Theory of lepton mixing - I Andrea Romanino CERN Theory Division Andrea Romanino, CERN Theory Division 1 LNF Spring School – May 2003 Part I of 4: 1. (AR) Theoretical background 2. (PL) Phenomenology of neutrino oscillations 3. (AR) Theoretical ideas on ν masses and mixings 4. (PL) Future prospects for new experimental studies Andrea Romanino, CERN Theory Division 2 LNF Spring School – May 2003 Interest of neutrino physics • New data! • Data interpretation (now) pretty clean • Astrophysics (probe of SUN, SNe, HE sources,…) • Cosmology (CMB, structure formation, nucleosynthesis, baryogenesis,…) • Particle physics (access Λ ~ MGUT , unification, flavor) Andrea Romanino, CERN Theory Division 3 LNF Spring School – May 2003 Flavor and mass eigenstates e , , “flavor eigenstates”, paired to charged leptons in CC: 1 , 2 , 3 “mass eigenstates”, diagonalize the neutrino mass matrix: ei Uih h Andrea Romanino, CERN Theory Division U unitary (PMNS) 4 Jl g ei PL ei 2 mij ei e j mh h h ( ei Uih* h ) LNF Spring School – May 2003 Oscillations ei Uih* h ej e iHt e iHt ei Uih*e iEht h ei U jh e iEht Uhi† mh2 Eh p 2E P ( ei e j ) e j e iHt ei 2 In the simplest case: e 1 cos 2 sin 1 sin 2 cos 2 m L 2 2 P ( e ) sin 2 sin 4E (to be integrated over energy, position and convoluted with, cross section, resolution, efficiency…) Andrea Romanino, CERN Theory Division 5 LNF Spring School – May 2003 o In vacuum only o Simplified derivation: p constant? E constant? It does not really matter (change of variable in the wave packet integral) o m 2 and sin 2 2 require a sensitivity to L/E dependence o m 2L /( 4E ) 1 P m 2 sin 2 m 2L /( 4E ) 1 P sin 2 2 / 2 optimal L/E: m 2L /( 4E ) ~ 1 Andrea Romanino, CERN Theory Division 6 L /( 4E )2 2 (P/L^2 indep. of L) LNF Spring School – May 2003 3 ν oscillations Standard parametrization of U: s13e i 1 c13 U c23 s23 1 s c s e i c13 23 23 13 c12 s12 s c 12 12 1 c12c13 s12c13 s13e i s12c23 c12s23s13e i c12c23 s12s23s13e i s23c13 i i s s c c s e s c s c s e s23c13 23 12 12 23 13 12 23 12 23 13 in terms of the physical (and observable in oscillations) parameters 0 θ12,θ23,θ13 π/ 2, 0 δ 2π Andrea Romanino, CERN Theory Division 7 LNF Spring School – May 2003 Standard labeling of eigenstates 2 2 uniquely defines the labeling 0 m21 m32 2 2 m21 0 by definition, m32 can have both signs: 3 2 Normal m 32 0 e.g.: 2 m1 m2 « m3 (inverse hierarchical) m1 m2 m3 (degenerate) 2 m1 m2 m3 1 (neither) Andrea Romanino, CERN Theory Division e.g.: m2 m1 m3 1 (hierarchical) normal 2 Normal m 32 0 inverted m1 m2 m3 (degenerate) 3 8 LNF Spring School – May 2003 Parameters accessible to oscillations 2 m32 ~ 2.5 10 3 eV 2 23 ~ 45o (ATM, K2K) 2 m21 ~ 0.7 10 4 eV 2 12 ~ 30 35o (SUN,KamLAND) 13 10o (CHOOZ, Palo Verde) 2 sign ( m32 )? ? (superbeams? nu-facts?) 23 ~ 45o ( 45o ?) 