ โ†’ ๐‘… = ๐ผ
Examples
In any Ring ๐‘…:
- {0}, ๐‘… are Ideals (Trivial)
In a commutative Ring, if ๐‘ โˆˆ ๐‘… โ†’ ๐‘… โˆ™ ๐‘ is an Ideal. Is also called principal Ideal and is
denoted by (๐‘)
-
๐‘Ž1 ๐‘ + ๐‘Ž2 ๐‘ = (๐‘Ž1 + ๐‘Ž2 )๐‘ + ๐‘… โˆ™ ๐‘
๐‘Žโ€ฒ (๐‘ โˆ™ ๐‘Ž) = (๐‘Ž โˆ™ ๐‘)๐‘Žโ€ฒ = (๐‘Žโ€ฒ โˆ™ ๐‘Ž)๐‘ โˆˆ ๐‘… โˆ™ ๐‘
In case of a non commutative Ring, a left Ideal is an additive subgroup satisfying
multiplication on the left. In the same way, a Right Ideal satisfies multiplications on the
right.
Ideals in โ„ค
- 2โ„ค
- 7โ„ค
- ๐‘›โ„ค (โˆ€๐‘› โˆˆ โ„ค)
In fact, every Ideal in โ„ค is a principal Ideal!
Proof
Let ๐ผ be an Ideal in โ„ค (notation: ๐ผ โŠฒ ๐‘…)
If ๐ผ = {0๐น } it is a principal!
So assume ๐ผ โ‰  {0๐น }. Let ๐‘› be the smallest positive integer in ๐ผ.
(๐ผ is closed under addition inverse so must have one!).
Let ๐‘š โˆˆ ๐ผ.
We can find ๐‘ž, ๐‘Ÿ โˆˆ โ„ค s.t. ๐‘š = ๐‘ž โˆ™ ๐‘› + ๐‘Ÿ , 0 โ‰ค ๐‘Ÿ < ๐‘›
๐‘š
โŸ โˆ’ ๐‘žโŸ
โˆ™๐‘›=๐‘Ÿ โˆˆ๐ผ
โˆˆ๐ผ
โˆˆ๐ผ
But we know ๐‘Ÿ < ๐‘› โ†’ Contradiction by minimality in choice of ๐‘›. So ๐‘Ÿ must be 0!
Therefore:
๐‘š = ๐‘ž โˆ™ ๐‘› โˆˆ ๐‘›โ„ค
So we proved that โˆ€๐‘š โˆˆ ๐ผ. ๐‘š โˆˆ ๐‘›โ„ค โ†’ ๐ผ โŠ† ๐‘›โ„ค
But also ๐‘›โ„ค โŠ† ๐ผ since ๐‘› โˆˆ ๐ผ!
Therefore ๐‘›โ„ค = ๐ผ .
More Ideal Examples
๐‘€2 (โ„) is a non-commutative Ring
๐‘Ž ๐‘
๐‘˜ = {[
] |๐‘Ž, ๐‘, ๐‘ โˆˆ โ„} is a subring but not a left or right Ideal.
๐‘ ๐‘‘
e.g.
1 1 ๐‘Ž ๐‘
๐‘Ž ๐‘+๐‘
[
]โˆ™[
]=[
] โˆˆ ๐‘˜ ๐‘œ๐‘›๐‘™๐‘ฆ ๐‘–๐‘“ ๐‘Ž โ‰  0
1 1 0 ๐‘
๐‘Ž ๐‘+๐‘
๐‘Ž ๐‘ 1 1
๐‘Ž+๐‘ ๐‘Ž+๐‘
[
]โˆ™[
]=[
] โˆˆ ๐‘˜ ๐‘œ๐‘›๐‘™๐‘ฆ ๐‘–๐‘“ ๐‘ โ‰  0
0 ๐‘ 1 1
๐‘
๐‘
However, ๐ผ = {[
๐‘Ž
0
๐‘
] |๐‘Ž, ๐‘ฃ โˆˆ โ„} is a right Ideal!
0
e.g.
โˆ— โˆ—
๐‘Ž ๐‘ ๐‘ฅ ๐‘ฆ
[
]โˆ™[
]=[
]โˆˆ๐ผ
๐‘ข
๐‘ฃ
0
0
0 0
It is not, however, a left Ideal:
๐‘ฅ ๐‘ฆ ๐‘Ž ๐‘
๐‘Ž๐‘ฅ โˆ—
[
]โˆ™[
]=[
] ๐‘–๐‘“ ๐‘ข๐‘Ž โ‰  0 โ†’ โˆ‰ ๐ผ
๐‘ข ๐‘ฃ 0 0
๐‘ข๐‘Ž โˆ—
Fields have no non-trivial ideals.
Quotients of Rings
Let ๐‘… be a Ring and ๐ผ an Ideal.
โˆ€๐‘Ž โˆˆ ๐‘… define:
๐ผ + ๐‘Ž = {๐‘ฅ + ๐‘Ž|๐‘ฅ โˆˆ ๐ผ} โˆ’ co-set or ๐ผ determined by ๐‘Ž.
๐‘…โ„ = {๐ผ + ๐‘Ž|๐‘Ž โˆˆ ๐‘…} (equality sets)
๐ผ
Quotient Ring โ€“ we define operations +,โˆ™ to get a ring
(Note: co-sets are disjoint or equal. Proving it would be an assignment).
Define (๐ผ + ๐‘Ž) + (๐ผ + ๐‘) = ๐ผ + (๐‘Ž + ๐‘)
Define (๐ผ + ๐‘Ž) โˆ™ (๐ผ + ๐‘) = ๐ผ + (๐‘Ž โˆ™ ๐‘)
Must show the definition does not depend on co-sets representatives:
Suppose ๐ผ + ๐‘Ž = ๐ผ + ๐‘Žโ€ฒ and ๐ผ + ๐‘ = ๐ผ + ๐‘โ€ฒ
Need to show: ๐ผ + (๐‘Žโ€ฒ + ๐‘ โ€ฒ ) = ๐ผ + (๐‘Ž + ๐‘) and ๐ผ + ๐‘Žโ€ฒ โˆ™ ๐‘ โ€ฒ = ๐ผ + ๐‘Ž โˆ™ ๐‘
โˆƒ๐‘ฅ โˆˆ ๐ผ ๐‘Žโ€ฒ = ๐‘ฅ + ๐‘Ž
โˆƒ๐‘ฆ โˆˆ ๐ผ ๐‘ โ€ฒ = ๐‘ฅ + ๐‘
So - ๐ผ + (๐‘Žโ€ฒ + ๐‘ โ€ฒ ) = ๐ผ + (๐‘ฅ + ๐‘Ž + ๐‘ฆ + ๐‘) = ๐ผ + (๐‘ฅ
โŸ + ๐‘ฆ) + (๐‘Ž + ๐‘) = ๐ผ + (๐‘Ž + ๐‘)
โˆˆ๐ผ
Note: ๐ผ + ๐‘ง = ๐ผ, โˆ€๐‘ง โˆˆ ๐ผ
Lets look at ๐ผ + ๐‘Žโ€ฒ โˆ™ ๐‘โ€ฒ
๐ผ + ๐‘Žโ€ฒ โˆ™ ๐‘ โ€ฒ = ๐ผ + (๐‘ฅ + ๐‘Ž)(๐‘ฆ + ๐‘) = ๐ผ + ๐‘ฅ๐‘ฆ
โŸ + ๐‘Ž๐‘ = ๐ผ + ๐‘Ž โˆ™ ๐‘
โŸ + ๐‘Ž๐‘ฆ
โŸ + ๐‘ฅ๐‘
โˆˆ๐ผ
โˆˆ๐ผ
โˆˆ๐ผ
In the ๐‘…โ„๐ผ quotient ring, the 0๐น element is ๐ผ.
Since ๐ผ + (๐ผ + ๐‘Ž) = ๐ผ + ๐‘Ž
The 1๐น element is ๐ผ + 1 etcโ€ฆ
Examples
1. โ„คโ„๐‘›โ„ค
For instance, when n=6
(6โ„ค + 2) + (6โ„ค + 3) = 6โ„ค + 5
(6โ„ค + 3) + (6โ„ค + 4) = 6โ„ค + 7 = 6โ„ค + 1
TODO: Had a multiplication I did not have time to copy
We can actually think of โ„คโ„๐‘›โ„ค as {0ฬ…, 1ฬ…, โ€ฆ , ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
๐‘› โˆ’ 1} wrt +,โˆ™ ๐‘š๐‘œ๐‘‘ ๐‘›
2. ๐น[๐‘ฅ]โ„๐‘“(๐‘ฅ)๐น[๐‘‹] ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐น ๐‘–๐‘  ๐‘Ž ๐‘“๐‘–๐‘’๐‘™๐‘‘
for instance, when ๐‘“(๐‘ฅ) = ๐‘ฅ 2 โˆ’ 3๐‘ฅ + 2, ๐น = โ„ค
So in fact:
โ„[๐‘ฅ]โ„
= {๐ผ + ๐‘Ž๐‘ฅ + ๐‘|๐‘Ž, ๐‘ โˆˆ โ„}
๐‘ฅ 2 โˆ’ 3๐‘ฅ + 2
Since addition and multiplication are in polynomials mod (๐‘ฅ 2 โˆ’ 3๐‘ฅ + 2)
Same as before (with numbers) - โˆ€๐‘“, ๐‘” โˆˆ โ„[๐‘ฅ]. (๐ผ + ๐‘“(๐‘ฅ)) + (๐ผ + ๐‘”(๐‘ฅ)) = ๐ผ +
๐‘“(๐‘ฅ) + ๐‘”(๐‘ฅ).
Any polynomial ๐‘“(๐‘ฅ) can be written in the form:
๐‘“(๐‘ฅ) = ๐‘ž(๐‘ฅ)(๐‘ฅ 2 โˆ’ 3๐‘ฅ + 2) + ๐‘Ÿ(๐‘ฅ)
where ๐‘ž(๐‘ฅ), ๐‘Ÿ(๐‘ฅ) โˆˆ โ„[๐‘ฅ] โˆง [๐‘‘๐‘’๐‘”๐‘Ÿ๐‘’๐‘’(๐‘Ÿ(๐‘ฅ)) < 2 โˆจ ๐‘Ÿ(๐‘ฅ) = 0]
Also, since ๐‘ฅ 2 โˆ’ 3๐‘ฅ + 2 = (๐‘ฅ โˆ’ 1)(๐‘ฅ โˆ’ 2) โ†’
(๐ผ + (๐‘ฅ โˆ’ 1)) โˆ™ (๐ผ + (๐‘ฅ โˆ’ 2)) = ๐ผ
(๐ผ + (2๐‘ฅ + 1)) + (๐ผ + (3๐‘ฅ โˆ’ 5)) = ๐ผ + (5๐‘ฅ โˆ’ 4)
(๐ผ + (2๐‘ฅ + 1)) โˆ™ (๐ผ + (3๐‘ฅ โˆ’ 5)) = ๐ผ + (2๐‘ฅ + 1)(3๐‘ฅ โˆ’ 5) =
๐ผ + 6๐‘ฅ 2 โˆ’ 2๐‘ฅ โˆ’ 5 = ๐ผ + 6(๐‘ฅ 2 โˆ’ 3๐‘ฅ + 2) + (โˆ’16๐‘ฅ โˆ’ 17) =
๐ผ โˆ’ 16๐‘ฅ โˆ’ 17
(2๐‘ฅ + 1)(3๐‘ฅ โˆ’ 5) โ‰ก โˆ’16๐‘ฅ โˆ’ 17(๐‘š๐‘œ๐‘‘ ๐ผ)
๐‘Ž โ‰ก ๐‘(๐‘š๐‘œ๐‘‘ ๐ผ) โ†” ๐ผ + ๐‘Ž = ๐ผ + ๐‘
------End of lesson 1
Homo-morphisms of rings
If ๐‘…, ๐‘† are Rings, then the function ๐œ™: ๐‘… โ†’ ๐‘† is a ring homomorphism if
1) โˆ€๐‘Ž, ๐‘ โˆˆ ๐‘… ๐œ™(๐‘Ž + ๐‘) = ๐œ™(๐‘Ž) + ๐œ™(๐‘)
2) โˆ€๐‘Ž, ๐‘ โˆˆ ๐‘… ๐œ™(๐‘Ž โˆ™ ๐‘) = ๐œ™(๐‘Ž) โˆ™ ๐œ™(๐‘)
3) ๐œ™(1๐‘… ) = 1๐‘…
If ๐œ™ satisfies (1) and (2) then: if ๐œ™(1) = ๐‘ฅ โ†’ ๐œ™(1) = ๐œ™(1 โˆ™ 1) = ๐œ™(1)2
๐‘ฅ = ๐‘ฅ 2 so (๐‘ฅ โˆ’ 1)๐‘ฅ = 0
If ๐‘… is a domain (๐‘Ž๐‘ = 0 โ†’ ๐‘Ž = 0 ๐‘œ๐‘Ÿ ๐‘ = 0) then it follows that either ๐‘ฅ = 0 or ๐‘ฅ โˆ’ 1 = 0.
If ๐‘ฅ = 0 then:
๐œ™(๐‘Ž) = ๐œ™(๐‘Ž โˆ™ 1) = ๐œ™(๐‘Ž) โˆ™ ๐œ™(1) = ๐œ™ (๐‘Ž) โˆ™ ๐‘ฅ = 0
Otherwise, get ๐œ™(1) = 1
If ๐‘… is not a domain, (1)&(2) ๐œ™ โ‰  0 do not in general imply ๐œ™(1) = 1.
Claim: If ๐œ™: ๐‘… โ†’ ๐‘† homomorphism, then ๐‘˜๐‘’๐‘Ÿ๐œ™{๐‘Ž โˆˆ ๐‘…|๐œ™(๐‘Ž) = 0} is an ideal in ๐‘….
Proof โ€“ in assignment 1.
๐ผ๐‘š๐œ™{๐œ™(๐‘Ž)|๐‘Ž โˆˆ ๐‘…}
Homomorphism theorem for Rings
1) If ๐œ™: ๐‘… โ†’ ๐‘† is onto ๐‘† then ๐‘…โ„๐‘˜๐‘’๐‘Ÿ๐œ™ โ‰… ๐‘† (โ‰… is isomorphic!)
& isomorphism (homomorphism which is 1-1 & onto) is given by:
๐‘˜๐‘’๐‘Ÿ๐œ™ + ๐‘Ž โ†’ ๐œ™(๐‘Ž)
2) If ๐ผ โŠฒ ๐‘… ideal then the map ๐‘Ž โ†’ ๐ผ + ๐‘Ž is a homomorphism from ๐‘… to ๐‘…โ„๐ผ & its
kernel is ๐ผ.
Proofs: Verification
In (1) you need to check that the map is well-defined
i.e. if ๐‘˜๐‘’๐‘Ÿ๐œ™ + ๐‘Ž = ๐‘˜๐‘’๐‘Ÿ๐œ™ + ๐‘Žโ€ฒ then ๐œ™(๐‘Ž) = ๐œ™(๐‘Žโ€ฒ )
If this holds, then ๐‘Ž โˆ’ ๐‘Žโ€ฒ โˆˆ ๐‘˜๐‘’๐‘Ÿ๐œ™
As ๐‘Žโ€ฒ = ๐‘Žโ€ฒ โˆˆ ๐‘˜๐‘’๐‘Ÿ๐œ™ + ๐‘Žโ€ฒ = ๐‘˜๐‘’๐‘Ÿ๐œ™ + ๐‘Ž
Proof:
โˆƒ๐‘ฅ โˆˆ ๐‘˜๐‘’๐‘Ÿ๐œ™: ๐‘Žโ€ฒ = ๐‘ฅ + ๐‘Ž
๐œ™(๐‘Ž = ๐œ™(๐‘ฅ + ๐‘Ž) = ๐œ™(๐‘ฅ) + ๐œ™(๐‘Ž) = ๐œ™(๐‘Ž)
Note: ๐‘˜๐‘’๐‘Ÿ๐œ™ = {0} โ†” ๐œ™ ๐‘–๐‘  1 โˆ’ 1.
โ€ฒ)
Our note:
Lets prove the note!
โ†’
Suppose we have ๐‘ 1 โˆˆ ๐‘† s.t. โˆƒ๐‘ฅ1 , ๐‘ฅ2 โˆˆ ๐‘… ๐œ™(๐‘ฅ1 ) = ๐œ™(๐‘ฅ2 ) = ๐‘ 1 .
However: ๐œ™(๐‘ฅ1 โˆ’ ๐‘ฅ2 ) = ๐œ™(๐‘ฅ1 ) โˆ’ ๐œ™(๐‘ฅ2 ) = 0 โ†’ ๐‘ฅ1 โˆ’ ๐‘ฅ2 โˆˆ ๐‘˜๐‘’๐‘Ÿ๐œ™ โ†’ ๐‘ฅ1 โˆ’ ๐‘ฅ2 = 0 โ†’ ๐‘ฅ1 =
๐‘ฅ2 โ†’ Contradiction!
โ†
First lets prove that 0 is in the ๐‘˜๐‘’๐‘Ÿ๐œ™:
๐‘Ž = ๐‘Ž + 0 โ†’ ๐œ™(๐‘Ž) = ๐œ™(๐‘Ž + 0) โ†’ ๐œ™(๐‘Ž) = ๐œ™(๐‘Ž) + ๐‘โ„Ž๐‘– (0) โ†’ ๐‘โ„Ž๐‘–(0) = 0
Now, since ๐œ™ is 1-1, there can only be one element of R going to 0. And we just found it.
So ๐‘˜๐‘’๐‘Ÿ๐œ™ = {0}.
Example
โ„[๐‘ฅ]โ„
(๐‘ฅ 2 + 1) โ‰… โ„‚
๐‘˜
โˆ‘ ๐‘Ž๐‘— ๐‘ฅ ๐‘—
๐‘—=0
๐œ™
Look at homomorphism: ๐‘“(๐‘ฅ) โ†’ ๐‘“(๐’พ) from โ„[๐‘ฅ] โ†’ โ„‚
What is the kernel?
๐‘˜๐‘’๐‘Ÿ๐œ™ = {๐‘“(๐‘ฅ) โˆˆ โ„[๐‘ฅ]|๐‘“(๐’พ) = 0}
= {๐‘“(๐‘ฅ) โˆˆ โ„[๐‘ฅ]|๐‘“(๐‘ฅ)๐‘–๐‘  ๐‘Ž ๐‘š๐‘ข๐‘™๐‘ก๐‘–๐‘๐‘™๐‘’ ๐‘œ๐‘“ ๐‘ฅ 2 + 1 ๐‘๐‘ฆ ๐‘Ž๐‘›๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ ๐‘๐‘œ๐‘™๐‘ฆ๐‘›๐‘œ๐‘š}
(we shall see that later)
Example2
๐œ™: โ„ค โ†’ {0ฬ…, 1ฬ…, โ€ฆ , ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
๐‘› โˆ’ 1} that sends ๐‘ฅ โˆˆ โ„ค to ๐‘ฅฬ… (๐‘š๐‘œ๐‘‘ ๐‘›)= remainder of ๐‘ฅ (๐‘š๐‘œ๐‘‘ ๐‘›).
๐‘˜๐‘’๐‘Ÿ๐œ™ = ๐‘›โ„ค so โ„คโ„๐‘›โ„ค = ~โ„ค๐‘›
From now on weโ€™re going to look at commutative Rings!
