Panel Data Econometrics Seminar 4: October 23,2007 Solution proposal by: Aleksander Sahnoun (7th semester) Problem 4.1: Autoregressive models Problem 4.1 A: Dynamic models – models with variables dated in different periods Panel data handles dynamic models better than cross-section data and time series data. Pure time series data can’t handle individual-specific heterogeneity (can handle some time specific heterogeneity if it has to some extend be parameterized). With panel data it is possible to handle individual-specific heterogeneity and time-specific heterogeneity within the same framework. In autoregressive models, with lagging LHS variables as explanatory variables, panel data offers the possibility to handle time-lags between time indexed variables and individualspecific heterogeneity. Problem 4.1 B: (1) yi ,t c yi ,t 1 xi ,t i ui ,t ui ,t IID(o, 2 ) i 1,....., N ; t 1,......., T , Cross-section data: Assume that yi ,t , yi ,t 1, and xi ,t are observed variables. (2) yi c yi ,1 xi i ui (2)' yi yi ,1 xi ui * i ui IID (o, 2 ) , i 1,....., N ; i c * i We have N equation but N + 1 +1 coefficients, so it is not possible to estimate all of them. We are not able to estimate the individual-specific intercept terms from cross section data. Remark: Given that the model specification is correct, and since the disturbance term is IID, OLS on (2) '' yi yi ,1 xi ui Would be MVLUE. Problem 4.1 C: I assume access to panel data (3) yi ,t i* yi ,t 1 xi ,t ui ,t i* i c 1 ui ,t IID(o, 2 ) i 1,....., N ; t 1,....., T , uit , xit , yi 0 are independent for all (i,t) a) Within-individual estimation exploits information from observations within each individual over time. If yi ,t 1 were strictly exogenous we could have estimate OLS on (3). The OLS estimator would coincide with the within-individual estimator and would have given MVLUE1. t 1 yi ,t t yi ,0 s ( i* xi ,t s ui ,t s ) s 0 If the process, for each individual i, have started an infinitely long distance back in time and 1 , it follows that yi ,t s (i* xi ,t s ui ,t s ) s 0 i* s ( xi ,t s ui ,t s ) 1 s 0 We can transform (3) into an equation in departures from the individual-specific means, (4) (yi ,t yi , ) ( i* i* ) ( yi ,t 1 yi ,1 ) ( xi ,t xi , ) (ui ,t ui , ) =( yi ,t 1 yi ,1 ) ( xi ,t xi , ) (ui ,t ui , ) i 1,....., N ; t 1,....., T , and apply OLS. yi ,t 1 is uncorrelated with ui ,t , but correlated with ui , so we get estimators that are T consistent. (inconsistent if T is finite) and are asymptotically negatively biased (larger than ½) when the number of individuals goes to infinity.. We can interpret ˆw , ˆw as a weighted mean of N individual-specific estimators, all which are consistent when T goes to infinity. N ˆW T (y i 1 t 1 N i ,t T ( y i 1 t 1 N ˆW yi , )( yi ,t 1 yi ,1 ) T (y i 1 t 1 N i ,t i ,t 1 yi , )( xi ,t xi , ) T ( x i 1 t 1 yi ,1 ) 2 i ,t xi , ) 2 b) 1 What do strict exogeneity require? WY1,1Y 1WY ,Y 1 W X,1X W X ,Y 1 45 0, 4592 98 1 53 0,5047 105 We can transform (3) into an equation where we subtract the individual specific