12 ~ 30 35o 45o Guidelines for model building: 13 10o 2 2 m21 / m32 0.025 « 1 Andrea Romanino, CERN Theory Division 9 LNF Spring School – May 2003 3ν 2ν Exact (cumbersome) 3ν formulae: P ( ei e j ) P ( e j ei ) PCP PCP P ( ei e j ) P ( e j ei ) PCP PCP ji ji ji 2 2 2 PCP ij 4 Re J12 S12 4 Re J23 S23 4 Re J31 S31 PCP 8 ij JCP S12S23S31 ji (Shk 2 mhk L sin ) 4E ji † † Jhk U jhUhi UikUkj , Im(Jhk ) ji hk JCP , ji 1,0 2 S12 « Chooz: ATM: SUN: 2 1, 2 S23 2 2 2 S12 « 1, S23 S13, 13 « 1 : 2 2 S23, S13 suppressed by 13 : Andrea Romanino, CERN Theory Division 2 m23L P ( e e ) 1 sin 213 sin 4E 2 2 2 m23L P ( ) sin 223 sin 4E P ( e , ) « 1 2 S13 : 10 2 2 m21L P ( e e ) 1 sin 212 sin 4E 2 2 LNF Spring School – May 2003 CP-violation O(1) ? LBL PCP cos 13 sin 212 sin 223 sin 213 sin S21S32S13 Large angles (unlike in quark sector) enhance CP-violation P ( e ) P ( e ) 1 1 1 a , a ~ P ( e ) P ( e ) sin 213 N sin 213 stat. error ~ a / a ~ constant with 13 (until N 0 or subdominant effects start dominate) Andrea Romanino, CERN Theory Division 11 LNF Spring School – May 2003 Matter effects Incoherent scattering – typical mean free paths (depend on flavor, “simplified” energy dependence): (E ) ~ 10cm 100MeV/E 2 in proto-neutron star cores (E ) ~ 1010 km 10MeV/E 2 in the Sun (E ) ~ 109 km GeV/E in the Earth's mantle Coherent forward scattering is enhanced by GF E 2 incoherent : dPsc / dx ~ GF2E 2n coherent : E dPsc / dco ~ GF E ~ 10 5 GeV dco / dx ~ GF n It affects the neutrino phases in a flavor dependent way Andrea Romanino, CERN Theory Division 12 LNF Spring School – May 2003 In matter: Ve m12 1 univ. terms U † m022 H U m22 2E m32 m032 Free Hamiltonian V Ve V 2 GF ne V V MSW potential (neutral matter, nν « ne ) (tree level, neutral matter, Lμ Lτ 0) νx νe e W νe + u, d,… Z e e for ν :U U * ,V V Andrea Romanino, CERN Theory Division νx 13 e LNF Spring School – May 2003 Propagation in constant density Oscillation formulae still hold with θ θm , Δm 2 (Δm 2 )m , where θm , (Δm 2 )m depend on the neutrino energy The Earth: Mantle Core m ~ 35 g / cm3 c ~ 10 15 g / cm3 Propagation in the Earth affects •Atmospheric ν’s (only through the subdominant νe ν μ,τ ) •Solar, SN ν’s (D/N effect) •Terrestrial experiments (Long Baseline) Andrea Romanino, CERN Theory Division 14 LNF Spring School – May 2003 Resonance (2ν) 2EV 2 sin H m 2 sin cos sin cos m 2 2E universal terms cos2 Resonant enhancement of the mixing angle : 2EV Δm 2 cos 2θ (sin 2θ )m 1, (Δm 2 )m sin 2θ Δm 2 Θ = 0.06 ν , Δm 2 0 Θ = 0.6 Also: (Δm 2 )m Δm 2 •Resonance width = tan 2θ (sin2 2θ 1 / 2) •θ 45o resonance only if V Δm 2 0 2 •SUN: V 0, Δm21 0 res. only if θ12 45o 2 ) » 1 e 2 m note also: (2EV ) /( m21 sin 2θ (sin 2θ )m Andrea Romanino, CERN Theory Division 15 LNF Spring School – May 2003 Resonances and neutrino beams • Enhance P (νe ν μ ) or P (νe ν μ ) through θ13 resonance . Need - E ~ E res ~ 10 GeV - L ~ λ0 / 4 π /(2V ) ~ 2500 km (independently of E ) 2 • θ13 «1 the resonance is - in the ν channel (V 0) if Δm32 0 2 - in the ν channel (V 0) if Δm32 0 2 • opportunity of measuring sign(Δm32 ) Andrea Romanino, CERN Theory Division 16 LNF Spring School – May 2003 Propagation in varying density (2 ν) H (t ) H free VMSW (t ) time-dependent hamiltonian Adiabatic evolution: no ν1 ν 2 transitions adiabaticity condition (2 ν’s): d m ( m2 )m « dx 2E Adiabatic resonance crossing large flavor swap even for small θ ν2 Θ = 0.06 ν1 2EV » m 2 V 0 e 2 m 2 e sin cos P ( e ) cos2 (the adiabatic approximation must break at small θ ) resonance layer Andrea Romanino, CERN Theory Division 17 LNF Spring School – May 2003 Level crossing dθm (Δm2 )m • The adiabatic approximation is worst at resonance « dt 2E Δm 2 sin 2 2θ • Adiabatic condition at the resonance: γ »1 2E (V /V )res cos 2θ • If γ ~ 1 but γ » 1 at production and detection, P (ν1 ν2 ) Pc e πγ / 2 (LZ) 2 2 • E.g.: SN neutrinos (Δm32 0) or antineutrinos (Δm32 0) for θ13 10 3 Andrea Romanino, CERN Theory Division 18 LNF Spring School – May 2003 Solar neutrinos Evolve adiabatically in the Sun, “resonance” crossed by8B neutrinos 8 B pp Θ = 0.6 P (νe νe ) pp νB Be sin2 2θ12 P 1 2 P sin2 θ Smirnov Andrea Romanino, CERN Theory Division 19 2EV 2 Δm21 LNF Spring School – May 2003 Supernova neutrinos • Probe of core-collapse supernova physics • Sensitivity to neutrino parameters (limited by the uncertainties on the source) • Constraint on exotic neutrino mixing M ~ 1.5Msun R ~ 8000 km ρ ~ 10 9 g / cm3 R ~ 30 km E rel T ~ 0.7 MeV 0.01% photons ρ ~ 3 1014 g / cm3 ~ Eb ~ 3 10 53 erg 1% kinetic energy T ~ 30 MeV 99% neutrinos λ ~ 10 cm tdiff Andrea Romanino, CERN Theory Division 20 3r 2 ~ ~ 10 sec λ LNF Spring School – May 2003 Future Sne Detector SK SNO LVD KamLAND ν events (from 10kpc) ~ 8000 ~ 800 ~ 400 ~ 330 mν 1 eV (0ν 2β ) time spectrum undistorted @ Neutrinosp here : Eνe ~ 11 MeV Eνe ~ 16 MeV Eν x ~ 25 MeV 2 @ Earth : the energy spectra depend on θ13, sign (Δm31 ) e.g. : NH & θ13 0.05 Φ(νe ) Φ0 (ν μ ,τ ) 2 Δm31 resonance crossed by ν 's (ν 's) if NI (HI); Pc 0 (Pc 1) if θ13 0.05 (θ13 0.001) 2 (Δm21 resonance is always adiabatic) 2 (Δm31 2E (Vμ Vτ ) resonance plays a role if Φ(ν μ ) Φ(ντ )) Present claims plagued by low statistics Andrea Romanino, CERN Theory Division 21 LNF Spring School – May 2003 Constraints on exotic scenarios Energy loss argument: dε loss 1019 erg/s/g dt Constrains invisible escape channels: axions, KK gravitons, exotic ν mixing e.g. : sin2 2θs 108 for large Δm 2 Andrea Romanino, CERN Theory Division 22 LNF Spring School – May 2003 0ν2β decay •Signals L-violation •Probes the Majorana nature of neutrinos •Allows