Commutative Rings
Definition: ๐‘… is a domain if ๐‘Ž๐‘ = 0 โ†’ ๐‘Ž = 0 ๐‘œ๐‘Ÿ ๐‘ = 0 for all ๐‘Ž, ๐‘ โˆˆ ๐‘….
Domain โ€“ โ€ซืชื—ื•ื ืฉืœืžื•ืชโ€ฌ
Examples
โ„[๐‘‹], ๐”ฝ[๐‘ฅ] (๐”ฝ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘“๐‘–๐‘’๐‘™๐‘‘)
โ„ค
โ„ค[๐‘ฅ]
โ„ค๐‘‹โ„ค (not a domain!)
โ„ค5 ๐‘‹โ„ค5 (not a domain!)
โˆ’ ๐‘Ÿ๐‘–๐‘›๐‘” ๐‘œ๐‘“ ๐‘›๐‘ฅ๐‘› ๐‘š๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘๐‘’๐‘  ๐‘œ๐‘ฃ๐‘’๐‘Ÿ ๐‘Ž ๐‘“๐‘–๐‘’๐‘™๐‘‘ (not a domain!)
PID
Definition: R is a principal ideal domain (โ€ซ)ืชื—ื•ื ืจืืฉื™โ€ฌ
If it is a domain & every ideal in it is a principal
(i.e. of the form (๐‘Ž) = ๐‘…๐‘Ž, ๐‘“๐‘œ๐‘Ÿ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘Ž โˆˆ ๐‘… )
Examples
๐”ฝ[๐‘‹] โ† ๐ด๐‘ ๐‘ ๐‘–๐‘”๐‘›๐‘š๐‘’๐‘›๐‘ก 1
Counter example?
โ„ค[๐‘ฅ] is not a PID! But itโ€™s a domainโ€ฆ
Look at the ideal generated by ๐‘ฅ and 2 (the set of polynomials over โ„ค with an even constant
term)
๐‘ฅ โˆ™ โ„ค[๐‘ฅ] + 2 โˆ™ โ„ค[๐‘ฅ]
For the sake of contradiction, suppose it were a principal ideal. Then there would exist some
polynomial ๐‘”(๐‘ฅ) which generated the ideal. But since 2 is in the ideal, it must be a multiple
of ๐‘”(๐‘ฅ), so ๐‘”(๐‘ฅ) must be a constant, say ๐‘›. But ๐‘ฅ is also in the ideal, so it must be the
product of ๐‘› with some ๐‘“(๐‘ฅ) in โ„ค[๐‘ฅ]: ๐‘ฅ = ๐‘›๐‘“(๐‘ฅ). Since the coefficient of ๐‘ฅ on the left hand
side is 1, the coefficient of ๐‘ฅ on the right hand side must also be 1. On the other hand, the
coefficient of ๐‘ฅ on the right hand side is a multiple of ๐‘›. So ๐‘› = ±1. But this means that our
ideal is actually generated by 1 or -1, which means it is all of โ„ค[๐‘ฅ]. But this is not true, since
there are elements of โ„ค[๐‘ฅ] which are not in our ideal โ€“ ๐‘ฅ + 1 for instance. Thus, our ideal
must not be a principal ideal!
3 More properties of โ„ค
(1) Euclidean property
If ๐‘Ž, ๐‘ โˆˆ โ„ค non-zero, then โˆƒ๐‘”, ๐‘Ÿ โˆˆ โ„ค s.t. 0 โ‰ค ๐‘Ÿ < |๐‘| and ๐‘Ž = ๐‘๐‘ž + ๐‘Ÿ.
(2) Every 2 non-zero elements have a greatest common divisor
if ๐‘Ž, ๐‘ โˆˆ โ„ค. gcd(๐‘Ž, ๐‘) = ๐‘‘, is a number in โ„ค s.t. ๐‘‘|๐‘Ž, ๐‘‘|๐‘ and if ๐‘‘โ€ฒ is also a common
divisor then ๐‘‘โ€ฒ |๐‘‘. (unique up o a sign).
(3) Unique Factorization into primes
Proof of (2):
In โ„ค. If ๐‘Ž, ๐‘ โˆˆ โ„ค
Look at the ideal โ„ค๐‘Ž + โ„ค๐‘ = principal ideal!
So โˆƒ๐‘‘ โˆˆ โ„ค. โ„ค๐‘Ž + โ„ค๐‘ = โ„ค๐‘‘
๐‘Ž = 1 โˆ™ ๐‘Ž + 0 โˆ™ ๐‘ โˆˆ โ„ค๐‘‘ so a multiple of d, ๐‘‘|๐‘Ž.
Similarily, ๐‘ โˆˆ โ„ค๐‘Ž + โ„ค๐‘ so ๐‘‘|๐‘.
Now let ๐‘‘โ€ฒ โˆˆ โ„ค. ๐‘‘โ€ฒ |๐‘Ž & ๐‘‘โ€ฒ |๐‘.
๐‘‘โ€ฒ |๐‘Ž โ†’ ๐‘Ž โˆˆ โ„ค๐‘‘โ€ฒ so โ„ค๐‘Ž โŠ† โ„ค๐‘‘โ€ฒ
๐‘Ž|๐‘ โ†’ โ„ค๐‘ โˆˆ โ„ค๐‘‘โ€ฒ
And so also โ„ค๐‘Ž + โ„ค๐‘ โŠ† โ„ค๐‘‘โ€ฒ
So ๐‘‘ โˆˆ โ„ค๐‘‘โ€ฒ โ†’ ๐‘‘โ€ฒ |๐‘‘.
Note: Suppose ๐‘‘ & ๐‘‘โ€ฒ are both gcdโ€™s of ๐‘Ž & ๐‘ in โ„ค.
๐‘‘|๐‘‘โ€ฒ so โˆƒ๐‘ฅ โˆˆ โ„ค. ๐‘‘๐‘ฅ = ๐‘‘โ€ฒ
๐‘‘โ€ฒ|๐‘‘ so โˆƒ๐‘ฆ โˆˆ โ„ค. ๐‘‘โ€ฒ๐‘ฆ = ๐‘‘
๐‘‘โ€ฒ ๐‘ฆ๐‘ฅ = ๐‘‘โ€ฒ
๐‘‘โ€ฒ (๐‘ฆ๐‘ฅ โˆ’ 1) = 0
๐‘‘โ€ฒ โ‰  0, ๐‘ ๐‘œ ๐‘ฆ๐‘ฅ โˆ’ 1 = 0
๐‘ฆ๐‘ฅ = 1 โ†’ ๐‘ฆ, ๐‘ฅ โˆˆ {±1}
So the GCD in โ„ค is unique up o a sign.
In general: in any domain, we get uniqueness of the GCD up o an invertible element.
In Rings โ€“ invertible elements are referred to as units.
Bezoutโ€™s Theorem(In โ„ค)
Let ๐‘Ž, ๐‘ โ‰  0 in โ„ค & let ๐‘‘ = gcd(๐‘Ž, ๐‘).
Then, โˆƒ๐‘ข, ๐‘ฃ โˆˆ โ„ค. ๐‘Ž๐‘ข + ๐‘๐‘ฃ = ๐‘‘
This follows trivially from the fact that โ„ค๐‘Ž + โ„ค๐‘ = โ„ค๐‘‘.
Theorem:
Let R be a PID, then if ๐‘Ž, ๐‘ โ‰  0 then ๐‘Ž, ๐‘ have a gcd (unique up to multiplication by a unit)
And Bezoutโ€™s theorem holds in R.
Bezoutโ€™s theorem holds โ€“ if ๐‘‘ = gcd(๐‘Ž, ๐‘) then โˆƒ๐‘ข, ๐‘ฃ โˆˆ ๐‘…. ๐‘Ž๐‘ข + ๐‘๐‘ฃ = ๐‘‘.
Definition:
1) If ๐‘… is a Ring and ๐‘ โ‰  0 โˆˆ ๐‘… is a prime element, whenever ๐‘|๐‘Ž โˆ™ ๐‘ (๐‘Ž, ๐‘ โˆˆ ๐‘…) then
๐‘|๐‘Ž ๐‘œ๐‘Ÿ ๐‘|๐‘.
2) If ๐‘… is a Ring and ๐‘ฅ โ‰  0 โˆˆ ๐‘… is an irreducible element then if ๐‘ฅ = ๐‘Ž โˆ™ ๐‘ for some
๐‘Ž, ๐‘ โˆˆ ๐‘… then a or b must be a unit.
In โ„ค: prime=irreducible.
Claim: If ๐‘… is a domain then ๐‘ primeโ†’ ๐‘ irreducible.
Proof: Suppose ๐‘ is prime and that ๐‘ = ๐‘Ž โˆ™ ๐‘ so also ๐‘|๐‘Ž โˆ™ ๐‘ so ๐‘|๐‘Ž or ๐‘|๐‘. Wlog, We might
as well assume that ๐‘|๐‘Ž. So โˆƒ๐‘ข โˆˆ ๐‘… such that ๐‘๐‘ข = ๐‘Ž. So ๐‘Ž๐‘๐‘ข = ๐‘Ž โ†’ ๐‘Ž(๐‘๐‘ข โˆ’ 1) = 0 & ๐‘Ž โ‰ 
0.
So
๐‘๐‘ข โˆ’ 1 = 0 โ†’ ๐‘๐‘ข = 1 and ๐‘ is a unit.
However, irreducible ๐‘›๐‘œ๐‘ก โ†’ prime in general.
Example:
โ„ค[โˆšโˆ’5] = {๐‘Ž + ๐‘โˆšโˆ’5|๐‘Ž, ๐‘ โˆˆ โ„ค} subring of โ„‚
This contains irreducible elements that are not prime.
It does contain prime elements!
First, recall that if ๐‘ฅ + ๐‘–๐‘ฆ โˆˆ โ„‚ โ†’ โ€–๐‘ฅ + ๐‘–๐‘ฆโ€–2 = ๐‘ฅ 2 + ๐‘ฆ 2
And if ๐‘ง1 , ๐‘ง2 โˆˆ โ„‚, then โ€–๐‘ง1 โ€–2 โˆ™ โ€–๐‘ง2 โ€–2 = โ€–๐‘ง1 โˆ™ ๐‘ง2 โ€–2 .
Use this to show โˆšโˆ’5 is a prime element in the ring.
Assume โˆšโˆ’5 | ๐‘Ÿ โˆ™ ๐‘  โˆˆ โ„ค[โˆ’5]
2
We then got โ€–โˆšโˆ’5โ€– |(โ€–๐‘Ÿโ€–2 โˆ™ โ€–๐‘ โ€–2 ) so 5|โ€–๐‘Ÿโ€–2 โ€–๐‘ โ€–2 and โ€–๐‘Ÿโ€–2 , โ€–๐‘ โ€–2 are integers
And so 5|โ€–๐‘Ÿโ€–2 or 5|โ€–๐‘ โ€–2
Wlog, 5|โ€–๐‘Ÿโ€–2
And write ๐‘Ÿ = ๐‘Ž + ๐‘โˆšโˆ’5, ๐‘Ž, ๐‘ โˆˆ โ„ค
5|๐‘Ž2 + 5๐‘ 2 โ†’ ๐‘Ž2 (๐‘Ž๐‘›๐‘‘ โ„Ž๐‘’๐‘›๐‘๐‘’ ๐‘Ž๐‘™๐‘ ๐‘œ ๐‘Ž) are integer multiples of 5.
So write ๐‘Ž = 5๐‘Žโ€ฒ , ๐‘Žโ€ฒ โˆˆ โ„ค.
And ๐‘Ÿ = 5๐‘Žโ€ฒ + ๐‘โˆšโˆ’5 = โˆšโˆ’5
โŸโŸ
(โˆ’โˆšโˆ’5๐‘Žโ€ฒ + ๐‘)
โˆˆ๐‘…๐‘–๐‘›๐‘”
โˆˆโ„ค[โˆšโˆ’5]
So โˆšโˆ’5|๐‘Ÿ in the ring.
We now show that โ„ค[โˆšโˆ’5] contains irreducible elements that are not prime.
Look at:
2 โˆ™ 3 = 6 = (1 + โˆšโˆ’5)(1 โˆ’ โˆšโˆ’5)
First note that 2 is irreducible.
Suppose 2 = ๐‘Ÿ โˆ™ ๐‘ 
4 = โ€–2โ€–2 = โ€–๐‘Ÿโ€–2 โˆ™ โ€–๐‘ โ€–2
Case 1:
โ€–๐‘Ÿโ€–2 = 2 = โ€–๐‘ โ€–2
But on the other hand, if ๐‘Ÿ = ๐‘Ž + ๐‘โˆšโˆ’5 then we get: ๐‘Ž2 + 5๐‘ 2 = 2 which has no solutions
with ๐‘Ž, ๐‘ โˆˆ โ„ค.
Case 2: wlog, โ€–๐‘Ÿโ€– = 1 and โ€–๐‘ โ€–2 = 4 then get ๐‘Ž2 + 5๐‘ 2 = 1 โ†’ ๐‘Ž2 = 1 ๐‘Ž๐‘›๐‘‘ ๐‘ = 0 โ†’ ๐‘Ž =
±1 and ๐‘Ÿ = ±1 and so is a unit.
Note: Can show in a similar way that units of โ„ค[โˆšโˆ’5] are ±1.
We now show that 2 is not prime in โ„ค[โˆšโˆ’5].
By (*) we have that 2|(1 + โˆšโˆ’5)(1 โˆ’ โˆšโˆ’5)
Suppose 2|1 + โˆšโˆ’5.
Then we have ๐‘Ž + ๐‘โˆšโˆ’5, ๐‘Ž, ๐‘ โˆˆ โ„ค: 2(๐‘Ž + ๐‘โˆšโˆ’5) = 1 ± โˆšโˆ’5 โ†’ 2๐‘Ž = 1 - impossible.
So 2 divides neither of the factors and so is not prime.
We shall show that In a PID, all irreducibility implies primeness.
Conclusion: โ„ค[โˆšโˆ’5] I not a PID!
------- end of lesson 2
๐‘… = โ„ค[โˆ’5] not a PID.
Take ๐ผ = 2๐‘… + (1 + โˆšโˆ’5)๐‘…
6 = 2 โˆ™ 3 = (1 + โˆšโˆ’5)(1 โˆ’ โˆšโˆ’5)
2 irreducible but not prime.
Also 1+โˆš5
If ๐ผ was principal, then we would have ๐‘Ÿ such that ๐‘… โˆ™ ๐‘Ÿ = 2๐‘… + (1 + โˆšโˆ’5)๐‘…
Giving โ€“ ๐‘Ÿ|2, ๐‘Ÿ|1 + โˆšโˆ’5
So โˆƒ๐‘ . ๐‘Ÿ๐‘  = 2
Case 1: ๐‘Ÿ is a unitโ†’ ๐‘… โˆ™ ๐‘Ÿ = ๐‘… โ†’ ๐ผ = ๐‘…. We will show this is impossible.
Suppose โˆƒ๐‘Ž, ๐‘, ๐‘, ๐‘‘ โˆˆ โ„ค. 1 = 2(๐‘Ž + ๐‘โˆšโˆ’5) + (๐‘ + ๐‘‘โˆšโˆ’5)(1 + โˆšโˆ’5)
1 = 2๐‘Ž + ๐‘ โˆ’ 5๐‘‘ + โˆšโˆ’5(2๐‘ + ๐‘ + ๐‘‘)
So that:
2๐‘Ž + ๐‘ โˆ’ 5๐‘‘ = 1, โ‡’ ๐‘ + ๐‘‘ = 1(๐‘š๐‘œ๐‘‘ 2)
2๐‘ + ๐‘ + ๐‘‘ = 0 โ‡’ ๐‘ + ๐‘‘ = 0(๐‘š๐‘œ๐‘‘ 2)
Contradiction!
Case 2: ๐‘  is a unit.
๐‘Ÿ๐‘  โˆ’1 = 2 and ๐‘Ÿ๐‘  โˆ’1 ๐‘ |1 + โˆšโˆ’5
So 2|1 + โˆšโˆ’5 - contradiction!
Future Assignments:
The grader is Niv Sarig. And he will put the assignments in his web page:
http://www.wesdom.weizmann.ac.il/~nivmoss/ate.html
There is a mailbox for the course!
Claim: In a PID all irreducibles are prime.
Proof: Suppose ๐‘Ž is irreducible and ๐‘Ž|๐‘ โˆ™ ๐‘ in a ring ๐‘… (Assuming ๐‘ โˆ™ ๐‘ โ‰  0).
Since ๐‘… is a PID, ๐‘Ž & ๐‘ have a gcd.
gcd(๐‘Ž, ๐‘) = ๐‘‘. Assume ๐‘Ž = ๐‘‘ โˆ™ ๐‘Žโ€ฒ .
As ๐‘Ž is irreducible & ๐‘‘|๐‘Ž then either ๐‘‘ is invertible or ๐‘Žโ€ฒ is invertible.
Case 1: ๐‘‘ is a unit. Wlog d=1.
By bezout: โˆƒ๐‘ข, ๐‘ฃ. ๐‘Ž๐‘ข + ๐‘๐‘ฃ = 1
๐‘Ž|๐‘ โˆ™ ๐‘ so โˆƒ๐‘Ÿ โˆˆ ๐‘…. ๐‘Ž๐‘ฅ = ๐‘๐‘
๐‘Ž๐‘ข๐‘ฅ + ๐‘๐‘ฅ๐‘ฃ = ๐‘ฅ
๐‘Ž๐‘ข๐‘ฅ = ๐‘๐‘ข๐‘
So
๐‘๐‘ฅ๐‘ฃ + ๐‘๐‘ข๐‘ = ๐‘ฅ
๐‘(๐‘ฅ๐‘ฃ + ๐‘ข๐‘) = ๐‘ฅ โ‡’ ๐‘|๐‘ฅ
So โˆƒ๐‘ โ€ฒ โˆˆ ๐‘…. ๐‘๐‘; = ๐‘ฅ
๐‘Ž๐‘ฅ = ๐‘๐‘
๐‘Ž๐‘๐‘ โ€ฒ = ๐‘๐‘
๐‘(๐‘Ž๐‘ โ€ฒ โˆ’ ๐‘) = 0
๐‘… is a domain and ๐‘ โ‰  0 so ๐‘Ž๐‘ โ€ฒ โˆ’ ๐‘ = 0 โ‡’ ๐‘Ž๐‘ โ€ฒ = ๐‘ ๐‘Ž๐‘›๐‘‘ ๐‘Ž|๐‘
Case 2: ๐‘Žโ€ฒ is a unit.
๐‘Ž(๐‘Žโˆ’1 )โˆ’1 = ๐‘‘
So, ๐‘Ž|๐‘‘ and ๐‘‘|๐‘ so ๐‘Ž|๐‘.
Unique Factorization
Definition: A domain ๐‘… (a commutative ring) is a unique factorization domain (๐‘ˆ๐น๐ท) if any
non-unit ๐‘Ž, ๐‘Ž โ‰  0 can be written as a product of irreducible elements uniquely (up to order
of the factors and units).
๐‘’. ๐‘”. 6 = 2 โˆ™ 3 = 3 โˆ™ 2 = (โˆ’3) โˆ™ (โˆ’2)
Example: โ„ค, ๐”ฝ[๐‘ฅ], ๐‘Ž๐‘›๐‘ฆ ๐‘“๐‘–๐‘’๐‘™๐‘‘,
โ„ค[๐‘ฅ]- which is not a PID!