mean with the global mean. We then exploit the information between individuals. i 1,....., N ; (5) ( yi , y ) ( i i ) ( yi ,1 y ) ( xi , x ) (ui , u ) t 1,....., T , If we assume that the individual specific intercepts are uncorrelated with the RHS variables, we can write the estimators as: N ˆB T (yi , y )( yi ,1 y ) i 1 N T ( yi ,1 y ) 2 BY11,Y 1 BY ,Y 1 1 303 1,3710 221 i 1 N ˆB T (yi , yi )( xi , x ) i 1 N T ( xi , x ) 2 B X1, X B X ,Y 1 240 0,9449 254 i 1 We can see that the estimate of is violating our assumption 1 . If the individual specific coefficients are correlated with the RHS variables, the estimators are2: 1 N ( i )( yi,1 y ) N i 1 ˆB 1 N T ( yi,1 y )2 N i 1 t 1 ˆB 1 N N ( i 1 1 N i N )( xi , x ) T ( x i 1 t 1 i , x )2 c) Writing the equation in first difference form (5) (yi ,t yi ,t 1 ) ( yi ,t 1 yi ,t 2 ) ( xi ,t xi ,i 1 ) (ui ,t ui ,t 1 ) i 1,....., N ; yi ,t yi ,t 1 xi ,t ui ,t In (5) the lagged RHS variable yi ,t 1 is correlated with ui ,t 1 (5) (yi ,t yi ,t 1 ) ( yi ,t 1 yi ,t 2 ) ( xi ,t xi ,i 1 ) (ui ,t ui ,t 1 ) 2 Always biased and inconsistent? t 2,....., T , N ˆ ,OLS T (y i 1 t 11 N yi ,t 1 )( yi ,t 1 yi ,t 2 ) i ,t T (y i 1 t 11 N ( yi ,t )( yi ,t 1 ) i 1 t 11 N T ( i 1 t 11 ,OLS T (y i 1 t 11 N i ,t yi ,t 1 ) 2 GY11,Y 1 GY ,Y 1 9, 60 1 0,5206 18, 44 yi ,t 1 )( xi ,t xi ,t 1 ) T (x i 1 t 11 N yi ,t 2 ) 2 T N ˆ i ,t 1 i ,t xi ,t 1 ) 2 T ( i 1 t 11 N T yi ,t )( xi ,t ) ( i 1 t 11 xi ,t ) 2 G X1, X G X ,Y 1 5,33 0,5042 10,57 The OLS estimators are inconsistent regardless of whether N,T or both go to infinity even though the equation is put on difference form. We can alternatively transform the equation, or estimate it by instrument variables and GMM. The individual intercept term, In (a) ˆ i* yi , yi ,1ˆW xi , ˆW , ˆi* ˆi c j 1 j 1 ˆ i ˆ i* ˆ i* , c ˆ i* We have NxT equations and N+1+1 unknown, so we don’t need any additional information. In (b) We have N+1+1 unknown, but we have just N linear independent equations, so we need some additional knowledge/restrictions to estimate i .3 In (c) The intercept vanish when we take the equation on difference form. 3 Additional conditions? Problem 4.1 D : (6) yi ,t i* yi ,t 1 1 yi ,t 2 2 xi ,t 1 xi ,t 12 ui,t i 1,....., N ; t 1,....., T , (6 ') yi ,t yi ,t 1 1 yi ,t 2 2 xi ,t 1 xi ,t 1 2 ui ,t i* i c ui ,t IID(o, 2 ) i 1,....., N ; t 2,....., T , uit , xit , yi 0 are independent for all (i,t) Since we have a Panel Data set, T 2 . We have seen in problem C that we have to estimate the coefficients with IV to get consistent and unbiased estimators. Since xi ,t or xi ,t are correlated with yi ,t 1 yi ,t 2 , or yi ,t 1 , yi ,t 2 and uncorrelated with ui ,t , ui ,t , they are valid instruments. The equations: yi ,4 yi ,3 1 yi ,2 2 xi ,4 1 xi ,3 2 ui ,4 yi ,5 yi ,4 1 yi ,3 2 xi ,5 1 xi ,4 2 ui ,4 yi ,T yi ,T 1 1 yi ,T 2 2 xi ,T 1 xi ,T 1 2 ui ,T Valid instruments: zi ,3 ( yi ,0 , xi ,4 , xi ,3 ) for ( yi ,2 , yi ,3 , xi ,4 , xi ,3 ) since cov( y i ,0 , ui ,2 ui ,1 ) 0 while cov( yi ,1 , ui ,2 ui ,1 ) 0 zi ,4 ( yi ,0 , yi ,1 , xi ,5 , xi ,4 ) for ( yi ,3 , yi ,4 , xi ,5 , xi ,4 ) zi ,T 1 ( yi ,0 , yi ,1 ,....., yi ,T 3 xi ,T , xi ,T 1 ) for ( yi ,T 2 , yi ,T 1 , xi ,T , xi ,T 1 ) in the (T-3)'th equation We are able to estimate the coefficients when T 4 . Then we have enough variables that can be used as IV’s (uncorrelated with ui ,t )4 4 When are they consistent and unbiased? Problem 4.1 E: (7) yi ,t i* yi ,t 1 xi ,t zi ,t ui ,t i* i c ui ,t IID(o, 2 ) i 1,....., N ; t 1,....., T , Assume: ui ,t is stochastically independent of xi ,t , yit 1 , zi ,t for all (i,t) The minimization problem ( within-individual estimation): min k , , , , (y i t i ,t k yi ,t 1ˆ xi ,t ˆ ziˆ ˆi ) 2 foc : 1. i t ( yi ,t kˆW yi ,t 1ˆW xi ,t ˆW ziˆW ˆiW ) 0 kW 2. i t ( yi ,t kˆW yi ,t 1ˆW xi ,t ˆW ziˆW ˆiW ) yi ,t 1 0 ˆW 3. i t ( yi ,t kˆW yi ,t 1ˆW xi ,t ˆW ziˆW ˆiW ) xi ,t 0 ˆ W 4. i t ( yi ,t kˆW yi ,t 1ˆW xi ,t ˆW ziˆW ˆiW ) zi 0 ˆ W 5. t ( yi ,t kˆW yi ,t 1ˆW xi ,t ˆW ziˆW ˆiW ) 0 ˆiW i 1,......, N If the N last equations are satisfied, then the first and the fourth also hold. We thus only have N+2 linear independent equations, from which we cannot determine N +4 unknowns. From the N last equations is follows that: kˆW ziˆW ˆ iW yi ,t 1ˆW xi ,t ˆWi i 1,......., N Inserted in FOC (2,3) i t ( yi ,t yi ,t 1ˆW xi ,t ˆW ( ziˆW ˆiW kˆW )) yi ,t 1 0 ˆW = i t ( yi ,t yi ,t 1ˆW xi ,t ˆW yi ,t 1ˆW xi ,t ˆWi) yi ,t 1 0 i t ( yi ,t yi ,t 1ˆW xi ,t ˆW ( ziˆW ˆiW kˆW )) xi ,t 0 ˆ W = i t ( yi ,t yi ,t 1ˆW xi ,t ˆW yi ,t 1ˆW xi ,t ˆWi) xi ,t 0 Which we can solve for ˆW and ˆW . The composite term: kˆ z ˆ ˆ y y W i W iW i , ˆ xi , ˆW i ,1 W We can only estimate the N composite parameters kˆW ziˆW ˆiW and ˆW , ˆW . We are unable to separate the fixed individual-specific effect ˆ iW from the effect from the individual specific variable zi since we have a multicollinearity problem. The estimator of the twodimensional variable xi ,t coincides with the one we could have obtained without zi . Problem 4.2: Model with stochastic slope coefficients Problem 4.2 A: The model: (1) yit i i xit uit uit Individual-specific intercept: i IID(o, 2 ) i i Individual-dependent coefficient i IID(o, 2 ) i i IID(o, 2 ) i 1,....., N ; t 1,......., T , i 1,....., N ; i 1,....., N ; (2) yit i i xit uit xit i xit i uit vit i xit i uit - Composite disturbance (2)' yit xit vit i 1,....., N ; t 1,......., T , Assume that xit , i , uit , i are stochastically independent for all i and t. Properties of the composite disturbance: E (vit | xit ) E ( i xit i uit | xit ) E (i xit | xit ) E ( i | xit ) E (uit | xit ) 0 2 E(vit2 | xit ) E i xit i uit | xit 2 2 2 E ( i xit | xit ) E ( i | xit ) E (uit2 | xit ) 2 E ( i xit ( i uit ) | xit ) E 2(uit i | xit ) xit 2 2 2 2 0 xit 2 2 2 2 E (vit vis | xit xis ) E i xit i uit i xis i uis | xis E ( i 2 xit xis | xit xis ) E ( i2 | xit xis ) E (uit uis | xit xis ) xit xis 2 0 xit xis 2 2 0 ts 0 Variance – covariance matrix xit 2 2 2 2 2 2 xit xis cov(vit v js | xit x js ) 0 0 for j i, t s for j i , t s i, j 1,....., N ; t , s 1,......., T , for j i, t