to access parameters unaccessible to oscillations: - absolute mass scale - Majorana phases Andrea Romanino, CERN Theory Division 23 LNF Spring School – May 2003 Reminder: Dirac vs Majorana A massive charged fermion (e) necessarily involves 2 Weyl spinors and 2 particles (e , e ): m ee c h.c., q (e ) 1, q (e c ) 1 Dirac mass term c Dirac spinor : ψ e m ee c h.c. m ψ ψ e A massive neutral fermion (ν) only requires 1 Weyl spinor and corresponds to 1 particle (ν ν ): m νν h.c., q (ν ) 0 Majorana mass term 2 (breaks any charge associated with ν) m m ν Majorana spinor : ψ νν h.c. ψ ψ 2 2 ν Andrea Romanino, CERN Theory Division 24 (ψ ψT C ) LNF Spring School – May 2003 Dirac (m = 0): ν L 0 ν O (m / E ) ν ν L 0 ν O (m / E ) ν 0): Majorana (m = ν L 0 ν O (m / E ) ν ν L 0 ν O (m / E ) ν Created by ν , can be annihilated by ν In oscillations, once the O(m/E) terms have been neglected - the elicity does not play a role - there is no L-violation - oscillation formulae are identical for Dirac and Majorana ν’s Andrea Romanino, CERN Theory Division 25 LNF Spring School – May 2003 Physical parameters Quarks md di di i c mui ui uic Leptons g Vij uiW d j 2 mei ei eic g mi νi νi Uij eiW ν j 2 2 e iφ1 e iφ1 e1iφ1 Standard iφ2 iφ2 iα V ,U e e e param. e iβ e iφ3 e iφ3 9 = 3 + unphysical Andrea Romanino, CERN Theory Division 3+1 26 + 2 physical in U LNF Spring School – May 2003 2 Δm21 me ,μ ,τ 2 | Δm32 | 2 sign( Δm32 ) θ12 , θ23 , θ13 , δ Andrea Romanino, CERN Theory Division 27 mlightest α β LNF Spring School – May 2003 0ν2β decay (A, Z ) (A, Z 2) 2 e ; e.g. : Γ | mee |2 Q 76 G 76Se 2 e 2 2 2 2 2 2iα 2 2iβ mee Ueh mh c13 (m1c12 m2s12 e ) m3s13 e β decay > endpoint > d u e 3 3 ; e.g. : H He e νe e X > dN dEν mee > > (A, Z ) (A, Z ν 1) e eν |Ueh |2νeΓ(mh2 ) e Γ((m †m )ee ) > d2 u 2 >2 2 2 2 > (m m )ee |Ueh | mh c13 (m1 c12 m22s12 ) m32s13 † Andrea Romanino, CERN Theory Division 2 28 LNF Spring School – May 2003 (m †m )ee (2.2 eV)2 | mee | O (1) 0.4 eV (Mainz, Troitsk) (Heidelberg - Moscow) (0.3 eV)2 (Katrin) O (1) 0.01 eV (Genius) Feruglio Strumia Vissani Andrea Romanino, CERN Theory Division 29 LNF Spring School – May 2003 ? Andrea Romanino, CERN Theory Division Neutrino mass matrix 30 Measurements LNF Spring School – May 2003 Some references Neutrino oscillations: M.C. Gonzalez-Garcia, Y. Nir hepph/0202058 Matter effects (classic): T.K. Kuo , James Pantaleone Rev.Mod.Phys.61:937,1989 Supernova neutrinos: Stars as Laboratories for Fundamental Physics, University of Chicago Press (astrophysics); Lunardini Smirnov, various papers (particle physics) 0ν2β decay: F. Feruglio, A. Strumia, F. Vissani, hepph/0201291 General: Neutrino Physics, Ed. By K. Winter, Second Edition Ask for more… Andrea Romanino, CERN Theory Division 31 LNF Spring School – May 2003
© Copyright 2026 Paperzz