๐‘ˆ๐น๐ท does not imply ๐‘ƒ๐ผ๐ท!
But ๐‘ƒ๐ผ๐ท โ‡’ ๐‘ˆ๐น๐ท.
We showed that โ„ค[โˆšโˆ’5] is NOT a PID.
Euklidian Property
Definition: A domain ๐‘… is Euclidean if we can define a map ๐›ฟ: ๐‘…\{0} โ†’ โ„• (called the
Euclidean norm) s.t. for ๐‘Ž, ๐‘ โ‰  0 โˆˆ ๐‘…, โˆƒ๐‘ž, ๐‘Ÿ โˆˆ ๐‘… such that:
๐‘Ž = ๐‘๐‘ž + ๐‘Ÿ
and ๐›ฟ(๐‘Ÿ) < ๐›ฟ(๐‘) or ๐‘Ÿ = 0.
And โˆ€๐‘ฅ, ๐‘ฆ โˆˆ ๐‘…. ๐›ฟ(๐‘ฅ) โ‰ค ๐›ฟ(๐‘ฅ๐‘ฆ)
(definition โ€“ Herstein, Jacobson does not require ๐›ฟ(๐‘ฅ) โ‰ค ๐›ฟ(๐‘ฅ๐‘ฆ))
Examples:
1) โ„ค. ๐›ฟ = | |
2) ๐”ฝ[๐‘ฅ], ๐”ฝ is a field, ๐›ฟ = degree of a polynomial
3) ๐”ฝ is a field, ๐›ฟ(๐‘Ž) = 0, โˆ€๐‘Ž โ‰  0
Theorem: In a Euclidean domain, every 2 non-zero elements have a gcd.
Proof: Uses Euclidโ€™s algorithm.
Write: ๐‘Ž = ๐‘๐‘ž1 + ๐‘Ÿ1 , ๐›ฟ(๐‘Ÿ1 ) < ๐›ฟ(๐‘)
If ๐‘Ÿ1 = 0 then ๐‘Ž = ๐‘๐‘ž and ๐‘”๐‘๐‘‘(๐‘Ž, ๐‘) = ๐‘
If not: write ๐‘ = ๐‘Ÿ1 ๐‘ž2 + ๐‘Ÿ2 , ๐›ฟ(๐‘Ÿ2 ) < ๐›ฟ(๐‘Ÿ1 ) or ๐‘Ÿ2 = 0
If ๐‘Ÿ2 = 0 then ๐‘”๐‘๐‘‘(๐‘Ž, ๐‘) = ๐‘Ÿ1
Otherwise, I can write ๐‘Ÿ1 = ๐‘Ÿ2 ๐‘ž3 + ๐‘Ÿ3 , ๐›ฟ(๐‘Ÿ3 ) < ๐›ฟ(๐‘Ÿ2 ) or ๐‘3 = 0
If ๐‘Ÿ3 = 0 then gcd ๐‘Ž, ๐‘ = ๐‘Ÿ2 โ€ฆ
Since ๐›ฟ(๐‘) > ๐›ฟ(๐‘Ÿ1 ) > ๐›ฟ(๐‘Ÿ2 ) > โ‹ฏ
Is a proper decreasing sequence of units we get
For ๐‘˜, ๐›ฟ(๐‘Ÿ๐‘˜ ) = 0, the last non-zero ๐‘ง๐‘˜ is the GCD.
Note: โ„ค[โˆšโˆ’5] is not Euclidean!
And in assignment 2 you show 6 + 2(1 + โˆšโˆ’5) have no GCD.
Theorem: If ๐‘… is Euclidean then ๐‘… is a PID.
Proof: If ๐ผ is an ideal in ๐‘…, ๐ผ โ‰  0
Pick ๐‘Ž โˆˆ ๐ผ and minimal Euclidean norm. And then ๐ผ = ๐‘…๐‘Ž.
Theorem(use for PIDโ†’UFD!)
In a PID any increasing chain of Ideals stabilizes.
I.e. Given ๐ผ1 โŠ† ๐ผ2 โŠ† โ‹ฏ โŠ† ๐ผ๐‘› โŠ† ๐ผ๐‘›+1 โŠ† โ‹ฏ โŠ† ๐‘…
๐ผ๐‘— Ideals โˆƒ๐‘˜ ๐‘ . ๐‘ก. ๐ผ๐‘˜ = ๐ผ๐‘˜+1 โ€ฆ etcโ€ฆ
Proof:
Look at the union of all the Ideals: โ‹ƒโˆž
๐‘›=1 ๐ผ๐‘› = ๐ฝ. ๐ฝ is an ideal and so principal.
So โˆƒ๐‘Ž โˆˆ ๐‘…. ๐ฝ = ๐‘…๐‘Ž.
๐‘Ž โˆˆ ๐ฝ so โˆƒ๐‘˜. ๐‘Ž โˆˆ ๐ผ๐‘˜
๐ผ๐‘˜ โŠ‡ ๐‘…๐‘Ž = ๐ฝ
So โˆ€๐‘ก โ‰ฅ 0. ๐ผ๐‘˜+๐‘ก โŠ‚ ๐ผ๐‘˜ etc. But given ๐ผ๐‘˜+๐‘ก โŠ‡ ๐ผ๐‘˜ โˆ€๐‘ก โ‰ฅ 0
So we get equalityโ€ฆ
Example:
โ„ค[๐‘–] =ring of Gaussian integers = {๐‘Ž + ๐‘๐‘–|๐‘Ž, ๐‘ โˆˆ โ„ค}
Turns out โ€“ this ring is Euclidean.
Proof: Define ๐›ฟ(๐‘ฅ + ๐‘–๐‘ฆ) = ๐‘ฅ 2 + ๐‘ฆ 2 = โ€–๐‘ฅ + ๐‘–๐‘ฆโ€–2 .
๐›ฟ is multiplicative. Need to show Euclidean property holds.
Take ๐‘Ž, ๐‘ โˆˆ โ„ค[๐‘–] ๐‘Ž, ๐‘ โ‰  0
โ„ค[๐‘–] โŠ† โ„š[๐‘–] = {๐‘Ÿ + ๐‘ ๐‘–|๐‘Ÿ, ๐‘  โˆˆ โ„š} - which is a field!
๐‘Ÿ โˆ’ ๐‘–๐‘ 
(๐‘Ÿ + ๐‘ ๐‘–)โˆ’1 , , = 2
๐‘Ÿ + ๐‘ ๐‘– โ‰  0
๐‘Ÿ + ๐‘ 2
So ๐‘Ž โˆ™ ๐‘ โˆ’1 โˆˆ โ„š[๐‘–].
1
1
So write: ๐‘Ž โˆ™ ๐‘ โˆ’1 = ๐›ผ + ๐›ฝ๐‘–, ๐›ผ, ๐›ฝ โˆˆ โ„š. โˆƒ๐‘ข, ๐‘ฃ โˆˆ โ„ค: |๐‘ข โˆ’ ๐›ผ| โ‰ค 2 , |๐‘ข โˆ’ ๐›ฝ| โ‰ค 2
Let ๐‘ž = ๐‘ข + ๐‘–๐‘ฃ โˆˆ โ„ค[๐‘–]
๐‘Ž๐‘ โˆ’1 = ๐‘ข + ๐‘–๐‘ฃ + (๐›ผ โˆ’ ๐‘ข) + ๐‘–(๐›ฝ โˆ’ ๐‘ฃ) โˆˆ โ„š
๐‘Ž๐‘ โˆ’1 = ๐‘ž + (๐›ผ โˆ’ ๐‘ข) + (๐›ฝ โˆ’ ๐‘ฃ)
So ๐›ผ = ๐‘๐‘ž + [(๐›ผ โˆ’ ๐‘ข) + (๐›ฝ โˆ’ ๐‘ฃ)]b
๐‘Ÿ = ๐‘Ž โˆ’ ๐‘๐‘ž โˆˆ โ„ค[๐‘–]
Remains to show that ๐›ฟ(๐‘–) < ๐›ฟ(๐‘).
๐›ฟ(๐‘Ÿ) = โ€–(๐›ผ โˆ’ ๐‘ข) + ๐‘–(๐›ฝ โˆ’ ๐‘ฃ)โ€–2 โˆ™ โ€–๐‘โ€–2
1
1
1
โ€–(๐›ผ โˆ’ ๐‘ข) + ๐‘–(๐›ฝ โˆ’ ๐‘ฃ)โ€–2 = (๐›ผ โˆ’ ๐‘ข)2 + (๐›ฝ โˆ’ ๐‘ฃ)2 โ‰ค + =
4
4
2
1
So that ๐›ฟ(๐‘Ÿ) โ‰ค 2 ๐›ฟ(๐‘) < ๐›ฟ(๐‘)
Euclidean โ‡’ PID.
But PID does not imply Euclidean!
Counter Example:
1
2
โ„ค[ +
โˆšโˆ’19
]
2
a PID but not Euclidean. Checkโ€ฆ
In 2004 it was shown that โ„ค[โˆš14] is Euclidean.
It is easy to show that: โ„ค[โˆšโˆ’๐‘›] (0 > ๐‘› โˆˆ โ„•) is Euclidean โ‡” ๐‘› = 1 ๐‘œ๐‘Ÿ 2
In Euclidean domains: we used the Euclidean property to construct the GCDs.
In UFD: Use factorization to construct GCDโ€™s.
๐‘Ž = ๐‘1 , โ€ฆ , ๐‘๐‘˜
๐‘ = ๐‘ž1 , โ€ฆ , ๐‘ž๐‘™
Where they are irreducible.
GCD=product of common factors.
It turns out: Irreducible implies prime in a UFD.
Sum up
Euclideanโ‡’PIDโ‡’UFD
But the arrows donโ€™t go the other way!
Example:
๐‘ฅ ๐‘ฅ
2 3
4
๐‘ฅ
๐‘›
๐‘… = โ„ค [๐‘ฅ, , , โ€ฆ , , โ€ฆ ] = ๐‘ฅ โˆ™ โ„š[๐‘ฅ] + โ„ค
5 5
๐‘ฅ
6
2
๐‘ฅ
๐‘ฅ
+ 3 ๐‘ฅ + 3 = 5๐‘ฅ 4 โˆ™ 6 + 2 โˆ™ 3 โˆ™ ๐‘ฅ 3 + 3
๐‘… is a subring of โ„š[๐‘ฅ].
1
๐‘… โ‰  โ„š[๐‘ฅ] as 2 โˆ‰ ๐‘….
There are very interesting properties:
1) ๐‘… is a bezout Ring (and in particular, every 2 elements โ‰  0 have a GCD)
2) Any finitely generated is principal
3) But ๐‘… is not a PID!
๐‘ฅ
4) Ideals generated by {๐‘ฅ, 2 , โ€ฆ , โ€ฆ } is not principal!
5) ๐‘… not a UFD. ๐‘ฅ is divisable in this ring, by every integer โ‰  0. So ๐‘ฅ cannot be factored
as products of individuals.
--End of lesson 3
Commutative Rings
Chinese Remainder Theorem
๐‘ฅ โ‰ก 2(๐‘š๐‘œ๐‘‘3)
๐‘ฅ โ‰ก 3(๐‘š๐‘œ๐‘‘5)
๐‘ฅ โ‰ก (๐‘š๐‘œ๐‘‘7)
๐‘’. ๐‘”. ๐‘ฅ = 23
This is 4th century china
Lady with the eggs
๐‘ฅ โ‰ก (๐‘š๐‘œ๐‘‘2)
๐‘ฅ โ‰ก 1(๐‘š๐‘œ๐‘‘3)
๐‘ฅโ‰ก1(๐‘š๐‘œ๐‘‘4)
โ‹ฎ
๐‘ฅโ‰ก0(๐‘š๐‘œ๐‘‘7)
๐‘ฅ = 301
CRT in โ„ค
Let ๐‘›1 , โ€ฆ , ๐‘›๐‘˜ be pair-wise mutually prime integers. (gcd(๐‘›๐‘– , ๐‘›๐‘— ) = 1โˆ€๐‘–, ๐‘—)
And let ๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘˜ be arbitrary integers.
Then there exists an integer ๐‘ฅ ๐‘ . ๐‘ก.
๐‘ฅ โ‰ก ๐‘Ž๐‘– (๐‘š๐‘œ๐‘‘ ๐‘›๐‘– )
Note: There will be no solution ๐‘ฅ ๐‘ . ๐‘ก. ๐‘ฅ โ‰ก 1(๐‘š๐‘œ๐‘‘2) and ๐‘ฅ โ‰ก 0(๐‘š๐‘œ๐‘‘6)
CRT in a commutative ring ๐‘น
Let ๐ผ1 , โ€ฆ , ๐‘–๐‘˜ be pair-wise co-prime ideals in ๐‘….
(The ideal generated by a sum of any two ideals is ๐‘…: ๐ผ๐‘— + ๐ผ๐‘˜ = ๐‘… โˆ€๐‘— โ‰  ๐‘˜)
And ๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘› โˆˆ ๐‘… arbitrary elements.
Then, there exists ๐‘ฅ โˆˆ ๐‘… such that ๐‘ฅ โ‰ก ๐‘Ž๐‘— (๐‘š๐‘œ๐‘‘๐ผ๐‘— )
Or in other words ๐‘ฅ + ๐ผ๐‘— = ๐‘Ž๐‘— + ๐ผ๐‘— โˆ€๐‘—
Derive ๐ถ๐‘…๐‘‡ for โ„ค from the general theorem:
If gcd(๐‘›๐‘– , ๐‘›๐‘— ) = 1 then ๐‘›๐‘– โ„ค + ๐‘›๐‘— โ„ค = โ„ค so conditions on ideals ๐‘›๐‘– โ„ค hold etcโ€ฆ
Prove for ๐’ = ๐Ÿ
We have ๐ผ1 + ๐ผ2 = ๐‘…
So we have ๐‘๐‘— โˆˆ ๐ผ๐‘— ๐‘ . ๐‘ก. ๐‘1 + ๐‘2 = 1
Let ๐‘ฅ = ๐‘Ž2 ๐‘1 + ๐‘Ž1 ๐‘2
๐‘ฅ + ๐ผ1 = ๐‘ŽโŸ
๐‘Ž1 ๐‘1 + ๐ผ1 = ๐‘Ž1 + ๐ผ1
2 ๐‘1 + ๐‘Ž1 ๐‘2 + ๐ผ1 = ๐‘Ž1 ๐‘2 + ๐ผ1 = ๐‘Ž1 (1 โˆ’ ๐‘1 ) + ๐ผ1 = ๐‘Ž1 โˆ’ โŸ
โˆˆ๐ผ1
โˆˆ๐ผ1
๐‘ฅ โ‰ก ๐‘Ž1 (๐‘š๐‘œ๐‘‘๐ผ1 )
Similarly
๐‘ฅ โ‰ก ๐‘Ž2 (๐‘š๐‘œ๐‘‘๐ผ2 )
If ๐ผ, ๐ฝ ideals in ๐‘…
Denote ๐ผ โˆ™ ๐ฝ =the additive subgroup generated by the products {๐‘Ž๐‘|๐‘Ž โˆˆ ๐ผ, ๐‘ โˆˆ ๐ฝ}
{๐‘Ž1 ๐‘1 + โ‹ฏ + ๐‘Ž๐‘› ๐‘๐‘› |๐‘Ž๐‘– โˆˆ ๐ผ, ๐‘๐‘— โˆˆ ๐ฝ ๐‘› โ‰ฅ 0}
Note: {๐‘Ž๐‘|๐‘Ž โˆˆ ๐ผ, ๐‘ โˆˆ ๐ฝ} is closed under multiplication by elements of ๐‘….
Not necessarily closed under addition.
And then ๐ผ โˆ™ ๐ฝ will be an ideal. ๐ผ โˆ™ ๐ฝ โŠ† ๐ผ, ๐ฝ and in fact ๐ผ โˆ™ ๐ฝ โŠ† ๐ผ โˆฉ ๐ฝ ideal
Examples:
In โ„ค
3โ„ค โˆ™ 3โ„ค = 9โ„ค
But 3โ„ค โˆฉ 3โ„ค = 3โ„ค
Note: If ๐‘, ๐‘ž mutually prime then:
๐‘โ„ค โˆ™ ๐‘žโ„ค = ๐‘๐‘žโ„ค = ๐‘โ„ค โˆฉ ๐‘žโ„ค
In general:
๐ผ1 โˆ™ ๐ผ2 โˆ™ โ€ฆ โˆ™ ๐ผ๐‘˜ - smallest ideal containing set of products.
We start by writing
๐ผ1 + ๐ผ2 = ๐‘… โ‡’ โˆƒ๐‘2 โˆˆ ๐ผ1 , ๐‘2 โˆˆ ๐ผ2 : ๐‘2 + ๐‘2 = 1
โ‹ฎ
๐ผ1 + ๐ผ๐‘› = ๐‘… โ‡’ โˆƒ๐‘๐‘› โˆˆ ๐ผ1 , ๐‘๐‘› โˆˆ ๐ผ2 : ๐‘๐‘› + ๐‘๐‘› = 1
๐‘›
Look at the product: โˆ๐‘–=2 ๐‘๐‘– + ๐‘๐‘– = 1
Let ๐ฝ1 = ๐ผ2 โˆ™ โ€ฆ โˆ™ ๐ผ๐‘›
The product has elements that has a multiplication of some ๐‘, except for the ๐‘โ€™s.
๐‘š๐‘ข๐‘™๐‘ก๐‘–๐‘๐‘™๐‘’๐‘ 
๐‘œ๐‘“ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘ + ๐‘
โŸ1 โˆ™ โ€ฆ โˆ™ ๐‘๐‘› = 1
โŸ
โˆˆ๐ผ1
โˆˆ๐ฝ1
So that ๐ผ1 + ๐ฝ1 = ๐‘…
By the CRT for case ๐‘› = 2 have ๐‘ฆ1 โˆˆ ๐‘… ๐‘ . ๐‘ก.
๐‘ฆ โ‰ก 1(๐‘š๐‘œ๐‘‘๐ผ1 )
{ 1
๐‘ฆ1 โ‰ก 0(๐‘š๐‘œ๐‘‘๐ฝ1 )
Since ๐ฝ1 โŠ† ๐ผ2 โˆฉ ๐ผ3 โˆฉ โ€ฆ โˆฉ ๐ผ๐‘› we also get ๐‘ฆ1 โ‰ก 0(๐‘š๐‘œ๐‘‘๐ผ๐‘— ) ๐‘— > 1
Repeat for each ๐‘–: ๐ฝ๐‘– = โˆ๐‘˜โ‰ ๐‘– ๐ผ๐‘˜
Form ๐ผ๐‘– + ๐ฝ๐‘– = ๐‘…
And get ๐‘ฆ๐‘– โˆˆ ๐‘… ๐‘ . ๐‘ก.
๐‘ฆ๐‘– โ‰ก 1(๐‘š๐‘œ๐‘‘๐ผ๐‘– )
๐‘ฆ๐‘– โ‰ก 0(๐‘š๐‘œ๐‘‘๐ฝ๐‘– )
And so also ๐‘ฆ๐‘– โ‰ก 0(๐‘š๐‘œ๐‘‘๐ผ๐‘˜ ) ๐‘˜ โ‰  ๐‘–
Let ๐‘ฅ = ๐‘Ž1 ๐‘ฆ1 + ๐‘Ž2 ๐‘ฆ2 +. . +๐‘Ž๐‘› ๐‘ฆ๐‘›
๐‘š๐‘œ๐‘‘๐ผ1 : ๐‘ฅ โ‰ก ๐‘Ž1 + 0 + similarly for all ๐‘— ๐‘ฅ โ‰ก ๐‘Ž๐‘— (๐‘š๐‘œ๐‘‘๐ผ๐‘— )
In โ„ค
Note that ๐‘ฅ โ‰ก ๐‘Ž๐‘– (๐‘š๐‘œ๐‘‘๐‘›๐‘– ) โˆ€๐‘– not unique.