s for j i, t s The composite disturbance is heteroskedastic both across individuals and periods (different variance across individuals and periods). E (vit2 | xit ) xit 2 2 2 2 Further, the disturbance is autocorrelated over periods, bur not across individuals (correlation between different periods, but not between individuals). E (vit vis | xit xis ) xit xis 2 2 ts The composite disturbance term is uncorrelated with the equation’s right hand side variable. Using the law of iterated expectations: cov(vit , xit ) E(vit xit ) Ex Ev (vit xit | xit ) Ex xit Ev (vit | xit ) 0 But the equation (2) RHV is not stochastic independent of the composite disturbance, since the conditional and marginal distribution differs. Using the law of iterated expectations: E (vit2 | xit ) xit 2 2 2 2 Ex [ Ev (vit2 | xit )] E (vit2 ) E ( xit 2 2 2 2 ) E ( xit 2 ) 2 2 2 E (vit2 ) E ( xit 2 ) 2 2 2 Together with: E (vit2 xit ) Ex [ Ev (vit2 xit | xit )] Ex [ xit Ev (vit2 | xit )] E xit ( 2 2 2 2 ) E ( xit 3 ) 2 E ( xit ) 2 E ( xit ) 2 E (vit2 xit ) E ( xit 3 ) 2 E ( xit ) 2 E ( xit ) 2 This implies that: cov(vit2 , xit ) E (vit2 xit ) E (vit2 xit ) E (vit2 ) E ( xit ) E ( xit 3 ) 2 E ( xit ) 2 E ( xit ) 2 E ( xit ) E ( xit 2 ) 2 2 2 E ( xit 3 ) E ( xit ) E ( xit ) 2 E ( xit ) E ( xit ) 2 E ( xit ) E ( xit ) 2 cov( xit2 , xit ) 2 So 2 0 , xit is uncorrelated with vit , but correlated with vit2 In matrix notation (2’) can be written as: (3) y i eT xi v i v i eT i xi i ui ii e e x i x I T (4) E(v i , v 'j | x i , x j ) ij 0TT We can also write (3) as: (5) y Xβ v Where β ( , ) ' T T 2 ' i 2 2 i 1,....., N ; j=i i,j=1,....,N, j=i The variance – covariance matrix is then: 11 (6) E(vv | X) 0 TT 0TT = NN ' Since the variance – covariance matrix has nonzero elements outside the diagonal GLS will be MVLUE. (The GLS estimator is more efficient than the OLS estimator). CASE 1) 2 If the variances of the stochastic elements are know ( 2 , 2 , 112 ,......., NN ) , the GLS estimator is: 1 β* X'1X X'1y The estimator is then weighted by the variance and covariances. Let β*i denote the individual GLS estimator 1 β*i X'i ii-1 Xi X'i ii-1y i i 1,....., N CASE 2) 2 If 2 , 2 , 112 ,......., NN are unknown, we can estimate them from their empirical counterpart ̂ and then estimate by GLS using ̂ . This is the method of FGLS/EGLS/Two Step. First estimate ˆi and ˆi by OLS when they are considered as unknown constants. Then find the residual vector uˆ y e ˆ x ˆ . i i T i i i 1 1 N 2 ˆ j and estimate 2 by it’s empirical counterpart ˆ2 ˆ j N j 0 N 1 j 0 And symmetric for ˆ2 . Form ˆi ˆi N 1 N 1 N ˆ2 Form ˆi ˆi ˆ j and estimate 2 by it’s empirical counterpart ˆ2 j N j 0 N 1 j 0 Problem 4.2 B (7) yit i i xit uit uit where i , i are constants. IID(o, 2 ) 2 0 cov(uit u js | xit xis ) 0 0 i 1,....., N ; t 1,......., T , for j i, t s for j i, t s for j i, t s for j i, t s We can estimate the within estimator of i . ˆ W ( X' B X ) 1 ( X' B y ) W 1 W i i T i i T i XXi 1 XYi 1 WXX 0 B XX WXY 0 B XY We use the variance within the individual to estimate