Introduction to Latent Variable Models A comparison of models Model A Model B ξ1 Y1 X1 X2 X3 X1 X2 X3 δ1 δ2 δ3 δ1 δ2 δ3 The Fundamental Hypothesis of SEM = () Population = Implied Where is the variance-covariance matrix of the Where entire model and is a vector (list) of elements that are matrices: Λ Θδ Θε Φ Γ Β Ψ Implied Covariance Matrix: Observed Model For an observed model, the implied matrix is the relationships among all the x and y variables X X xx Y xy Y yx yy It can be decomposed into three pieces: – the covariance matrix of y – The covariance matrix of x – The covariance matrix of x with y Model A: Observed model Model A Y Y1 X1 δ1 X2 δ2 X3 δ3 X1 X2 X3 Y YY X1 YX1 X1X1 X2 YX2 X1X2 X2X2 X3 YX3 X1X3 X2X3 X3X3 Covariance Matrix of Y Σyy(Θ) = E(yy’) = (I – -1 B) (ΓΦΓ’ + Ψ) (I – -1’ B) Covariance Matrix of X Σxx(Θ) = E(xx’) = Φ Covariance Matrix of XY Σxy(Θ) = E(xy’) = -1 ΦΓ’(I – B) Put that all together and get: (I – B)-1(ΓΦΓ’ + Ψ) (I – B)-1’ () = ΦΓ’(I – B)-1 Φ Population vs. Implied Covariance Matrices in Model A Cov(Y 1 , X 1) Cov(Y 1 , X 2) Cov(Y 1 , X 3) Var (Y 1) Var ( X 1) Cov( X 1 , X 2) Cov( X 1 , X 3) Cov(Y 1 , X 1) Σ Cov(Y 1 , X 2) Cov( X 1 , X 2) Var ( X 2) Cov( X 2 , X 3) Cov( , ) Cov( , ) Cov( , ) Var ( X 3) Y1 X 3 X1 X 3 X2 X3 Σyy Σxy Σyx Σxx E (y y T) E (x y T) T T E (x y ) E (x x ) Σyy (θ) Σyx (θ) E (y y T) E (x y T) Σ(θ) E ( T y ) E (x T) ( θ ) ( θ ) Σ Σ xy xx x x (I Β)1 (ΓΦ ΓT Ψ ) [(I Β)1 T (I Β)1 ΓΦ ] T T 1 Φ Φ Γ [(I Β) ] So, the matrices for Model A are: Elements of Θ = Λ Θδ Θε Φ Γ Β Ψ Β=0 Θε = 0 Φ=0 Γ=0 λ1 Λ= λ2 Φ = φy λ3 Ψ= δ1 δ12 0? δ2 0? 0? δ13 δ23 δ3 Θδ = 0 Identification 4 variables = (4)(5)/2 = 10 There are 10 parameters we could estimate: –3 –1 –3 –3 λ (the path coefficients) ψ (error variance of Y) δ (error variances of each X) δ (Covariances among the 3 X errors) Model A: Observed model Y1 ζ Model A λ1 X1 δ1 λ2 λ3 X2 X3 δ2 δ3 Covariance Matrix X1 X2 X3 Y1 X1 X2 X3 Y1 2.062 0.783 1.519 0.798 0.498 1.558 1.054 0.734 0.783 1.008 Lisrel Syntax for Model A Three indicator Model A Observed VAriables: Y X1 X2 X3 Covariance Matrix: 2.062 0.783 1.519 0.798 0.498 1.558 1.054 0.734 0.783 1.008 Sample Size: 1000 Relationships: X1 = Y X2 = Y X3 = Y Let X1-X3 Correlate Path Diagram Print Residuals Lisrel Output: SS SC EF SE VA MR FS PC PT End of problem Model B: Measurement model (Now Y is ξ) Model B Y ξ1 X1 δ1 X2 δ2 X3 δ3 X1 X2 X3 Y YY X1 YX1 X1X1 X2 YX2 X1X2 X2X2 X3 YX3 X1X3 X2X3 X3X3 Fundamental Hypothesis = () But now we only have the variancecovariance matrix of X, so: () = E(xx’) = Λx Φ Λx’ + Θδ So, all info in this model is in Λx Φ and Θδ Θε=0 Γ=0 Β=0 Ψ=0 Φ = E(ξ ξ’)= Var(ξ) = 1 X1 δ1 X = X2 δ= δ 2 X3 δ 3 λ1 Λx = λ2 λ3 Var(δ1) 0 Θδ = 0 0 0 Var(δ2) 0 0 Var(δ3) Restating the model () = E(xx’) = Λx Φ Λx’ + Θδ = λ1 λ2 (1) λ λ3 1 λ 2 λ 3 + Var(δ1) 0 0 0 Var(δ2) 0 0 0 Var(δ3) Identification 3 variables = (3)(4)/2 = 6 There are 6 parameters we could estimate: – 3 λ (the path coefficients) – 3 δ (error variances of each X) Model B ξ1 λ1 λ3 λ2 X1 δ1 X2 X3 δ2 δ3 Lisrel Syntax for Model B Three indicator Model A Observed VAriables: X1 X2 X3 Covariance Matrix: 2.062 0.783 1.519 0.798 0.498 1.558 Latent Variable: Y Sample Size: 1000 Relationships: X1 = Y X2 = Y X3 = Y Path Diagram Print Residuals Lisrel Output: SS SC EF SE VA MR FS PC PT End of problem
© Copyright 2026 Paperzz