๐‘ฅ + โˆ ๐‘›๐‘– will solve all the congruences.
Corollaries:
Let ๐‘… be a commutative ring. ๐ผ1 , โ€ฆ , ๐ผ๐‘› mutually coprime ideals in ๐‘….
Then
๐‘…โ„
๐‘…
๐‘…
๐‘…
(๐ผ1 โˆฉ โ€ฆ โˆฉ ๐ผ๐‘› ) โ‰… ( โ„๐ผ1 ) × ( โ„๐ผ2 ) × โ€ฆ × ( โ„๐ผ๐‘› )
(actually equivalent to CRT)
Proof: Define a homomorphism ๐‘“: ๐‘… โ†’ (๐‘…โ„๐ผ ) × โ€ฆ × (๐‘…โ„๐ผ )
1
๐‘›
By ๐‘“(๐‘Ž) = (๐‘Ž + ๐ผ1 , โ€ฆ , ๐‘Ž๐ผ๐‘› ) = (๐‘Ž(๐‘š๐‘œ๐‘‘๐ผ1 ), โ€ฆ , ๐‘Ž(๐‘š๐‘œ๐‘‘๐ผ๐‘› ))
Clearly this is a homomorphism. (not so clear. TODO go over it)
Clearly ๐‘“ is additive and multiplicative.
๐‘“(1) = (1(๐‘š๐‘œ๐‘‘1 ), โ€ฆ ,1(๐‘š๐‘œ๐‘‘๐ผ๐‘› ))
We calculate ker ๐‘“:
๐‘Ž โˆˆ ker ๐‘“ โ‡” ๐‘Ž โ‰ก (๐‘š๐‘œ๐‘‘๐ผ๐‘— ) for all ๐‘— โ‡” ๐‘Ž โˆˆ ๐ผ1 โˆฉ โ€ฆ โˆฉ ๐ผ๐‘›
ker ๐‘“ = ๐ผ1 โˆฉ โ€ฆ โˆฉ ๐ผ๐‘›
We need to show ๐‘“ is onto (๐‘…โ„๐ผ ) × (๐‘…โ„๐ผ ) × โ€ฆ × (๐‘…โ„๐ผ ) to get isomorphism
1
2
๐‘›
(by homomorphism theorem)
Let (๐‘Ž1 + ๐ผ1 , โ€ฆ , ๐‘Ž๐‘› + ๐ผ๐‘› ) โˆˆ (๐‘…โ„๐ผ ) × (๐‘…โ„๐ผ ) × โ€ฆ × (๐‘…โ„๐ผ )
1
2
๐‘›
We want ๐‘ฅ ๐‘ . ๐‘ก. ๐‘“(๐‘ฅ) = (๐‘Ž1 + ๐ผ1 , โ€ฆ , ๐‘Ž๐‘› + ๐ผ๐‘› )
Or ๐‘ฅ โ‰ก ๐‘Ž๐‘– (๐‘š๐‘œ๐‘‘๐ผ๐‘– ) for all ๐‘–.
Existence of such an ๐‘ฅ is guaranteed by the CRT.
Special case of corollary
1<๐‘šโˆˆโ„ค
๐‘š=
โˆ๐‘˜๐‘–=1 ๐‘๐‘–๐‘Ÿ๐‘–
๐‘๐‘– distinct primes. ๐ผ๐‘– =
๐‘Ÿ
๐‘๐‘– ๐‘– โ„ค
(โ„คโ„๐‘šโ„ค) โ‰… (โ„คโ„ ๐‘Ÿ1 ) × โ€ฆ × (โ„คโ„ ๐‘Ÿ๐‘˜ )
๐‘1 โ„ค
๐‘๐‘˜ โ„ค
Isomorphism of rings
For a commutative ring ๐‘…, denote by ๐‘… โˆ— = set of units (invertible elements) of ๐‘…
Then ๐‘… โˆ— =multiplicative abelian group.
โˆ—
e.g. (โ„คโ„6โ„ค) = {1ฬ…, 5ฬ…} =group of two elements
Looking at the group of units on both sides we get:
โˆ—
โˆ—
(โ„คโ„6โ„ค)
โ‰…
(โ„คโ„ ๐‘Ÿ1 ) × โ€ฆ × (โ„คโ„ ๐‘Ÿ๐‘˜ )
๐‘–๐‘ ๐‘œ๐‘š๐‘œ๐‘Ÿ๐‘โ„Ž๐‘–๐‘ ๐‘š ๐‘œ๐‘Ÿ ๐‘ข๐‘›๐‘–๐‘ก ๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘๐‘ 
๐‘1 โ„ค
๐‘๐‘˜ โ„ค
Denote by ๐œ‘(๐‘š) = #{๐‘˜|0 < ๐‘˜ < ๐‘š ๐‘ . ๐‘ก. gcd(๐‘˜, ๐‘š) = 1}
(euler phi function)
E.g. ๐œ‘(6) = 2
โˆ—
Clearly (โ„คโ„๐‘šโ„ค) has ๐œ‘(๐‘š) elements.
๐‘Ÿ
๐‘Ÿ
From (*) we get the formula: ๐œ‘(๐‘š) = ๐œ‘(๐‘11 ) โˆ™ โ€ฆ โˆ™ ๐œ‘(๐‘๐‘˜๐‘˜ )
Application to public key encoding RSA (1975)
Encoding โ€“ public
Decoding โ€“ secret
Let ๐‘1 , ๐‘2 โ€œvery largeโ€ prime numbers.
Let ๐‘‘ = ๐‘1 โˆ™ ๐‘2
Let ๐‘’ = ๐œ‘(๐‘‘) = ๐œ‘(๐‘1 ) โˆ™ ๐œ‘(๐‘2 ) = (๐‘1 โˆ’ 1)(๐‘2 โˆ’ 1)
Let ๐‘Ÿ be any large number co-prime to ๐‘’.
By Bezout, we have ๐‘ , ๐‘ก ๐‘ . ๐‘ก. ๐‘ ๐‘Ÿ + ๐‘ก๐‘’ = 1
๐‘ ๐‘Ÿ โ‰ก 1(๐‘š๐‘œ๐‘‘๐‘’)
We publish only ๐‘‘ and ๐‘Ÿ (and not ๐‘ , ๐‘’, ๐‘1 , ๐‘2 ).
Let ๐‘Ž be a positive integer smaller than ๐‘‘.
We encode ๐‘Ž as ๐‘Ž๐‘Ÿ (๐‘š๐‘œ๐‘‘ ๐‘‘) = ๐‘
Claim: ๐‘ ๐‘  โ‰ก ๐‘Ž(๐‘š๐‘œ๐‘‘ ๐‘‘) !
Note: This determines ๐‘Ž uniquely as ๐‘Ž was chosen to be less than ๐‘‘.
Proof:
First case: gcd(๐‘Ž, ๐‘‘) = 1
โˆ—
โˆ—
โˆ—
(โ„คโ„๐‘‘โ„ค) โ‰… (โ„คโ„๐‘ โ„ค) โˆ™ (โ„คโ„๐‘ โ„ค) has ๐œ‘(๐‘‘) = ๐‘’ elements.
1
2
Recall in a group ๐บ of order ๐‘›
๐‘ฅ ๐‘› = 1 for all ๐‘ฅ โˆˆ ๐บ.
Follows from Lagraungeโ€™s theorem โ€“ shall prove later.
โˆ—
So that ๐‘Ž๐‘’ โ‰ก 1(๐‘š๐‘œ๐‘‘ ๐‘‘) ๐‘Žฬ… = ๐‘Ž + ๐‘‘โ„ค elements of (โ„คโ„๐‘‘โ„ค)
๐‘Ÿ๐‘  โ‰ก 1(๐‘š๐‘œ๐‘‘ ๐‘’)
๐‘ ๐‘  โ‰ก (๐‘Ž๐‘Ÿ๐‘  )(๐‘š๐‘œ๐‘‘ ๐‘‘) โ‰ก ๐‘Ž๐‘™๐‘’+1 โ‰ก (๐‘Ž๐‘’ )๐‘™ โˆ™ ๐‘Ž โ‰ก ๐‘Ž(๐‘š๐‘œ๐‘‘ ๐‘‘) - as required.
Second case: gcd(๐‘Ž, ๐‘‘) โ‰  1
Then wlog can assume ๐‘ž1 |๐‘Ž and gcd(๐‘Ž, ๐‘2 ) = 1
โ„ค โ„ โ‰… (โ„ค โ„ ) × (โ„ค โ„
๐‘1 โ„ค
๐‘2 โ„ค)
๐‘‘โ„ค ๐œ“
๐œ“(๐‘Ž + ๐‘‘โ„ค) = (๐‘Ž(๐‘š๐‘œ๐‘‘ ๐‘1 ), ๐‘Ž(๐‘š๐‘œ๐‘‘ ๐‘2 )) = (0(๐‘š๐‘œ๐‘‘ ๐‘1 ), ๐‘Ž(๐‘š๐‘œ๐‘‘ ๐‘2 ))
โˆ—
Another corollary from Cauchyโ€™s theorem
Fermaโ€™s little theorem: For a prime ๐‘, ๐‘ฅ โ‰  0
๐‘ฅ ๐‘โˆ’1 โ‰ก 1(๐‘š๐‘œ๐‘‘ ๐‘)
So we have ๐‘Ž๐‘2 โˆ’1 โ‰ก 1(๐‘š๐‘œ๐‘‘ ๐‘2 )
๐‘Ž๐‘’ = ๐‘Ž(๐‘2 โˆ’1)(๐‘1 โˆ’1) โ‰ก 1(๐‘š๐‘œ๐‘‘ ๐‘2 )
๐œ“ is an isomorphism so we have:
๐‘’
๐œ“(๐‘Ž๐‘’ + ๐‘‘โ„ค) = (๐œ“(+๐‘‘โ„ค)) = (0(๐‘š๐‘œ๐‘‘ ๐‘1 ), 1(๐‘š๐‘œ๐‘‘ ๐‘2 ))
Again, writing: ๐‘Ÿ๐‘  = ๐‘™๐‘’ + 1 we get
๐œ“(๐‘ ๐‘  + ๐‘‘โ„ค) = ๐œ“(๐‘Ž๐‘Ÿ๐‘  + ๐‘‘โ„ค) = ๐œ“(๐‘Ž๐‘™๐‘’+1 + ๐‘‘โ„ค) = ๐œ“(๐‘Ž๐‘™๐‘’ + ๐‘‘โ„ค) โˆ™ ๐œ“(๐‘Ž + ๐‘‘โ„ค) =
๐œ“(๐‘Ž๐‘’ + ๐‘‘โ„ค) โˆ™ (0(๐‘š๐‘œ๐‘‘ ๐‘1 ), ๐‘Ž(๐‘š๐‘œ๐‘‘ ๐‘2 )) =
(0(๐‘š๐‘œ๐‘‘ ๐‘1 ), 1(๐‘š๐‘œ๐‘‘ ๐‘2 )) โˆ™ (0(๐‘š๐‘œ๐‘‘ ๐‘1 ), ๐‘Ž(๐‘š๐‘œ๐‘‘ ๐‘2 )) = (0(๐‘š๐‘œ๐‘‘ ๐‘1 ), ๐‘Ž(๐‘š๐‘œ๐‘‘ ๐‘2 )) =
๐œ“(๐‘Ž + ๐‘‘โ„ค)
๐‘  (๐‘š๐‘œ๐‘‘
Since ๐œ“ is an isomorphism we get ๐‘Ž โ‰ก ๐‘
๐‘‘)
Short introduction to Group Theory
๐ป subgroup of ๐บ if โˆ€๐‘Ž, ๐‘ โˆˆ ๐ป ๐‘Ž, ๐‘ โˆ’1 โˆˆ ๐ป (& ๐ป โ‰  0)
Cosets of subgroup in ๐บ
๐ป๐‘Ž right coset = {โ„Ž๐‘Ž|โ„Ž โˆˆ ๐ป}
๐‘Ž๐ป left coset = {๐‘Žโ„Ž|โ„Ž โˆˆ ๐ป}
Properties: Cosets are disjoint or equal.
Suppose ๐ป๐‘Ž โˆฉ ๐ป๐‘ โ‰  โˆ…
So have โ„Ž, โ„Žโ€ฒ โˆˆ ๐ป ๐‘ . ๐‘ก. โ„Ž๐‘Ž = โ„Žโ€ฒ ๐‘
(โ„Žโ€ฒ )โˆ’1 โ„Ž๐‘Ž = ๐‘ and ๐‘ โˆˆ ๐ป๐‘Ž
๐ป๐‘ โŠ† ๐ป๐‘Ž
And similarly ๐ป๐‘Ž โŠ† ๐ป๐‘.
Definition:
๐‘ is a normal subgroup of ๐บ if โˆ€๐‘” โˆˆ ๐บ โˆถ ๐‘๐‘” = ๐‘”๐‘.
(does not imply ๐‘›๐‘” = ๐‘”๐‘› โˆ€๐‘!!!)
If ๐บ is Abelian, all subgroups are normal!
Example: ๐บ = ๐‘†3 : group of permutations on {1,2,3}
1 2 3
๐‘=(
)
2 1 3
{๐ผ๐‘‘, ๐‘Ÿ} is a subgroup of G. Which is not normal!
1 2 3
1 2 3
1 2 3
1
๐ปโˆ™(
) = {(
),(
)โˆ™(
3 2 1
3 2 1
2 1 3
3
1 2 3
1 2 3
1 2 3
1
(
) โˆ™ ๐ป = {(
),(
)โˆ™(
3 2 1
3 2 1
3 2 1
2
2
2
2
1
3
1
)=(
1
2
3
1
)=(
3
3
2
3
2
2
3
)}
1
3
)}
1
So this is not the same group!
๐ด3 = set of even permutations = normal subgroup of order 3
1 2 3
1 2 3
๐‘Ÿ = {๐ผ๐‘‘, (
),(
)}
2 3 1
3 1 2
1 2 3
1
๐ด3 ๐œŽ = ๐œŽ๐ด3 = ๐‘†3 \๐ด3 = {(
),(
โŸ2 1 3
3
๐œŽ
----- End of lesson 4
2 3
1
),(
2 1
1
2 3
)}
3 2
TODO: Write it
----- end of lesson 5
Theorem: Let ๐‘(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] be irreducible.
Proof
Note: ๐‘(๐‘ข) maximal so ๐น[๐‘ข]โ„๐‘(๐‘ข) has to be a field!
Consider ๐น โŠ† ๐พ by identifying ๐‘Ž โˆˆ ๐น with ๐‘Ž + (๐‘(๐‘ข))
It remains to show that ๐‘(๐‘ฅ) has a root in ๐พ
Suppose ๐‘(๐‘ฅ) = โˆ‘๐‘–=0 ๐‘Ž๐‘– ๐‘ฅ ๐‘– , ๐‘Ž๐‘– โˆˆ ๐น
Look at the coset ๐‘ข + (๐‘(๐‘ข)) = ๐›ผ โˆˆ ๐พ
๐‘(๐›ผ) โŠ‚ โˆ‘ ๐‘Ž๐‘– ๐‘ข๐‘– = โˆ‘ ๐‘Ž๐‘– (๐‘ข + (๐‘(๐‘ข))) = โˆ‘ ๐‘Ž๐‘– ๐‘ข๐‘– + (๐‘(๐‘ข)) =
Want to show ๐พ unique up to isomorphism minimal such that ๐‘ has a root.
Suppose ๐ฟ โŠ‡ ๐น, ๐›ฝ is a root of ๐‘ in ๐ฟ.
Want to show ๐พ โ‰… subfield of ๐ฟ.
Map: ๐‘”(๐‘ข) + (๐‘(๐‘ข)) in ๐พ to ๐‘”(๐›ฝ) โˆˆ ๐ฟ.
H is independent of choice of coset representative, as if ๐‘”(๐‘ข) โ‰ก โ„Ž(๐‘ข) (๐‘š๐‘œ๐‘‘ (๐‘(๐‘ข)))
Then ๐‘”(๐‘ข) = โ„Ž)๐‘ข
----- end of lesson 6
Claim: If ๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] and ๐น โŠ† ๐พ field containing a root of ๐‘“(๐‘ฅ): ๐›ผ
Then if ๐œ‘ โˆˆ ๐บ๐‘Ž๐‘™(๐พโ„๐น ) then ๐œ‘(๐›ผ) is a root of ๐‘“(๐‘ฅ)
In other words, elements of the Galois group permute the roots of ๐‘“(๐‘ฅ)
Proof: Let ๐‘“(๐‘ฅ) = โˆ‘๐‘˜๐‘–=0 ๐‘Ž๐‘– ๐‘ฅ ๐‘– , ๐‘Ž๐‘– โˆˆ ๐น
๐œ‘(๐‘“(๐›ผ)) = ๐œ‘(0๐พ ) = 0,
๐‘Ž๐‘– โˆˆ ๐น
๐‘˜
๐‘˜
๐‘˜
๐‘Ž๐‘– โˆˆ๐น
0 = ๐œ‘(๐‘“(๐›ผ)) = ๐œ‘ (โˆ‘ ๐‘Ž๐‘– ๐›ผ ๐‘– ) = โˆ‘ ๐œ‘(๐‘Ž๐‘– )๐œ‘(๐›ผ)๐‘– = โˆ‘ ๐‘Ž๐‘– ๐œ‘(๐›ผ)๐‘–
๐‘–=0
๐‘–=0
๐‘–=0
Special case:
๐พ splitting field for ๐‘“(๐‘ฅ) โˆˆ ๐น[๐‘ฅ] then ๐พ = ๐น (๐›ผ
โŸ1 , โ€ฆ , ๐›ผ๐‘˜ )
๐‘Ÿ๐‘œ๐‘œ๐‘ก๐‘  ๐‘œ๐‘“ ๐น
So any ๐œ‘ โˆˆ ๐บ๐‘Ž๐‘™(๐พโ„๐น ) is determined by images of ๐›ผ1 , โ€ฆ , ๐›ผ๐‘˜ under ๐œ‘
We now know that these are permuted by ๐œ‘
๐›ฝ โˆˆ ๐พ so can be written as a polynomial in ๐›ผ11 , โ€ฆ , ๐›ผ๐‘˜ over ๐น
๐‘–
๐‘–
๐‘–
๐›ฝ = โˆ‘ ๐‘Ž๐‘–1 โ€ฆ๐‘–๐‘˜ โˆ™ ๐›ผ11 ๐›ผ22 โ€ฆ ๐›ผ๐‘˜๐‘˜
Examples:
1) Galois group of the smallest field of ๐‘ฅ 4 โˆ’ 2 over โ„š
Roots of ๐‘ฅ 4 โˆ’ 2:
4
4
± โˆš2, ±๐’พ โˆš2
4
4
4
4
๐‘ฅ 4 โˆ’ 2 = (๐‘ฅ โˆ’ โˆš2)(๐‘ฅ + โˆš2)(๐‘ฅ โˆ’ ๐’พ โˆš2)(๐‘ฅ + ๐’พ โˆš2)
4
and over k: โ„š(โˆš2, ๐’พ)
๐œ‘ โˆˆ ๐บ๐‘Ž๐‘™ (๐พโ„โ„š) = ๐บ will permute 4 roots
So can think of ๐บ of being a subgroup of ๐‘†4
|
4
4
|
4
4
We know that |โ„š(โˆš2, ๐’พ): โ„š| = |(โ„š(โˆš2, ๐’พ): โ„š(โˆš2)| โˆ™ | โŸ
โ„š(โˆš2)
4=๐‘‘๐‘’๐‘”๐‘Ÿ๐‘’๐‘’ ๐‘œ๐‘“
|๐‘š๐‘–๐‘›๐‘–๐‘š๐‘Ž๐‘™ ๐‘๐‘œ๐‘™๐‘ฆ
4
๐‘œ๐‘“ โˆš2 ๐‘œ๐‘ฃ๐‘’๐‘Ÿ
โ„š(๐‘‹ 4 โˆ’2)
[๐‘˜: ๐น] = dimension of ๐พ over ๐น.