ˆiW . The GLS estimator in A of is: 1 ˆ GLS X' (I N BT )X B X' (I N BT )X X' (I N BT )y B X' (I N B T )y 1 WXX B B XX WXY B B XY Where : B 1 2 2 T ( 2 2 ) In problem A we estimate the common slope coefficient . The GLS estimator is a weighted estimator, weighted with the inverse of the variance covariance matrix. If i , i are constants, we extract the within variance (and sets B 0 ). Problem 4.2 C Test of heterogeneity in slope coefficient i . Assuming unknown and constant i , i (FE). Full individual heterogeneity: H A : 1 ,......., N and 1 ,......., N are unrestricted Individual intercept heterogeneity, homogeneous slopes: H B : 1 ,......., N and 1 2 N are unrestricted Full homogeneity: H C : 1 2 N and 1 2 N are unrestricted We make the assumption ui IIN (0T,1 , 2IT ) ( replacing ui IIN => Independent, identically normally distributed. IID(0T,1 , 2IT ) ) This normality assumption ensure that the F-test is valid. The sum of squared residuals are: N T SSRA i 1 t 1 uˆ for model H A it SSRB i 1 t 1 uˆ it for model H B N T SSRC i 1 t 1 uˆ it for model H C N T We want to test the null hypothesis – homogeneous slope coefficient - against the alternative hypothesis – heterogeneous slope coefficient. The test can in general be written as SSR0 SSR1 Number of restrictions under H 0 F01 SSR 1 Numbers of degrees of freedom under H1 If we assume individual intercept, the test would be: SSRB SSRA SSRB SSRA N (T K 1) K ( N 1) FBA SSR A SSR A K ( N 1) N (T K 1) Which is F-distributed with K(N-1) and N(T-K-1) degrees of freedom under H B . If we assume a random effect model, we must use the Breusch-Pagan tests5. 5 Lecture note 7 Problem 4.2 D (8) yit xit i i xit uit i i i i i i uit xit , i , i IID(o, 2 ) uit IID(o, 2 ) i 1,....., N ; IID(o, 2 ) i 1,....., N ; i 1,....., N ; t 1,......., T , Expanding the model allowing for correlation between i , i and xit , i 1,......, N . This may reflect that a latent taste variable for household i - i , i - , is correlated with household’s income - the observable explanatory variable xit . First we formalize a correlation between i and xit . i xi E( xi ) wi wi IID(o, w2 ) If i is correlated with xit then it can’t be i IID(o, 2 ) , so we do the same formalization for i : i xi E( xi ) i i IID(o, 2 ) (9) yit ( x ) xit xi xi xit wi xiti uit k xit xi xi xit Qit where E ( xi ) x where Qit wi xiti uit , k x We have now controlled for the problem with latent heterogeneity, but we now have a problem with the composite disturbance term. So we transform the equation as we did in problem 4.2 a to get a covariance-variance matrix that has zero outside the diagonal. 