|๐บ๐‘Ž๐‘™ (๐พโ„โ„š) = ๐บ| = 8
So ๐บ is isomorphic to an 8-element subgroup of ๐‘†4
Possibilities (up to isomorphism) are:
๐ถ8 , ๐ถ4 × ๐ถ2 , ๐ถ2 × ๐ถ2 × ๐ถ2 , ๐ท8 , ๐‘„8
|๐‘†4 | = 24 (a side note)
๐ถ8 โ€“ is impossible since ๐‘†4 contains no elements of order 8
Let ๐œ‘ be complex conjugation.
obviously ๐œ‘ is an element of order 2. ๐œ‘ โˆˆ ๐บ
: โ„š|
|
4
4
๐œ‘(โˆš2) = โˆš2
4
4
๐œ‘(โˆ’ โˆš2) = โˆ’ โˆš2
4
4
๐œ‘(๐’พ โˆš2) = โˆ’๐’พ โˆš2
4
4
๐œ‘(โˆ’๐’พ โˆš2) = โˆ’๐’พ โˆš2
Let ๐œ“ be the automorphism that permutes roots cyclically:
4
4
๐œ“(โˆš2) = ๐’พ โˆš2 and fixes ๐’พ
๐œ“ is of order 4
4
4
๐œ“(โˆ’ โˆš2) = โˆ’๐’พ โˆš2
4
4
4
4
๐œ“(๐’พ โˆš2) = ๐œ“(๐’พ)๐œ“(โˆš2) = ๐’พ๐’พ โˆš2 = โˆ’ โˆš2
< ๐œ‘, ๐œ“ > is a group permuted by ๐œ‘ and ๐œ“ โ‰… ๐ท8
Cycle notation in ๐‘†๐‘› (any permutation can be written as a product of disjoint cycles)
Example ๐œŽ โˆˆ ๐‘†4
1 2 3 4 5 6
๐œŽ=(
) = (13462)(5)
3 1 4 6 5 2
1 2 3 4 5 6
(
) = (13)(254)(6)
3 5 1 2 4 6
Can have ๐œŽ โˆˆ ๐‘†5 , ๐œŽ = (123)(45)
Elements of ๐‘†4 can have orders 1,2,3,4 (again, a side note).
The order of the elements is always the least common multiple of the cycles.
Another example:
Galois group of ๐‘(๐‘ฅ) = ๐‘ฅ 3 + 2๐‘ฅ + 1 over โ„š
Need to find the splitting field of the polynomial over โ„š.
We first of all show that ๐‘(๐‘ฅ) has no roots in โ„š and so is irreducible.
Claim: If ๐‘“(๐‘ฅ) is a monic polynomial over โ„ค, then any rational root will be an integer
Proof: ๐‘“(๐‘ฅ) = ๐‘ฅ ๐‘› + ๐‘Ž๐‘›โˆ’1 ๐‘ฅ ๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž1 ๐‘ฅ + ๐‘Ž0 , ๐‘Ž๐‘– โˆˆ โ„ค
๐‘Ÿ, ๐‘  โˆˆ โ„ค
๐‘Ÿ
๐‘ 
๐‘Ÿ
๐‘ 
If is a root then: 0 = ๐‘“ ( ) =
๐‘Ÿ๐‘›
๐‘ ๐‘›
+ โˆ‘๐‘›โˆ’1
๐‘–=0 ๐‘Ž๐‘–
๐‘Ÿ๐‘–
๐‘ ๐‘–
Assume (๐‘Ÿ, ๐‘ ) = 1
๐‘›โˆ’1
๐‘›
๐‘Ÿ + โˆ‘ ๐‘Ž๐‘– ๐‘Ÿ ๐‘– ๐‘  ๐‘›โˆ’๐‘– = 0
๐‘–=0
๐‘Ÿ ๐‘› = โˆ’๐‘Ž0 ๐‘† ๐‘› โˆ’ ๐‘Ž1 ๐‘† ๐‘›โˆ’1 + โ‹ฏ โˆ’ ๐‘Ž๐‘›โˆ’1 ๐‘ ๐‘Ÿ ๐‘›โˆ’1
If ๐‘ is a prime divisor of ๐‘ , then ๐‘|๐‘Ÿ ๐‘› so ๐‘|๐‘Ÿ.
But then, ๐‘|๐‘  and ๐‘|๐‘Ÿ which contradicts the fact that ๐‘  and ๐‘Ÿ are mutually prime.
๐‘Ÿ
๐‘ 
So ๐‘  has no prime divisors. So ๐‘  = ±1. Therefore, โˆˆ โ„ค
We now show that ๐‘(๐‘ฅ) have no integer roots.
๐‘(0) = 1
๐‘(โˆ’1) = โˆ’2
So there exists ๐›ผ โˆˆ โ„ โˆ’1 < ๐›ผ < 0 and ๐‘(๐›ผ) = 0 by continuity of ๐‘(๐‘ฅ) as a real function.
But itโ€™s the only real root, since the derivative is always positive, therefore itโ€™s constantly
increasing etc etcโ€ฆ
So ๐‘(๐‘ฅ) has no rational roots, and remaining 2 roots are non-real.
Over โ„š(๐›ผ)
๐‘ฅ 3 + 2๐‘ฅ + 1 = (๐‘ฅ โˆ’ ๐›ผ)(๐‘ฅ 2 + (2 + ๐›ผ)๐‘ฅ + (2 + ๐›ผ)๐›ผ)
Where ๐›ฝ and ๐›ฝฬ… are nonreal roots.
๐‘œ๐‘ฃ๐‘’๐‘Ÿ ๐‘†.๐น.
=
(๐‘ฅ โˆ’ ๐›ผ)(๐‘ฅ โˆ’ ๐›ฝ)(๐‘ฅ โˆ’ ๐›ฝฬ… )
So the splitting field will be โ„š(๐›ผ, ๐›ฝ)
|โ„š(๐›ผ, ๐›ฝ): โ„š| = โŸ
|โ„š(๐›ผ, ๐›ฝ): โ„š(๐›ผ)| โˆ™ โŸ
|โ„š(๐›ผ): โ„š|
=2 (๐‘๐‘ฆ ๐‘กโ„Ž๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘Ÿ๐‘Ž ๐‘“๐‘Ž๐‘๐‘ก)
=3
Extra fact:
If ๐›ผ is a root of some polynomial ๐‘”(๐‘ฅ) over a field ๐น.
And ๐‘(๐‘ฅ) is the minimal polynomial of ๐›ผ over ๐น, then ๐‘(๐‘ฅ)|๐‘”(๐‘ฅ) in ๐น[๐‘ฅ]
Proof: Divide ๐‘”(๐‘ฅ ) by ๐‘(๐‘ฅ) with remainder in ๐น[๐‘ฅ]
๐‘”(๐‘ฅ) = ๐‘(๐‘ฅ)๐‘ž(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ)
deg ๐‘Ÿ < deg ๐‘ or ๐‘Ÿ = 0
Substitute ๐‘ฅ = ๐›ผ: 0 = ๐‘”(๐›ผ) = ๐‘(๐›ผ)๐‘ž(๐›ผ) + ๐‘Ÿ(๐›ผ)
So ๐›ผ root of ๐‘Ÿ(๐‘ฅ) of smaller degree than ๐‘(๐‘ฅ) - contradiction!
So |๐บ๐‘Ž๐‘™(โ„š(๐›ผ, ๐›ฝ)/โ„š)| = 6.
Elements of Galois group permute the set {๐›ผ, ๐‘๐‘’๐‘ก๐‘Ž ๐›ฝฬ… } and so is isomorphic to a subtgroup of
๐‘†3 of order 6 โ‡’ Galois group โ‰… ๐‘†3
TOPIC:
Cyclotomic fields and their Galois groups over โ„š
๐‘›
Definition Cyclotomic field is one of the form โ„š( โˆš1)
๐‘›
2๐œ‹๐’พ
โˆš1 = ๐‘’ ๐‘› positive with root of 1
๐‘›
Note that โ„š( โˆš1) is a splitting field of the polynomial ๐‘ฅ ๐‘› โˆ’ 1 over โ„š
As:
๐‘›โˆ’1
๐‘ฅ ๐‘› โˆ’ 1 = ฮ  (๐‘ฅ โˆ’ ๐‘’
k=0
2๐œ‹๐’พ
๐‘› )
We also want to factor ๐‘ฅ ๐‘› โˆ’ 1 into irreducible factors over โ„š.
(๐‘ฅ 2 + ๐‘ฅ + 1)
E.g. ๐‘ฅ 3 โˆ’ 1 = (๐‘ฅ โˆ’ 1)
โŸ
๐‘–๐‘Ÿ๐‘Ÿ๐‘’๐‘‘๐‘ข๐‘๐‘–๐‘๐‘™๐‘’ ๐‘œ๐‘ฃ๐‘’๐‘Ÿ โ„š=๐‘š๐‘–๐‘›๐‘–๐‘š๐‘Ž๐‘™ ๐‘๐‘œ๐‘™๐‘ฆ
๐‘›
Definition: Denote by ๐œ†๐‘› (๐‘ฅ) = minimal polynomial of โˆš1 over โ„š
So ๐œ†3 (๐‘ฅ) = ๐‘ฅ 2 + ๐‘ฅ + 1
๐œ†๐‘› (๐‘ฅ) = nโ€™th cyclotomic polynomial
๐œ†1 (๐‘ฅ) = ๐‘ฅ โˆ’ 1
๐œ†2 (๐‘ฅ) = ๐‘ฅ + 1
๐œ†3 (๐‘ฅ) = ๐‘ฅ 2 + 1
4
โˆš1 = ๐’พ
๐‘ฅ 4 โˆ’ 1 = (๐‘ฅ 2 โˆ’ 1)(๐‘ฅ 2 + 1) = (๐‘ฅ
โŸ+ 1) (๐‘ฅ
โŸโˆ’ 1) (๐‘ฅโŸ2 + 1)
=๐œ†2
=๐œ†1
=๐œ†3
Fact: If ๐‘“(๐‘ฅ) โˆ™ ๐‘”(๐‘ฅ) = ๐‘ฅ ๐‘› โˆ’ 1 over โ„š, then ๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ]
(Follows from Gaussโ€™ lemma โ€“ Basic algebra 1)
Interesting fact:
If we factor ๐‘ฅ ๐‘› โˆ’ 1 over โ„š(i.e. over โ„ค!)
Turns out up to ๐‘› = 105 all coefficients are โˆˆ {0, ±1}!
For ๐‘› = 105 get coefficients = 2
105 = 3 โˆ™ 5 โˆ™ 7
๐‘›
|โ„š( โˆš1): โ„š| = deg ๐œ†๐‘› =?
Examples:
1)
4
โ„š(๐‘–) = โ„š(โˆš1)
Can be thought of a 2 dimensional vector space over โ„š
๐‘Ž + ๐’พ๐‘
(๐‘Ž + ๐’พ๐‘)(๐‘ + ๐’พ๐‘‘) = ๐‘Ž๐‘ โˆ’ ๐‘๐‘‘ + ๐’พ(๐‘Ž๐‘‘ + ๐‘๐‘)
We can think of them as vectors with regular dot multiplication.
3
2) โ„š(๐œ”) = โ„š(โˆš1)
|โ„š(๐œ”): โ„š| = 2 irreducible polynomial ๐œ†3 of ๐œ” is ๐‘ฅ 2 + ๐‘ฅ + 1
2 dimensional vector space over โ„š - addition โ€“ as usual
(๐‘Ž + ๐œ”๐‘)(๐‘ + ๐œ”๐‘‘) = ๐‘Ž๐‘ + ๐œ”2 (๐‘๐‘‘) + ๐œ”(๐‘Ž๐‘‘ + ๐‘๐‘) = ๐‘Ž๐‘ โˆ’ ๐‘๐‘‘ + ๐œ”(๐‘Ž๐‘‘ + ๐‘๐‘‘ โˆ’ ๐‘๐‘‘)
Since:
๐œ”2 + ๐œ” + 1 = 0
๐œ”2 = โˆ’1 โˆ’ ๐œ”
5
3) โ„š(โˆš1)
๐œ†5 (๐‘ฅ) = ๐‘ฅ 4 + ๐‘ฅ 3 + ๐‘ฅ 2 + ๐‘ฅ + 1
5
|โ„š(โˆš1): โ„š| = 4
5
1, ๐œŒ, ๐œŒ2 , ๐œŒ3 basis for โ„š( โˆš1) over โ„š
In general
๐‘
4) ๐‘ is prime โ„š( โˆš1)
๐‘ฅ ๐‘ โˆ’ 1 = (๐‘ฅ โˆ’ 1)(๐‘ฅ ๐‘โˆ’1 + ๐‘ฅ ๐‘โˆ’2 + โ‹ฏ + ๐‘ฅ + 1)
The second part is irreducible using einsensteins criterion (lang algebra) = ๐œ†๐‘ (๐‘ฅ)
๐‘
|โ„š( โˆš1): โ„š| = ๐‘ โˆ’ 1
5) N=6
Letโ€™s factor it over โ„š:
๐‘ฅ 6 โˆ’ 1 = (๐‘ฅ 3 โˆ’ 1)(๐‘ฅ 3 + 1) = (๐‘ฅ โˆ’ 1)(๐‘ฅ 2 + ๐‘ฅ + 1)(๐‘ฅ + 1 )(๐‘ฅ 2 โˆ’ ๐‘ฅ + 1)
6
โˆš1 = ๐œŒ
๐œ” = ๐œŒ2
๐œ”2 = ๐œŒ4
df
Roots areL
Roots (Accoringly) 1, ๐œ”, ๐œ”2 โˆ’1 ๐œŒ, ๐œŒ5 = ๐œŒฬ…
What is โ„š(๐œŒ)??
2 dimensions over โ„š. What is the multiplication rule?
Notice: โˆ’๐œ” is a 6th root of (โˆ’๐œ”)2 = ๐œ”
So can take ๐œŒ = โˆ’๐œ”
โ„š(๐œŒ) = โ„š(๐œ”)!!!!
Itโ€™s actually the same field! Not isomorphic โ€“ same field!
--- end of lesson
๐‘›
Theorem: [โ„š( โˆš1): โ„š] = ๐œ‘(๐‘›) =Eular ๐œ‘-function
Recheck:
๐œ‘(6) = |{1,5}| = 2
๐œ‘(5) = 4
๐œ‘(4) = |{1,3}| = 2
๐œ‘(3) = 2
๐œ‘(๐‘) = ๐‘ โˆ’ 1
๐‘ is prime
๐‘›
Denote ๐œ‰ = โˆš1
Proof: [โ„š(๐œ‰): โ„š] =degree of the minimal polynomial of ๐œ‰ over โ„š = deg ๐œ†๐‘› (๐‘ฅ)
Note: ๐œ‰ ๐‘˜ is a primitive nโ€™th root of 1 โ‡” gcd(๐‘˜, ๐‘›) = 1
|{๐œ‰ ๐‘˜ |๐œ‰ ๐‘˜ ๐‘๐‘Ÿ๐‘–๐‘š๐‘’ ๐‘›โ€ฒ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘œ๐‘ก ๐‘œ๐‘“ 1}| = ๐œ‘(๐‘›)
So in fact, ๐œ†๐‘› (๐‘ฅ) = โˆgcd(๐‘˜,๐‘›)=1(๐‘ฅ โˆ’ ๐œ‰ ๐‘˜ )
1โ‰ค๐‘˜<๐‘›
This is a key fact!
By gaussโ€™ Lemma, ๐‘ฅ ๐‘› โˆ’ 1 factors over โ„š into polynomials in โ„ค[๐‘ฅ]
So in fact, as ๐œ†๐‘› (๐‘ฅ)|๐‘ฅ ๐‘› โˆ’ 1 over โ„š (since ๐œ‰ is a root of ๐‘ฅ ๐‘› โˆ’ 1 and ๐œ†๐‘› (๐‘ฅ) is its root
polynomnial)
We in fact have that ๐œ†๐‘› (๐‘ฅ) โˆˆ โ„ค[๐‘ฅ]
Suppose ๐‘‘|๐‘›:
Then, any dโ€™th root of 1 is also an nโ€™th root of 1.
So the roots of ๐œ†๐‘‘ (๐‘ฅ) satisfy ๐‘ฅ ๐‘› โˆ’ 1 = 0
So ๐œ†๐‘‘ (๐‘ฅ)|๐‘ฅ ๐‘› โˆ’ 1 over โ„š
Conclusion: ๐œ†๐‘‘ (๐‘ฅ)|๐‘ฅ ๐‘› โˆ’ 1 for all ๐‘‘|๐‘›.
Conversely:
Suppose ๐‘(๐‘ฅ) is an irreducible monic factor of ๐‘ฅ ๐‘› โˆ’ 1 (in โ„š[๐‘ฅ])
Any root ๐›ผ of ๐‘(๐‘ฅ) is a root of ๐‘ฅ ๐‘› โˆ’ 1 and so ๐›ผ ๐‘› = 1
If ๐‘‘ minimal such that ๐›ผ ๐‘‘ = 1 then ๐‘‘|๐‘›.
So ๐›ผ is a primitive dโ€™th root of 1. Its minimal polynomial is ๐œ†๐‘‘ (๐‘ฅ)
And so ๐œ†๐‘‘ (๐‘ฅ)|๐‘(๐‘ฅ) but ๐‘(๐‘ฅ) is irreducible and monic and so ๐œ†๐‘‘ (๐‘ฅ) = ๐‘(๐‘ฅ).
So every irreducible factor of ๐‘ฅ ๐‘› โˆ’ 1 over โ„ค is of the form ๐œ†๐‘‘ (๐‘ฅ) for some ๐‘‘|๐‘›.
Conclusion: ๐‘ฅ ๐‘› โˆ’ 1 = โˆ๐‘‘|๐‘› ๐œ†๐‘‘ (๐‘ฅ) over โ„š. And ๐œ†๐‘‘ (๐‘ฅ) โˆˆ โ„ค[๐‘ฅ]
(๐‘ฅ โˆ’ 1) โŸ
(๐‘ฅ + 1 ) โŸ
(๐‘ฅ 2 + ๐‘ฅ + 1) โŸ
(๐‘ฅ 2 โˆ’ ๐‘ฅ + 1)
Example: ๐‘ฅ 6 โˆ’ 1 = โŸ
=๐œ†1 (๐‘ฅ)
๐œ†2 (๐‘ฅ)
๐œ†3 (๐‘ฅ)
๐œ†6 (๐‘ฅ)
Corollary from conclusion:
From degree of polynomials we get:
๐‘› = โˆ‘ deg ๐œ†๐‘‘ (๐‘ฅ) = โˆ‘ ๐œ‘(๐‘‘)
๐‘‘|๐‘›
๐‘‘|๐‘›
Example:
๐‘ฅ 12 โˆ’ 1 = (๐‘ฅ 6 + 1 )(๐‘ฅ 6 โˆ’ 1) =
(๐‘ฅ 2 + 1) โŸ
(๐‘ฅ 4 โˆ’ ๐‘ฅ 2 + 1) โŸ
(๐‘ฅ โˆ’ 1) โŸ
(๐‘ฅ + 1 ) โŸ
(๐‘ฅ 2 + ๐‘ฅ + 1) โŸ
(๐‘ฅ 2 โˆ’ ๐‘ฅ + 1)
โŸ
๐œ†4
๐œ†2 (๐‘ฅ)
๐œ‰,๐œ‰ 11 ,๐œ‰ 5 ,๐œ‰ 7
=๐œ†1 (๐‘ฅ)
1
๐œ†2 (๐‘ฅ)
โˆ’1
๐œ†3 (๐‘ฅ)
๐œ”,๐œ”2
๐œ†6 (๐‘ฅ)
โˆ’๐œ”,โˆ’๐œ”2
12
๐œ‰ = โˆš1
๐’
Galois grups of โ„š(๐’™๐’Š ) over โ„š, ๐ƒ = โˆš๐Ÿ
โ„š(๐œ‰)
โ„โ„š) = ๐บ
Let ๐บ๐‘Ž๐‘™ (
Elements of ๐บ permute primitive roots of unity and are determine by the image of ๐œ‰.
So ๐บ subroup of group of permutations {๐œ‰ ๐‘˜ | gcd (๐‘˜, ๐‘›) = 1} i.e. of ๐‘†๐œ‘(๐‘›)
1โ‰คk<๐‘›
Let gcd(๐‘˜, ๐‘›) = 1:
๐œ“๐‘˜
๐œ‰ โ†’ ๐œ‰ ๐‘˜ determines an automorphism of โ„š(๐œ‰)
Conversely, every automorphism must be of this form.
|๐บ| = [โ„š(๐œ‰): โ„š] = ๐œ‘(๐‘›)
Suppose gcd(๐‘™, ๐‘˜) = 1 = gcd(๐‘›, ๐‘˜)
๐œ‘๐‘˜ โˆ™ ๐œ“๐‘™ (๐œ‰) = ๐œ“๐‘˜ (๐œ‰ ๐‘˜ ) = ๐œ‰ ๐‘˜๐‘™ = ๐œ“๐‘˜๐‘™ (๐œ‰)
๐œ“๐‘™ ๐œ“๐‘˜ (๐œ‰) = ๐œ“๐‘™ (๐œ‰ ๐‘˜ ) = ๐œ‰ ๐‘™๐‘˜
So the group is abelian!
More precisely:
๐œ“๐‘˜ = ๐œ“๐‘™ = ๐œ“๐‘š where ๐‘š โ‰ก ๐‘˜๐‘™(๐‘š๐‘œ๐‘‘ ๐‘›)
In fact: The map ๐‘˜ โ†’ ๐œ“๐‘˜
โˆ—
Is group homomorphism between (โ„คโ„๐‘›โ„ค) and ๐บ
โˆ—
So ๐บ โ‰… (โ„คโ„๐‘›โ„ค)
E.g. ๐‘› = 12
โˆ—
(โ„คโ„12โ„ค) = {1,5,7,11} multiplication mod 12.
12
๐œ‰ = โˆš1
Note: ๐œ‰ โ†’ ๐œ‰11 is complex conjugation
Finite Fields
If ๐น is finite then its characteristics must be some prime ๐‘
And its prime field โ‰… โ„คโ„๐‘โ„ค.
So every finite field can be considered to be an extension of โ„คโ„๐‘โ„ค.
In fact, it is an algebraic extension.
(if ๐›ผ transcendental then 1, ๐›ผ, ๐›ผ 2 , ๐›ผ 3 , โ€ฆ infinitely linearly independent set so any field
containing ๐›ผ will be infinite).
First difference between characteristic 0 case and the characteristic ๐’‘
case
We had quadratic extensions of โ„š e.g.
โ„š(โˆš2), โ„š(๐œ”), โ„š(๐‘–) which are isomorphic as fields!
By contrast, โ„คโ„๐‘โ„ค has a unique quadratic extension up to isomorphism.
Example: โ„คโ„2โ„ค clearly unique up to isomorphism. Call it ๐”ฝ2 or ๐บ๐น(2)
Now look at ๐‘ฅ 2 + ๐‘ฅ + 1 which is irreducible over โ„คโ„2โ„ค
Extend ๐”ฝ2 to get a field in which ๐‘ฅ 2 + ๐‘ฅ + 1 has a root.
๐”ฝ [๐‘ฅ]
๐‘˜= 2 โ„ 2
๐‘ฅ +๐‘ฅ+1
{๐พ: ๐”ฝ} = dim๐”ฝ ๐พ = 2 โ‡’ ๐พ 2 dimensional vector space over ๐”ฝ2 and so has 4 elements.
Elements of ๐พ can be considered to be remainders of polynomials in ๐‘ฅ over ๐”ฝ2
After division by ๐‘ฅ 2 + ๐‘ฅ + 1 i.e. linear polynomials.
0,1, ๐‘ฅ, ๐‘ฅ + 1
+
0
0
0
1
1
๐‘ฅ
๐‘ฅ
๐‘ฅ+1 ๐‘ฅ+1
โˆ™
0
1
๐‘ฅ
๐‘ฅ+1
1
1
0
๐‘ฅ+1
๐‘ฅ
๐‘ฅ
๐‘ฅ+1
๐‘ฅ
๐‘ฅ+1
๐‘ฅ+1
๐‘ฅ
0
1
1
0
0
1
๐‘ฅ
0
0
0
0
1
๐‘ฅ
0
๐‘ฅ
๐‘ฅ+1
0 ๐‘ฅ+1
1
๐‘ฅ+1
0
๐‘ฅ+1
1
๐‘ฅ
Very easy to show directly that every field of order 4 is isomorphic to ๐พ.
Note: ๐‘ฅ 2 + ๐‘ฅ + 1 is actually the only irreducible quadratic polynomial over ๐”ฝ
Theorem: Let ๐น be a finite field then |๐น| = ๐‘๐‘˜ elements for some prime ๐‘, 1 โ‰ค ๐‘˜ โˆˆ โ„•.
Conclusion: there is no field of order 6,10,15, etc!
Proof: Let โ„คโ„๐‘โ„ค = ๐”ฝ๐‘ to be the prime field of ๐น then ๐น is a vector space over ๐”ฝ๐‘ .
And as ๐น is finite, it is finite dimensional over ๐”ฝ๐‘ . Say dim ๐น = ๐‘˜.
(๐‘˜)
So ๐น โ‰… ๐”ฝ๐‘ as a vector space and so |๐น| = ๐‘๐‘˜
Example:
Look at ๐‘ฅ 4 + ๐‘ฅ 3 + 1 over ๐บ๐น(2)
Claim: ๐‘ฅ 4 + ๐‘ฅ 3 + 1 is irreducible over ๐บ๐น(2)
Clearly it has no roots.
If it factored as 2 irreducible quadratics then we would have ๐‘ฅ 4 + ๐‘ฅ 3 + 1 = (๐‘ฅ 2 + ๐‘ฅ + 1)2
But (๐‘ฅ 2 + ๐‘ฅ + 1)2 = ๐‘ฅ 4 + ๐‘ฅ 2 + 1
So ๐บ๐น(2)[๐‘ฅ]โ„(๐‘ฅ 4
gives an extension of degree 4 and so a field of order 16!
+ ๐‘ฅ 3 + 1)
Its elements can be considered as polynomials of degree less or equal to 3.
Or, vectors of length 4 over ๐”ฝ2 .
Addition is very easy with both notations (mod 2)
(๐‘ฅ 3 + ๐‘ฅ) + (๐‘ฅ 2 + ๐‘ฅ + 1) = ๐‘ฅ 3 + ๐‘ฅ 2 + 1
๐‘Ž
๐‘
๐‘Ž๐‘ฅ 3 + ๐‘๐‘ฅ 2 + ๐‘๐‘ฅ + ๐‘‘ โ†” ( )
๐‘
๐‘‘
Multiplication on the other hand, is harder
(๐‘ฅ 3 + ๐‘ฅ) โˆ™ (๐‘ฅ 2 + ๐‘ฅ + 1) = ๐‘ฅ 5 + ๐‘ฅ 3 + ๐‘ฅ 4 + ๐‘ฅ 2 + ๐‘ฅ 3 + 1 = ๐‘ฅ 5 + ๐‘ฅ 4 + ๐‘ฅ 2 + ๐‘ฅ
โ‰ก ๐‘ฅ 2 (๐‘š๐‘œ๐‘‘ ๐‘ฅ 4 + ๐‘ฅ3 + 1
1
0
0
0
1
1
( )( ) = ( )
1
1
0
0
1
0
Another Notation
Let ๐›ผ = ๐‘ฅ + (๐‘ฅ 4 + ๐‘ฅ 3 + 1) in ๐น
So ๐›ผ root of ๐‘ฅ 4 + ๐‘ฅ 3 + 1 in ๐น. ๐›ผ 4 + ๐›ผ 3 + 1 = 0
1, ๐›ผ, ๐›ผ 2 , ๐›ผ 3 are linearly independent over โ„คโ„2โ„ค and so distinct.
Note that ๐น โˆ— is a group of order 15.
So ๐›ผ has order dividing 15โ‡’ ๐›ผ has order 1,3,5,15
๐›ผ4 = ๐›ผ3 + 1
๐›ผ 5 = ๐›ผ(๐›ผ 3 + 1) = ๐›ผ 4 + ๐›ผ = ๐›ผ 3 + 1 + ๐›ผ = ๐›ผ 3 + ๐›ผ + 1 โ‰  1. Otherwise, ๐›ผ 3 + ๐›ผ = 0 and ๐›ผ
satisfies polynomials of degree 3 โ€“ contradiction.
Conclude: ๐›ผ has order 15! So ๐น โˆ— is cyclic and generated by ๐›ผ.
So ๐น = {0,1, ๐›ผ, โ€ฆ , ๐›ผ 14 }
This notation is convenient for multiplication:
๐›ผ ๐‘– โˆ™ ๐›ผ ๐‘— = ๐›ผ ๐‘–+๐‘—(๐‘š๐‘œ๐‘‘ 15)
(Addition - problematic!)
Note: Over ๐น ๐‘ฅ 4 + ๐‘ฅ 3 + 1 factors into linear factors and so is a splitting field for this
polynomial over ๐”ฝ2
Notice that: ๐›ผ 4 + ๐›ผ 3 + 1 = 0
(Over โ„คโ„๐‘โ„ค: (๐‘ฅ + ๐‘ฆ)๐‘ = ๐‘ฅ ๐‘ + ๐‘ฆ ๐‘ )
So 0 = (๐›ผ 4 + ๐›ผ 3 + 1)2 = ๐›ผ 8 + ๐›ผ 6 + 1 โ‡’ ๐›ผ 2 is a root of ๐‘ฅ 4 + ๐‘ฅ 3 + 1
(๐›ผ 8 + ๐›ผ 6 + 1)2 = ๐›ผ 16 + ๐›ผ 12 + 1 โ‡’ ๐›ผ 4 is a root of ๐‘ฅ 4 + ๐‘ฅ 3 + 1
Same for (๐›ผ 16 + ๐›ผ 12 + 1)2 which leads to ๐›ผ 8 is a root as well
So ๐‘ฅ 4 + ๐‘ฅ 3 + 1 = (๐‘ฅ โˆ’ ๐›ผ)(๐‘ฅ โˆ’ ๐›ผ 2 )(๐‘ฅ โˆ’ ๐›ผ 4 )(๐‘ฅ โˆ’ ๐›ผ 8 )
Theorem: The multiplicative group of a finite field is cyclic.
Proof: next lesson!
Note: If |๐น| = ๐‘ž then all its nonzero elements will satisfy ๐‘ฅ ๐‘žโˆ’1 = 1
As |๐น โˆ— | = ๐‘ž โˆ’ 1
Over a field, the polynomial has at most ๐‘ž โˆ’ 1 different roots. So in this case the set of
elements in ๐น โˆ— is precisely the set of roots of ๐‘ฅ ๐‘žโˆ’1
If we take ๐‘ฅ ๐‘ž โˆ’ ๐‘ฅ then every element of ๐น (including 0!) is a root and ๐น is the splitting field
of ๐‘ฅ ๐‘ž โˆ’ ๐‘ฅ.
--- end of lesson 8
Fundemental theorem of Abelian groups:
Every Abelian group is a direct product of cyclic groups.
(If the group is finite โ€“ get a direct product of a finite number of finite cyclic groups).
Proof: Jacobson Basic Algebra 1.
For the finite case, you can always write:
๐บ = ๐ป1 × โ€ฆ × ๐ป๐‘Ÿ
๐ป๐‘– = direct product of cyclic groups of orders that are powers of a fixed prime ๐‘๐‘–
๐‘1 , โ€ฆ , ๐‘๐‘Ÿ direct primes.
Theorem: If ๐น is a finite field, then ๐น โˆ— is cyclic.
Proof: Assume ๐น โˆ— = ๐ป1 × โ€ฆ × ๐ป๐‘  as above.
Each ๐ป๐‘– can be written as a direct product:
๐‘๐‘– = ๐‘- ๐ป๐‘– = ๐ถ๐‘๐‘˜๐‘–1 × ๐ถ๐‘๐‘˜๐‘–2 × โ€ฆ × ๐ถ๐‘๐‘˜๐‘–๐‘Ÿ
Can assume ๐‘˜1 โ‰ฅ โ‹ฏ โ‰ฅ ๐‘˜๐‘Ÿ
๐ถ๐‘˜ = cyclic of order ๐‘˜
So every element ๐‘Ž of ๐ป๐‘– satisfies ๐ด๐‘
๐‘˜1
=1
So every element of ๐ป๐‘– is a root of the polynomial ๐‘ฅ ๐‘
๐‘˜1
โˆ’1=0
๐ป๐‘– โŠ‚ ๐น and in ๐น there are at most ๐‘๐‘˜1 roots of this polynomial. So |๐ป๐‘– | = ๐‘๐‘˜1 . Meaning, ๐‘Ÿ =
1.
So ๐ป๐‘– = ๐ถ๐‘๐‘˜1 and in general we get:
So ๐น โˆ— = ๐ถ๐‘๐‘˜1 × โ€ฆ × ๐ถ๐‘๐‘˜๐‘ 
1
๐‘ 
๐‘1 , โ€ฆ , ๐‘๐‘  are distinct primes!
So ๐น โˆ— is cyclic generated by the product of the generators of ๐ถ๐‘๐‘˜1 , โ€ฆ , ๐ถ๐‘๐‘˜๐‘  .
1
๐‘ 
Corollary: If ๐น is a finite field of order ๐‘ž. Then it is the splitting field of ๐‘ฅ ๐‘ž โˆ’ ๐‘ฅ (where ๐‘ž =
๐‘๐‘˜ , ๐‘ is prime) over โ„คโ„๐‘โ„ค. And so unique up to isomorphism.
Proof: All the elements of ๐น โˆ— are roots of ๐‘ฅ ๐‘žโˆ’1 โˆ’ 1 and so together with 0 all the elements
of ๐น are roots of ๐‘ฅ ๐‘žโˆ’๐‘ฅ โˆ’ ๐‘ฅ.
So every element is a root and the set of roots = ๐น.
We shall show that if ๐น and ๐น โ€ฒ are both fields of order ๐‘ž = ๐‘๐‘˜ then they are isomorphic:
Let ๐›ผ โˆˆ ๐น โˆ— generator.
So ๐‘Ž is algebraic over โ„คโ„๐‘โ„ค so is a root of an irreducible monic polynomial ๐‘š(๐‘ฅ) โˆˆ โ„คโ„๐‘โ„ค [๐‘ฅ]
So ๐‘š(๐‘ฅ)|๐‘ฅ ๐‘ž โˆ’ ๐‘ฅ
๐น โ€ฒ is also a splitting field of ๐‘ฅ ๐‘ž โˆ’ ๐‘ฅ over โ„คโ„๐‘โ„ค.
So ๐‘š(๐‘ฅ) has a root ๐›ฝ in ๐น โ€ฒ .
We map ๐›ผ ๐‘– to ๐›ฝ ๐‘– โˆ€๐‘– and 0 to 0.
We need to show that the map is onto ๐น โ€ฒ (and so 1-1)
And that it is additive! (it is multiplicative by definition).
Suppose ๐›ฝ ๐‘Ÿ = 1 for ๐‘Ÿ < ๐‘ž โˆ’ 1.
Then ๐›ฝ is a root of ๐‘ฅ ๐‘Ÿ โˆ’ 1 in ๐น โ€ฒ .
๐‘š(๐‘ฅ) is the minimal polynomial of ๐›ฝ so that ๐‘š(๐‘ฅ)|๐‘ฅ ๐‘Ÿ โˆ’ 1 over โ„คโ„๐‘โ„ค
So that ๐›ผ ๐‘Ÿ = 1 in ๐น.
But ๐›ผ is of order ๐‘ž โˆ’ 1 so ๐‘ž โˆ’ 1|๐‘Ÿ and ๐‘Ÿ โ‰ฅ ๐‘ž โˆ’ 1 - contradiction!
We now show the map is additive:
a) If ๐›ผ ๐‘– + ๐›ผ ๐‘— = ๐›ผ ๐‘˜ then need to show ๐›ฝ ๐‘Ÿ + ๐›ฝ ๐‘  = ๐›ฝ ๐‘ก
b) If ๐›ผ ๐‘– + ๐›ผ ๐‘— = 0 then need to show ๐›ฝ ๐‘Ÿ + ๐›ฝ ๐‘  = 0
We shall show (a):
๐›ผ ๐‘– + ๐›ผ ๐‘— = ๐›ผ ๐‘˜ implies ๐›ผ is a root of ๐‘ฅ ๐‘Ÿ + ๐‘ฅ ๐‘  โˆ’ ๐‘ฅ ๐‘ก so ๐‘š(๐‘ฅ)|๐‘ฅ ๐‘Ÿ + ๐‘ฅ ๐‘  โˆ’ ๐‘ฅ ๐‘ก
So then ๐›ฝ root of ๐‘ฅ ๐‘Ÿ + ๐‘ฅ ๐‘  โˆ’ ๐‘ฅ ๐‘ก and so ๐›ฝ ๐‘Ÿ + ๐›ฝ ๐‘  = ๐›ฝ ๐‘ก .
Note: It also follows that the roots of ๐‘ฅ ๐‘ž โˆ’ ๐‘ฅ over โ„คโ„๐‘โ„ค are distinct.
Theorem: For any prime ๐‘ and 1 โ‰ค ๐‘˜ โ‰ค โ„• there exists a field of order ๐‘๐‘˜ .
๐‘˜
Proof: Take โ„คโ„๐‘โ„ค and extend to a splitting field for ๐‘ฅ ๐‘ โˆ’ ๐‘ฅ.
This will be a field of order ๐‘๐‘˜ (and will be unique!).