0TT 11 ' E(vv | X) = 0 NN TT The transformed model can be written: (10) yit k xit xi xi xit Qit OLS on 10 will give the MVLUE estimators. Problem 4.3 Measurement error models Problem 4.3 A (1) yit k it uit (2) xit it it (3) it , uit ,it are independent for all i,t ˆB x x y y x x i i IID (o, 2 ) i 1,....., N ; it IID (o, 2 ) t 1,......., T , ˆC i 2 i uit i x x y y x x i t t 2 i t (a) xi x yi y p lim ˆB p lim i 2 T T x x i i 1 p lim T N x 1 p lim T N x i 1 p lim i xi x yi y N T = 1 2 Slutsky p lim i xi x T N x xi x (i ) (ui u ) 2 1 p lim i xi x T N i x xi x xi x (i ) xi x (ui u 2 1 p lim i xi x T N 1 1 1 p lim i xi x xi x p lim i xi x (i ) p lim T N T N T N 2 1 p lim i xi x T N 1 p lim i i i (i ) T N 2 1 p lim i xi x T N 1 1 p lim i i (i ) p lim i (i )(i ) T N T N 2 1 p lim i xi x T N i i 1 p lim T N since p lim 1 T N (i ) 0, i i 1 lim i (i2 2i 2 ) i (i )(i ) pT N i i E(i2 ) 2 E (i ) E ( 2 ) 0, by assumption E(i2 ) E (i ) E ( 2 ) x i i x (ui u ) b) 1 1 1 p lim i i (i ) p lim i (i )(i ) 2 N T N T T p lim ˆB 2 1 1 1 1 N bN* 2 p lim i i p lim i (i ) 2 p lim i i (i ) T N T N T N T 2 1 bN* p lim i i N T since: 1 1 p lim i (i )(i ) p lim i (i2 2i 2 ) N T N T 1 E i E i 2 E i E E 2 2 , (since T is finite) and by assumption E i 0 T c) xt x yt y p lim ˆC p lim t 2 N N x x t t 1 p lim t xt x yt y N T = 2 1 Slutsky p lim t xt x N T 1 1 1 p lim t xt x xt x p lim t xt x (t ) p lim t xt x (ut u ) N T N T N T 2 1 p lim t xt x N T 1 1 p lim t t (t ) p lim t (t )(t ) N T N T 2 1 p lim t xt x N T d) 1 1 1 p lim t t (t ) p lim t (t )(t ) 2 T N T N N p lim ˆC 2 1 1 1 1 T cT* 2 p lim t t p lim t (t )2 p lim t t (t ) N T N T N T N 2 1 cT* p lim t t T N Problem 4.3 B (1) yit k it i t uit (2) xit it i t it i 1,....., N ; (3) it , uit ,it ,i , t , ,i , t are independent for all i,t t 1,......., T , (4) yit k xit i t uit i t it uit IID (o, 2 ) i IID(o, 2 ) t IID(o, 2 ) it IID (o, 2 ) i IID(o, 2 ) t IID(o, 2 ) a) xi x yi y p lim ˆB p lim i 2 T T x x i i 1 p lim T N x 1 p lim T N x i 1 p lim i xi x yi y T N = 2 1 Slutsky p lim i xi x N T x xi x i ui (i ) (i ) 1 2 p lim i xi x T N i x xi x (i ) xi x i xi x xi x (i ) xi x ui 1 2 p lim i xi x T N 1 1 p lim i xi x xi x p lim i xi x i T N T , N N 2 1 p lim i xi x T N 1 1 1 p lim i xi x ui p lim i xi x i p lim i xi x i N N N T , N T , N T , N 2 1 p lim i xi x T N 1 1 p lim i i i i (i ) p lim i i i i i N T N T 2 1 p lim i xi x T N 1 1 p lim i (i )(i ) p lim i (i )(i ) N T N T 2 1 p lim i xi x T N i i So: p lim ˆB T , N xt x yt y p lim ˆC p lim t 2 N N x x t t 1 p lim t xt x yt y N T = 1 2 Slutsky p lim t xt x N T 1 1 1 p lim t xt x xt x p lim t xt x (t ) p lim t xt x (ut u ) N T N T N T 2 1 p lim t xt x N T 1 1 p lim t xt x ( t ) p lim t xt x ( t ) N T N T 2 1 p lim t xt x N T 1 1 p lim t t (t ) p lim t ( t )( t ) N T N T 2 1 p lim t xt x N T so : p lim ˆ N ,T C b) T is finite: 1 1 1 p lim i i (i ) p lim i (i )(i ) 2 2 T T N N T p lim ˆB 2 2 1 2 N 1 1 1 * bN 2 2 p lim i i p lim i i p lim i i T N T N T N T 2 1 bN* p lim i i N T p lim ˆC N c) N is Finite: p lim ˆB T xt x yt y p lim ˆC p lim t 2 T T x x t t 1 p lim T N 1 p lim T N x t t x t t 1 p lim t xt x yt y T N = 1 2 Slutsky p lim t xt x T N 1 x xt x p lim T N 1 x (t ) p lim T N 2 1 p lim t xt x T N x t t x t t x (ut u ) 1 x ( t ) p lim t xt x ( t ) N T 2 1 p lim t xt x T N 1 1 1 p lim t t (t ) p lim t ( t )( t ) ( 2 2 ) T N T N N 2 1 2 2 1 1 1 * cT 2 2 p lim t t p lim t t p lim t t N T N T N T N 1 cT* p lim T N t t 2
© Copyright 2026 Paperzz