Corollary: For any ๐‘˜ โ‰ฅ 1 integer and prime ๐‘, there exists an irreducible polynomial of
degree ๐‘˜ over โ„คโ„๐‘โ„ค.
Proof: Take ๐›ผ a generator of ๐น โˆ— where ๐น field of order ๐‘๐‘˜ = ๐‘ž. (๐น = ๐บ๐น(๐‘ž))
โ„คโ„ [๐›ผ] = ๐น and โ„คโ„ [๐›ผ] is a vector space of dimension ๐‘™ over โ„คโ„ where ๐‘™ is the degree
๐‘โ„ค
๐‘โ„ค
๐‘โ„ค
of the minimal polynomial of ๐›ผ.
So โ„คโ„๐‘โ„ค [๐›ผ] is of order ๐‘๐‘™ so ๐‘˜ = ๐‘™ and minimal polynomial is irreducible of degree ๐‘˜.
Factorization of ๐‘ฟ๐’ โˆ’ ๐Ÿ over finite fields
Example: ๐บ๐น(16) = ๐บ๐น(2)[๐›ผ]
๐›ผ root of ๐‘ฅ 4 + ๐‘ฅ 3 + 1 over ๐บ๐น(2).
Every element in this field is a root of ๐‘ฅ 16 โˆ’ ๐‘ฅ.
So ๐‘ฅ 4 + ๐‘ฅ 3 + 1|๐‘ฅ 16 โˆ’ ๐‘ฅ over ๐บ๐น(2).
Roots of ๐‘ฅ 4 + ๐‘ฅ 3 + 1 in ๐บ๐น(16) were: ๐›ผ, ๐›ผ 2 , ๐›ผ 4 , ๐›ผ 16
0 root of ๐‘ฅ. (so ๐‘ฅ|๐‘ฅ 16 โˆ’ ๐‘ฅ)
1 root of ๐‘ฅ + 1 (so ๐‘ฅ + 1|๐‘ฅ 16 โˆ’ ๐‘ฅ)
๐‘ฅ 16 โˆ’ ๐‘ฅ = ๐‘ฅ(๐‘ฅ + 1)(๐‘ฅ 4 + ๐‘ฅ 3 + 1) โˆ™ โ„Ž(๐‘ฅ), โ„Ž(๐‘ฅ) โˆˆ ๐บ๐น(2)[๐‘ฅ] of degree 10.We want to factor
โ„Ž(๐‘ฅ)
Definition:
Let ๐‘“(๐‘ฅ) = polynomial of degree ๐‘›.
The reciprocal of ๐‘“(๐‘ฅ) is ๐‘”(๐‘ฅ) = ๐‘ฅ ๐‘š ๐‘“(๐‘ฅ โˆ’1 )
Example:
5
๐‘ฅ ๐‘“(๐‘ฅ
โˆ’1 )
=๐‘ฅ
5 (๐‘ฅ โˆ’5
๐‘“(๐‘ฅ) = ๐‘ฅ 5 โˆ’ 2๐‘ฅ 4 + 3๐‘ฅ 2 โˆ’ 7๐‘ฅ + 19
โˆ’ 2๐‘ฅ โˆ’4 + 3๐‘ฅ โˆ’2 โˆ’ 7๐‘ฅ โˆ’1 + 19) = 1 โˆ’ 2๐‘ฅ + 3๐‘ฅ 2 โˆ’ 7๐‘ฅ 4 + 19๐‘ฅ 5
Use question 4 in assignment 4 to get the reciprocal of ๐‘ฅ 4 + ๐‘ฅ 3 + 1:
๐‘ฅ4 + ๐‘ฅ + 1
โˆ’1
So ๐‘ฅ 4 + ๐‘ฅ + 1 is irreducible and ๐›ผ
โŸ
is a root and also ๐›ผ โˆ’2 = ๐›ผ 13 , ๐›ผ โˆ’4 = ๐›ผ 11 , ๐›ผ โˆ’8 = ๐›ผ 7 .
=๐›ผ14
We conclude that ๐‘ฅ 4 + ๐‘ฅ + 1|๐‘ฅ 16 โˆ’ ๐‘ฅ
So โ„Ž(๐‘ฅ) has ๐‘ฅ 4 + ๐‘ฅ + 1 as an irreducible factor over ๐บ๐น(2)
Note also: ๐‘ฅ 5 โˆ’ 1|๐‘ฅ 15 โˆ’ 1. Since (๐‘ฅ 5 โˆ’ 1)(๐‘ฅ 10 + ๐‘ฅ 5 + 1) = ๐‘ฅ 15 โˆ’ 1.
Over ๐น๐บ(2) we have ๐‘ฅ 5 โˆ’ 1 = (๐‘ฅ + 1)(๐‘ฅ 4 + ๐‘ฅ 3 + ๐‘ฅ 2 + ๐‘ฅ + 1)
So ๐‘ฅ 4 + ๐‘ฅ 3 + ๐‘ฅ 2 + ๐‘ฅ + 1|๐‘ฅ 16 โˆ’ ๐‘ฅ and is irreducible (question 1 in assignment 4).
Note also: 1, ๐›ผ 5 , ๐›ผ 10 are roots of ๐‘ฅ 3 โˆ’ 1 in ๐บ๐น(16): ๐›ผ 3 , ๐›ผ 6 , ๐›ผ 12 , ๐›ผ 24 = ๐›ผ 9
๐‘ฅ 3 โˆ’ 1 factors to: (๐‘ฅ โˆ’ 1)(๐‘ฅ 2 + ๐‘ฅ + 1)
So ๐‘ฅ 2 + ๐‘ฅ + 1 is the minimal polynomial of ๐›ผ 5 , ๐›ผ 10 .
So over ๐บ๐น(2):
๐‘ฅ 16 โˆ’ ๐‘ฅ = ๐‘ฅ(๐‘ฅ โˆ’ 1)(๐‘ฅ 2 + ๐‘ฅ + 1)(๐‘ฅ 4 + ๐‘ฅ 3 + 1)(๐‘ฅ 4 + ๐‘ฅ + 1)(๐‘ฅ 4 + ๐‘ฅ 3 + ๐‘ฅ 2 + ๐‘ฅ + 1)
Roots (in the appropriate order of the factors):
0, 1, ๐›ผ 5 , ๐›ผ 10 , ๐›ผ , ๐›ผ 2 , ๐›ผ 4 , ๐›ผ 8 , ๐›ผ 14 , ๐›ผ 13 , ๐›ผ 11 , ๐›ผ 7 , ๐›ผ 3 , ๐›ผ 6 , ๐›ผ 9 , ๐›ผ 12
Note: ๐›ผ, ๐›ผ โˆ’1 = ๐›ผ 14 are primitives elements (i.e. generators of ๐บ๐น(16)โˆ— but the roots of
๐‘ฅ 4 + ๐‘ฅ 3 + ๐‘ฅ 2 + ๐‘ฅ + 1 are not generators for ๐บ๐น(16)โˆ—
Though we can use this polynomial to construct ๐บ๐น(16) over ๐บ๐น(2). And every element of
๐บ๐น(16) is a polynomial in ๐›ผ 3 (but not a power of ๐›ผ 3 !)
Every element of ๐บ๐น(๐‘๐‘˜ ) satisfies ๐‘ฅ ๐‘
๐‘›
๐‘˜ โˆ’1
= 1.
๐‘˜
If ๐‘ฅ โˆ’ 1 has a root in ๐บ๐น(๐‘ ).
Must have ๐‘›|๐‘๐‘˜ โˆ’ 1
Can see which are the subfields of ๐บ๐น(16) by looking at the factorization of ๐‘ฅ 16 โˆ’ ๐‘ฅ.
Possible subfields (are of order 2๐‘š , ๐‘š โ‰ค 4):
๐บ๐น(2) - prime field and so a subfield!
๐บ๐น(4) โ€“ {0,1, ๐›ผ 5 , ๐›ผ 10 } as ๐บ๐น(4) splitting field of ๐‘ฅ 2 + ๐‘ฅ + 1
๐บ๐น(8) - Donโ€™t have any irreducible polynomials of degree 3 dividing ๐‘ฅ 16 โˆ’ ๐‘ฅ! ๐บ๐น(8) is the
splitting field of an irreducible cubic over ๐บ๐น(2)! So this is not a subfield of ๐‘ฎ๐‘ญ(๐Ÿ๐Ÿ”).
๐บ๐น(16) (clearly).
Also: ๐บ๐น(16) could not be a vector space over ๐บ๐น(8) otherwise 16 would equal an integral
power of 8.
--- end of lesson
๐‘ฅ ๐‘› โˆ’ ๐‘ฅ over ๐บ๐น(2)
-
What are the subfields of a given finite field ๐บ๐น(๐‘ž), ๐‘ž = ๐‘ ๐‘ฅ , ๐‘ ๐‘๐‘Ÿ๐‘–๐‘š๐‘’.
Lemma: ๐‘ฅ ๐‘š โˆ’ 1|๐‘ฅ ๐‘› โˆ’ 1 โ‡” ๐‘š|๐‘›
Proof: Divide = ๐‘ฅ ๐‘› โˆ’ 1 by ๐‘ฅ ๐‘š โˆ’ 1 with remainder (over โ„ค):
๐‘ฅ ๐‘› โˆ’ 1 = (๐‘ฅ ๐‘š โˆ’ 1)(๐‘ฅ ๐‘›โˆ’๐‘š + ๐‘ฅ ๐‘›โˆ’2๐‘š + ๐‘ฅ ๐‘›โˆ’3๐‘š + โ‹ฏ + ๐‘ฅ ๐‘›โˆ’๐‘˜๐‘š ) + โŸ
๐‘ฅ ๐‘›โˆ’๐‘˜๐‘š โˆ’ 1
๐‘Ÿ๐‘’๐‘š๐‘Ž๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ
๐‘˜ is such that ๐‘˜๐‘š โ‰ค ๐‘› but (๐‘˜ + 1)๐‘š > ๐‘›.
So remainder is 0 โ‡” ๐‘› = ๐‘˜๐‘š โ‡” ๐‘š|๐‘›
Theorem: ๐บ๐น(๐‘๐‘š ) โŠ† ๐บ๐น(๐‘๐‘› ) โ‡” ๐‘š|๐‘›
Proof:
If ๐‘š|๐‘› then by the lemma ๐‘ฅ ๐‘š โˆ’ 1|๐‘ฅ ๐‘› โˆ’ 1
So in particular setting ๐‘ฅ = ๐‘ we get ๐‘๐‘š โˆ’ 1|๐‘๐‘› โˆ’ 1
Using the lemma again, we get that ๐‘ฅ ๐‘
๐‘š โˆ’1
โˆ’ 1|๐‘ฅ ๐‘
๐‘๐‘š โˆ’1
๐‘› โˆ’1
โˆ’1
So all the roots of ๐‘ฅ
โˆ’ 1 are contained in ๐บ๐น(๐‘
(which is the set of roots of ๐‘ฅ ๐‘
1)
Meaning ๐บ๐น(๐‘๐‘š )โˆ— โŠ† ๐บ๐น(๐‘๐‘› )โˆ— so ๐บ๐น(๐‘๐‘š ) โŠ† ๐บ๐น(๐‘๐‘› )
Now assume ๐บ๐น(๐‘
โŸ ๐‘š ) โŠ† ๐บ๐น(๐‘
โŸ ๐‘›)
๐ฟ
๐‘› )โˆ—
๐‘› โˆ’1
โˆ’
๐พ
So ๐พ is a vector space over ๐ฟ, finite. So of finite dimension, say ๐‘˜ over ๐ฟ.
|๐ฟ|๐‘˜ = |๐พ|
So ๐‘๐‘š๐‘˜ = ๐‘๐‘› so ๐‘š|๐‘›.
Example:
๐‘ฅ 16 โˆ’ ๐‘ฅ
๐‘› = 4 subfields are of order 2๐‘š for ๐‘š|4
๐‘› = 1, ๐‘› = 2, ๐‘› = 4: ๐บ๐น(2), ๐บ๐น(4), ๐บ๐น(16)
Note: If ๐บ๐น(๐‘๐‘š ) โŠ† ๐บ๐น(๐‘๐‘› ), then ๐œ‘: ๐บ๐น(๐‘๐‘› ) โ†’ ๐บ๐น(๐‘๐‘› ) is frobenius automorphism ๐‘Ž โ†’ ๐‘Ž๐‘
๐‘š
Then ๐œ‘๐‘š (๐‘Ž) = ๐‘Ž๐‘
So set if fixed points under
๐‘š
๐œ‘๐‘š = {๐‘Ž|๐œ‘๐‘š (๐‘Ž) = ๐‘Ž, ๐‘Ž โˆˆ ๐บ๐น(๐‘๐‘› )} = {๐‘Ž โˆˆ ๐บ๐น(๐‘๐‘› )|๐‘Ž๐‘ = ๐‘Ž} =
{๐‘Ž โˆˆ ๐บ๐น(๐‘๐‘› )โˆ— |๐‘Ž๐‘
๐‘› โˆ’1
๐‘›
1 = 0} โˆช {0} = set of roots of ๐‘ฅ ๐‘ โˆ’ ๐‘ฅ in ๐บ๐น(๐‘๐‘› )
Note: If ๐น finite field |๐น| = ๐‘๐‘› and we look at roots of ๐‘ฅ ๐‘˜ โˆ’ 1 in ๐น.
Then ๐‘Ž is a root โ‡” ๐‘Ž๐‘˜ = 1 in ๐น meaning either: ๐‘˜ = 0 and ๐‘Ž = 1 or ๐‘˜|๐‘๐‘› โˆ’ 1.
The nontrivial factorizations of polynomials of type ๐‘ฅ ๐‘˜ โˆ’ 1 are only for ๐‘˜|๐‘๐‘› โˆ’ 1
(as if gcd(๐‘˜, ๐‘๐‘› โˆ’ 1) = 1 only roots will be 1: (๐‘ฅ ๐‘˜ โˆ’ 1) = (๐‘ฅ โˆ’ 1)(๐‘ฅ ๐‘˜โˆ’1 + โ‹ฏ ))
๐‘›
In general, we want to factor ๐‘ฅ ๐‘ โˆ’ ๐‘ฅ or ๐‘ฅ ๐‘
๐‘› โˆ’1
โˆ’ 1 over ๐บ๐น(๐‘).
๐‘›
Theorem: over โ„คโ„๐‘โ„ค = ๐บ๐น(๐‘) ๐‘ฅ ๐‘ โˆ’ ๐‘ฅ is a product of all monic irreducible polynomials over
๐บ๐น(๐‘) where degree divides ๐‘› (each one exactly once as roots are distinct!)
Example:
(๐‘ฅ 4 + ๐‘ฅ 3 + 1)(๐‘ฅ 4 + ๐‘ฅ + 1)(๐‘ฅ 4 + ๐‘ฅ 3 + ๐‘ฅ 2 + ๐‘ฅ + 1)
๐‘ฅ 16 โˆ’ ๐‘ฅ = โŸ
๐‘ฅ(๐‘ฅ + 1) (๐‘ฅ
โŸ 2 + ๐‘ฅ + 1) โŸ
๐‘–๐‘Ÿ๐‘Ÿ๐‘’๐‘‘๐‘ข๐‘๐‘–๐‘๐‘™๐‘’
๐‘œ๐‘“ ๐‘‘๐‘’๐‘”๐‘Ÿ๐‘’๐‘’ 1
๐‘–๐‘Ÿ๐‘Ÿ๐‘’๐‘‘๐‘ข๐‘๐‘–๐‘๐‘™๐‘’
๐‘œ๐‘Ÿ ๐‘‘๐‘’๐‘”๐‘Ÿ๐‘’๐‘’ 2
๐‘Ž๐‘™๐‘™ ๐‘–๐‘Ÿ๐‘Ÿ๐‘’๐‘‘๐‘ข๐‘๐‘–๐‘๐‘™๐‘’๐‘ 
๐‘œ๐‘“ ๐‘‘๐‘’๐‘Ÿ๐‘’๐‘’ 4
Proof: Suppose ๐‘“(๐‘ฅ) โˆˆ โ„คโ„๐‘โ„ค [๐‘ฅ] monic, irreducible of degree ๐‘š and ๐‘š|๐‘›.
Extend ๐บ๐น(๐‘) to a field containing a root of ๐‘“ denoted ๐›ผ. This field will have ๐‘๐‘š elements.
We know by the last theorem, since ๐‘š|๐‘› this field is contained in a field of ๐บ๐น(๐‘๐‘› ).
๐‘›
๐‘›
And so satisfies ๐›ผ ๐‘ = ๐›ผ. If ๐›ผ = 0, ๐‘“(๐‘ฅ) = ๐‘ฅ and ๐‘ฅ|๐‘ฅ ๐‘ โˆ’ ๐‘ฅ!
Otherwise ๐›ผ โ‰  0, ๐›ผ ๐‘
๐‘› โˆ’1
โˆ’ 1 = 0 so ๐›ผ root of ๐‘ฅ ๐‘
And so its minimal polynomial ๐‘“(๐‘ฅ) divides ๐‘ฅ
๐‘› โˆ’1
๐‘๐‘› โˆ’1
โˆ’1
๐‘›
and so ๐‘ฅ ๐‘ โˆ’ ๐‘ฅ.
๐‘›
Conversely: Suppose now ๐‘“(๐‘ฅ)|๐‘ฅ ๐‘ โˆ’ ๐‘ฅ ,monic irreducible and its degree is ๐‘š.
If ๐›ผ is a root of ๐‘“(๐‘ฅ), then extending ๐บ๐น(๐‘) to a field containing ๐›ผ we get an extension of
dimension ๐‘š over ๐บ๐น(๐‘) i.e. a field of order ๐‘๐‘› .
๐‘›
So ๐›ผ is also a root of ๐‘ฅ ๐‘ โˆ’ ๐‘ฅ.
And so ๐บ๐น(๐‘๐‘š ) = ๐บ๐น(๐‘)(๐›ผ)
In other words, every element of ๐บ๐น(๐‘๐‘š ) is a polynomial in ๐›ผ.
๐‘›
๐‘›
๐›ผ is also a root of ๐‘‹ ๐‘ โˆ’ ๐‘ฅ as ๐‘“(๐‘ฅ)|๐‘ฅ ๐‘ โˆ’ ๐‘ฅ
So ๐›ผ โˆˆ ๐บ๐น(๐‘๐‘› ). Giving that ๐บ๐น(๐‘๐‘š ) = ๐บ๐น(๐‘)(๐›ผ) โŠ† ๐บ๐น(๐‘๐‘› )
But then by the lemma โ€“ ๐‘š|๐‘›.
Error-Correcting Codes
e.g. spellcheck: eleqhant
bed bod
With binary information โ€“ location of an error means we can correct it! (0 โ†” 1)
Naïve way:
Transmit the same message 3 times and take a majority check.
The probability of having an error in exactly the same position twice is very low.
Very waistul! We might have a more sophisticated way of doing itโ€ฆ
Parity-Check Digit
Transmit an extra digit at the end of the message.
Send 1 if the message has an odd number of ones.
Send 0 if the message has an even number of ones.
e.g. message = 10101 โŸ
0
๐‘๐‘Ž๐‘Ÿ๐‘–๐‘ก๐‘ฆ
If we get a message with an odd number of ones we know thereโ€™s an error, but we donโ€™t
know where it is.
If we get an even number we could have had a double error. But this happens with a
relatively low probability.
Example:
ID with a Sifrat Bikoret
03569657
12121212
0+6+5+3+9+3+5+5=26
10-last digit = 4!
Hamming Code (7,4)
Locates (and so corrects) single errors.
Code words will be of length 7. There will be 4 โ€œinformation digitsโ€ + 3 โ€œredundancy digitsโ€.
We call them also parity check digits even though they do not check parity.
Assumption: very low probability of double errors.
๐‘ = probability of error in transmitting a digit.
Probability of a correctly transmitted message is (1 โˆ’ ๐‘)7
Probability of transmitting exactly one error: 7๐‘(1 โˆ’ ๐‘)6
So if you add them together you get: (1 โˆ’ ๐‘)7 + 7๐‘(1 โˆ’ ๐‘)6
If ๐‘ = 0.1 get 0.853 of a message with โ‰ค 1 errors.
Sending 4 digits (with no redundancy) correctly has probability (1 โˆ’ ๐‘)4
If ๐‘ = 0.1 get 0.6561.
So 0.853 is a big improvement of sending only 4 digits and no errors!
This is a linear code, ๐‘–. ๐‘’. our code words are elements of a vector space over ๐บ๐น(2):
elements of ๐บ๐น(2)7
Subspace of dimension 4. i.e. there are going to be 16 possible code words.
(same number of code words in ๐บ๐น(2)4 )
We define our code by giving a basis: 4 vectors of length 7.
(in a 4 × 7 matrix).
๐‘ฃ1 1 0
๐‘ฃ2 0 1
๐‘ฃ3 0 0
๐‘ฃ4 0 0
Suppose we want to transmit 1101?
Send instead ๐‘ฃ1 + ๐‘ฃ2 + ๐‘ฃ4 = 1101001
0
0
1
0
0
0
0
1
0
1
1
1
1
0
1
1
1
1
0
1
Big advantage: Efficient decoding and locates โ‰ค 1 errors.
Use an analog to inner product/scalar multiplication. Induced by matrix multiplication over
๐บ๐น(2).
[๐‘ฅ1
7
๐‘ฆ1
โ€ฆ ๐‘ฅ๐‘› ] [ โ‹ฎ ] = โˆ‘ ๐‘ฅ๐‘– ๐‘ฆ๐‘– (๐‘š๐‘œ๐‘‘ 2)
๐‘ฆ๐‘›
๐‘–=1
It is a bilinear form on ๐บ๐น(2)4 .
Decoding:
Suppose we receive ๐‘ฆ โˆ— = [1 1 0 1 1 1
๐‘ฃ1 + ๐‘ฃ2 = ๐‘ฆ = [1 1 0 0 1 1 0]
0]
We compute:
๐‘ฆโˆ— โˆ™ ๐‘Ž = 1 + 1 + 1 = 1
๐‘ฆโˆ— โˆ™ ๐‘ = 1 + 1 = 0
๐‘ฆโˆ— โˆ™ ๐‘ = 1 + 1 = 0
The result is sequence 100
Which happens to be the binary representation of 4. And the error is in the fourth digit!
If thereโ€™s no error, we get 0
๐‘Ž = [0001111]
๐‘ = [0110011]
๐‘ = [1010101]
Hamming matrix:
1
0
[
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
1
1
1
1
0
1
1
1
1
]
0
1
The trick is in fact - Orthogonal complements:
Recall: ๐‘‰ is a vector space over๐น.
๐ต: ๐‘‰ × ๐‘‰ โ†’ ๐น Is a bilinear form if it is linear in both variables:
๐ต(๐‘Ž1 ๐‘ฃ1 + ๐‘Ž2 ๐‘ฃ2 , ๐‘ค) = ๐‘Ž1 ๐ต(๐‘ฃ1 , ๐‘ค) + ๐‘Ž2 + ๐ต(๐‘ฃ2 , ๐‘ค)
๐ต(๐‘ฃ, ๐‘Ž1 ๐‘ค2 + ๐‘Ž2 ๐‘ค2 ) = ๐‘Ž1 ๐ต(๐‘ฃ, ๐‘ค) + ๐‘Ž2 (๐‘ฃ, ๐‘ค2 )
And for any subspace ๐‘Š of ๐‘‰ we can define
๐‘Š
โŸโŠฅ
= {๐‘ค โˆˆ ๐‘‰|๐ต(๐‘ข, ๐‘ค) = 0 ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘ค โˆˆ ๐‘Š}
๐‘‚๐‘Ÿ๐‘กโ„Ž๐‘œ๐‘”๐‘œ๐‘›๐‘Ž๐‘™
๐ถ๐‘œ๐‘š๐‘๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก
๐‘œ๐‘“ ๐‘Š ๐‘ค๐‘Ÿ๐‘ก ๐ต
๐‘Š โŠฅ is a subspace of ๐‘‰.
If ๐น has charactaristics 0 and ๐ต is non-degenerate bilinear form.
e.g. If ๐น = โ„ and ๐ต is dot product.
If ๐น = โ„‚ and ๐ต is inner product (๐‘ฃ, ๐‘ค) = ๐‘ฃ ๐‘‡ โˆ™ ๐‘ค
ฬ…
Then we have that:
๐‘Š โŠ• ๐‘ŠโŠฅ = ๐‘‰
For ๐‘‰ finite dimension.
Proof: uses fact that ๐‘Š โˆฉ ๐‘Š โŠฅ = {0} so that the union of base for ๐‘Š and a base for ๐‘Š โŠฅ is a
base for ๐‘‰.
In general, for ๐น or characteristic ๐‘ and arbitrary bilinear form this is not true!
e.g. Taking product defined in ๐บ๐น(27 ) can see that [1
to itself!
E.g.
If ๐‘Š = ๐‘ ๐‘๐‘Ž๐‘›{[1
e.g.
1 0 0
0 0
[0
1 0
0 0 0
0]} then ๐‘Š โŠŠ ๐‘Š โŠฅ
0 1 1
0 0
0] โˆˆ ๐‘Š โŠฅ \๐‘Š
And ๐‘Š โŠฅ โ‰  ๐บ๐น(2)7
But: dim ๐‘Š + dim ๐‘Š โŠฅ = dim ๐‘‰ โ† proof in Basic Algebra 1 (Jacobson)
E.g. dim ๐‘Š โŠฅ above will be 6!
Take as a basis for ๐‘Š โŠฅ :
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
[1 1 0 0 0 0 0]
--- end of lesson
0] is orthogonal
The parity check matrix is defined to be a matrix whose columns are a basis for the
orthogonal complement of the code.
Correcting Errors in linear codes over GF(2)
Given a vector which contains errors, we want to correct it to the code word that differs
from it in the fewest digits.
Define -Hamming distance: ๐‘‘(๐‘ฃ, ๐‘ค) = # of digits which ๐‘ฃ and ๐‘ค differ.
e.g.
๐‘ฃ = (1 0 1 1 0 0 1 1),
๐‘ค = (0 1 1 1 1 0 1 0)
๐‘‘(๐‘ฃ, ๐‘ค) = 4
Turns out, that in the hamming code, every 2 words/vectors are at distance โ‰ฅ 3.
TODO: Draw words in the code in a schematic way
Circle of radius 1 around ๐‘ค = all vectors ๐‘ฃ such that ๐‘‘(๐‘ค, ๐‘ฃ) = 1.
So any vector with one error can only be corrected in one way o a codeword.
General: We can correct ๐‘Ÿ errors if the minimal distance between two code words โ‰ฅ 2๐‘Ÿ + 1
Note: In the hamming code we have 16 elements. In the whole space, we have 27 = 128
elements. The elements at distance exactly 1 from a codeword = 7 โˆ™ 16.
So in fact, every element in the space is either in the code or at distance 1 from a codeword
as 7 โˆ™ 16 + 16 = 128.
BCH Code
Bose-Chandhuri-Hocquenghem
Double error correcting code that uses ๐บ๐น(16) and has a nice decoding algorithm similar to
that of the hamming code.
Construct by starting with the parity check matrix ๐ป (and then the code will be orthogonal
complement of its rows).
The elements will be vectors in ๐บ๐น(2)15
(need minimal hamming distance to be at least 5!)
๐บ๐น(16)โˆ— = {1, ๐›ผ, โ€ฆ , ๐›ผ 14 } where ๐›ผ is the root of ๐‘ฅ 4 + ๐‘ฅ 3 + 1 over ๐บ๐น(2).
Use: representation of ๐บ๐น(16) as vectors over ๐บ๐น(2) of length 4.
Form of ๐ป is going to be as follows:
8 × 15 matrix over ๐บ๐น(2)
๐‘
๐ป=[ 1
๐‘1
4
Where ๐‘๐‘– , ๐‘๐‘– โˆˆ ๐บ๐น(2) row vectors.
We think of also as elements of ๐บ๐น(16).
๐‘2
๐‘2
โ€ฆ ๐‘15
]
โ€ฆ ๐‘15
Take ๐‘๐‘– = vector of length 4 corresponding to ๐›ผ ๐‘–โˆ’1 in the table.
So we have 1, ๐›ผ, โ€ฆ , ๐›ผ 14 in the top half of the matrix.
๐‘๐‘– โ€™s will be defined laterโ€ฆ
We want: If ๐‘ฅ = (๐‘ฅ1 โ€ฆ ๐‘ฅ 15 ) codeword, we want:
(1) ๐ป โˆ™ ๐‘ฅ ๐‘‡ = 0 โ‡” ๐‘ฅ in code
(2) If ๐‘ฅ has at most 2 errors, want it to detect by multiplication by ๐ป.
Suppose ๐‘ฅ has exactly 2 errors in positions ๐‘– and ๐‘—. Then we can write:
๐‘ฅ = ๐‘ฅ๐‘ + ๐‘’๐‘– + ๐‘’๐‘—
And then:
๐‘๐‘– + ๐‘๐‘—
๐ป โˆ™ ๐‘ฅ = ๐ป๐‘ฅ + ๐ป๐‘’๐‘– + ๐ป๐‘’๐‘— = ๐ป๐‘’๐‘– + ๐ป๐‘’๐‘— = (
)
๐‘๐‘– + ๐‘๐‘—
So we want to choose the ๐‘๐‘– โ€™s so we can recover from this vector.
๐‘
Bad choice: ๐‘๐‘– = ๐‘๐‘– . Get ๐ป๐‘ฅ = ( ) - in this case we cannot recover ๐‘– and ๐‘—.
๐‘
1
1
1
0
0
0
0
0
1
1
If ๐‘ = ( ). We could have had: ( ) + ( ) But also: ( ) + ( ) And a lot of other
0
0
0
1
1
โŸ
โŸ
โŸ
โŸ
1
1
0
1
0
๐‘1
๐‘4
๐‘8
๐‘0
possibilities.
Another bad choice: define ๐‘๐‘– = (๐‘๐‘– )2 (thinking of ๐‘๐‘– as an element of ๐บ๐น(16) so that ๐‘๐‘–
corresponding to ๐›ผ 2๐‘–โˆ’2
So we should then get:
๐‘๐‘– + ๐‘๐‘—
๐‘๐‘– + ๐‘๐‘—
๐‘
๐ป๐‘ฅ = ( 2
=
)
(
2) = ( 2)
๐‘๐‘– + ๐‘๐‘—2
๐‘
(๐‘๐‘– + ๐‘๐‘— )
If you square you get the same thingโ€ฆ.
Definition: Take ๐‘๐‘– = ๐‘๐‘–3.
(
๐‘๐‘– + ๐‘๐‘—
๐‘๐‘–3 + ๐‘๐‘—3
๐‘
) = ( ) want to show ๐‘– and ๐‘— determined uniquely and how to find them.
๐‘
๐‘ = ๐‘๐‘–3 + ๐‘๐‘—3 = (๐‘๐‘– + ๐‘๐‘— )(๐‘๐‘–2 + ๐‘๐‘– ๐‘๐‘— + ๐‘๐‘—2 ) = ๐‘(๐‘๐‘–2 + ๐‘๐‘– ๐‘๐‘— + ๐‘๐‘—2 ) = ๐‘(๐‘ 2 + ๐‘๐‘– ๐‘๐‘— )
(regarding the elements of ๐บ๐น(16))
We first assume we have exactly 2 errors. So ๐‘– โ‰  ๐‘— and ๐‘ โ‰  0.
Get ๐‘๐‘ โˆ’1 + ๐‘ 2 = ๐‘๐‘– ๐‘๐‘—
So ๐‘๐‘– and ๐‘๐‘— are roots in ๐บ๐น(16) of the quadratic equation:
(๐‘ฅ โˆ’ ๐‘๐‘– )(๐‘ฅ โˆ’ ๐‘๐‘— ) = ๐‘ฅ 2 โˆ’ (๐‘๐‘– + ๐‘๐‘— )๐‘ฅ + ๐‘๐‘– ๐‘๐‘— = ๐‘ฅ 2 โˆ’ ๐‘๐‘ฅ + ๐‘๐‘ โˆ’1 + ๐‘ 2
So given ๐‘ and ๐‘, construct this polynomial.
๐‘๐‘– and ๐‘๐‘— are its unique solutions (in the field ๐บ๐น(16)).
For convenience write: ๐ป โ€ฒ = ๐ป with ๐›ผ notation.
2
14
๐ป โ€ฒ = [1 ๐›ผ3 ๐›ผ 6 โ€ฆ ๐›ผ 12 ]
1 ๐›ผ ๐›ผ
โ€ฆ ๐›ผ
Suppose ๐‘ฆ is a received message with errors in positions ๐‘– and ๐‘—.
๐‘–โˆ’1
๐‘—โˆ’1
5
And suppose ๐ป โ€ฒ ๐‘ฆ = ( ๐›ผ3๐‘–โˆ’3 + ๐›ผ 3๐‘—โˆ’3 ) = (๐›ผ 7 )
๐›ผ
๐›ผ
+๐›ผ
1
0
1
1
Equivalently: ๐ป โˆ™ ๐‘ฆ =
polynomial will be: ๐‘ฅ 2 + ๐›ผ 5 ๐‘ฅ + ๐›ผ 8
0
1
1
(1)
Since: ๐‘๐‘ โˆ’1 + ๐‘ 2 = ๐›ผ 7 โˆ™ ๐›ผ โˆ’5 + ๐›ผ 10 = ๐›ผ 2 + ๐›ผ 10 = ๐›ผ 3
Need ๐‘– and ๐‘— such that: ๐›ผ ๐‘–โˆ’1 + ๐›ผ ๐‘—โˆ’1 = ๐›ผ 5 and ๐›ผ ๐‘–โˆ’1 โˆ™ ๐›ผ ๐‘—โˆ’1 = ๐›ผ 8
๐‘– + ๐‘— โˆ’ 2 โ‰ก 8(๐‘š๐‘œ๐‘‘ 15)
๐‘– + ๐‘— โ‰ก 10 (๐‘š๐‘œ๐‘‘ 15)
Checking possibilities: Get only ๐‘– = 3, ๐‘— = 7 satisfies ๐›ผ ๐‘–โˆ’1 + ๐›ผ ๐‘—โˆ’1 = ๐›ผ 5 as well.
Note: If the quadratic polynomial has no roots, then it cannot result from a double error.
Meaning in fact that some triple errors are detectable but not correctable.
Single errors are also correctable using ๐ป:
๐‘
It is the only case where we get a vector of the form: ( 3 ) and then determine ๐‘๐‘– = ๐‘ by
๐‘
checking.
So the polynomial will be ๐‘ฅ(๐‘ฅ โˆ’ ๐‘).
We want to determine the dimension of the code and how to calculate a matrix for the
code.
Claim: ๐‘Ÿ๐‘Ž๐‘›๐‘˜๐ป = 8
Conclusion: dim ๐‘๐‘œ๐‘‘๐‘’ = 7
We shall show, that the first eight columns are linearly independent.
๐‘๐‘–
0
Suppose โˆ‘8๐‘–=1 ๐‘Ž๐‘– ( 3 ) = ( ) and ๐‘Ž๐‘– โˆˆ ๐บ๐น(2)
๐‘๐‘–
0
๐‘–โˆ’1
๐‘–
Then we also get โˆ‘8๐‘–=1 ๐‘Ž๐‘– ( ๐›ผ3๐‘–โˆ’3 ) = 0 โ‡’ โˆ‘7๐‘–=0 ๐‘Ž๐‘–+1 ( ๐›ผ3๐‘– ) = 0 โ‡”
๐›ผ
๐›ผ
7
7
๐‘–
3๐‘–
โˆ‘๐‘–=0 ๐‘Ž๐‘–+1 ๐›ผ = 0 and โˆ‘๐‘–=0 ๐‘Ž๐‘–+1 ๐›ผ = 0
Look at the polynomial โˆ‘7๐‘–=0 ๐‘Ž๐‘–+1 ๐‘ฅ ๐‘– = 0 over ๐บ๐น(2) And ๐›ผ and ๐›ผ 3 are both roots.
So their minimal polynomials both divide โˆ‘7๐‘–=0 ๐‘Ž๐‘–+1 ๐‘ฅ ๐‘–
7
4
3
๐‘ฅ + ๐‘ฅ + 1,
4
3
2
๐‘ฅ + ๐‘ฅ + ๐‘ฅ + ๐‘ฅ + 1| โˆ‘ ๐‘Ž๐‘–+1 ๐‘ฅ ๐‘–
๐‘–=0
The product (๐‘ฅ 4 + ๐‘ฅ 3 + 1)(๐‘ฅ 4 + ๐‘ฅ 3 + ๐‘ฅ 2 + ๐‘ฅ + 1) which is a polynomial of degree 8
divides โˆ‘7๐‘–=0 ๐‘Ž๐‘–+1 ๐‘ฅ ๐‘– which is of degree less or equal to 7! So โˆ‘7๐‘–=0 ๐‘Ž๐‘–+1 ๐‘ฅ ๐‘– is the zero
polynomial! Therefore all coefficients are zero and therefore linearly independent.
Thus are also a basis for our vector space.
We construct ๐ถ = matrix for the code.
๐ป will be of the form: 7 × 15
Where the first 8 columns are are the redundancy digits and the last 7 columns are the
information digits.
7
๐›ผ
1
Take ( ) , ( 3 ) , โ€ฆ , ( ๐›ผ21 ) first 8 columns of ๐ป โ€ฒ .
๐›ผ
1
๐›ผ
8
๐‘–
๐›ผ
The 9โ€™th column ( 24 ) is a linear combination of the first 8 columns: โˆ‘7๐‘–=0 ๐‘ ๐‘– ( ๐›ผ3๐‘– )
๐›ผ
๐›ผ
So the row vector (๐‘ 0 ๐‘ 1 โ€ฆ ๐‘ 7 1 0 โ€ฆ 0) orthogonal to all rows of ๐ป โ€ฒ and ๐ป!
Take as the first row of ๐‘.
9
Similarly, column 10: ( ๐›ผ27 ) = linear combination of 8 columns of ๐ป โ€ฒ .
๐›ผ
7
9
1
๐›ผ
๐‘ก0 ( ) + โ‹ฏ + ๐‘ก7 ( 21 ) = ( ๐›ผ27 )
1
๐›ผ
๐›ผ
So
7
9
1
0
๐‘ก0 ( ) + โ‹ฏ + ๐‘ก7 ( ๐›ผ21 ) + ( ๐›ผ27 ) = ( )
1
0
๐›ผ
๐›ผ
So take the vector (๐‘ก0 โ€ฆ ๐‘ก7 0 1 0 โ€ฆ 0) orthogonal to rows of ๐ป โ€ฒ take to be row
2 of ๐ถ etc.