Nonlinear Systems and Control Lecture # 38 Observers High-Gain Observers Motivating Example – p. 1/1 ẋ1 = x2 , ẋ2 = φ(x, u), y = x1 Let u = γ(x) stabilize the origin of ẋ1 = x2 , ẋ2 = φ(x, γ(x)) Observer: x̂˙ 1 = x̂2 + h1 (y − x̂1 ), x̂˙ 2 = φ0 (x̂, u) + h2 (y − x̂1 ) φ0 (x, u) is a nominal model φ(x, u) x̃1 = x1 − x̂1 , x̃˙ 1 = −h1 x̃1 + x̃2 , x̃2 = x2 − x̂2 x̃˙ 2 = −h2 x̃1 + δ(x, x̃) δ(x, x̃) = φ(x, γ(x̂)) − φ0 (x̂, γ(x̂)) – p. 2/1 Design H = " h1 h2 # such that Ao = " −h1 1 −h2 0 # is Hurwitz Transfer function from δ to x̃: Go (s) = 1 s2 + h1 s + h2 " 1 s + h1 # Design H to make supω∈R kGo (jω)k as small as possible h1 = Go (s) = α1 ε , h2 = α2 ε2 , ε (εs)2 + α1 εs + α2 ε>0 " ε εs + α1 # – p. 3/1 Go (s) = ε (εs)2 + α1 εs + α2 " ε εs + α1 # Observer eigenvalues are (λ1 /ε) and (λ2 /ε) where λ1 and λ2 are the roots of λ2 + α1 λ + α2 = 0 sup kGo (jω)k = O(ε) ω∈R – p. 4/1 η1 = x̃1 εη̇1 = −α1 η1 + η2 , ε , η2 = x̃2 εη̇2 = −α2 η1 + εδ(x, x̃) Ultimate bound of η is O(ε) η decays faster than an exponential mode e−at/ε , a>0 Peaking Phenomenon: x1 (0) 6= x̂1 (0) ⇒ η1 (0) = O(1/ε) The solution contains a term of the form 1 ε 1 ε e−at/ε e−at/ε approaches an impulse function as ε → 0 – p. 5/1 Example ẋ1 = x2 , ẋ2 = x32 + u, y = x1 State feedback control: u = −x32 − x1 − x2 Output feedback control: u = −x̂32 − x̂1 − x̂2 x̂˙ 1 = x̂2 + (2/ε)(y − x̂1 ) x̂˙ 2 = (1/ε2 )(y − x̂1 ) – p. 6/1 0.5 0 SFB OFB ε = 0.1 OFB ε = 0.01 OFB ε = 0.005 x 1 −0.5 −1 −1.5 −2 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 0.01 0.02 0.03 0.04 0.05 t 0.06 0.07 0.08 0.09 0.1 1 0 x 2 −1 −2 −3 0 u −100 −200 −300 −400 – p. 7/1 ε = 0.004 0.2 1 0 x −0.2 −0.4 −0.6 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0 0.01 0.02 0.03 0.04 t 0.05 0.06 0.07 0.08 0 x 2 −200 −400 −600 2000 u 1000 0 −1000 – p. 8/1 u = sat(−x̂32 − x̂1 − x̂2 ) SFB OFB ε = 0.1 OFB ε = 0.01 OFB ε = 0.001 0.15 x1 0.1 0.05 0 −0.05 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 0.01 0.02 0.03 0.04 0.05 t 0.06 0.07 0.08 0.09 0.1 0.05 x2 0 −0.05 −0.1 u 0 −0.5 −1 – p. 9/1 Region of attraction under state feedback: 2 x2 1 0 −1 −2 −3 −2 −1 0 x1 1 2 3 – p. 10/1 Region of attraction under outputfeedback: 1 x2 0.5 0 −0.5 −1 −1.5 −1 −0.5 0 x1 0.5 1 1.5 ε = 0.1 (dashed) and ε = 0.05 (dash-dot) – p. 11/1 Analysis of the closed-loop system: ẋ1 = x2 εη̇1 = −α1 η1 + η2 ẋ2 = φ(x, γ(x − x̃)) εη̇2 = −α2 η1 + εδ(x, x̃) η6 q D D D D D O(1/ε) q D D D D D D D O(ε) D D W W Ωb Ωc - x – p. 12/1 What is the effect of measurement noise? The high-gain observer is an approximate differentiator Transfer function from y to x̂ (with φ0 = 0): " # " # α2 1 + (εα1 /α2 )s 1 → as ε → 0 2 s s (εs) + α1 εs + α2 Differentiation amplifies the effect of measurement noise y = x1 + v, kn = sup |v(t)| < ∞ t≥0 – p. 13/1 1.1 1 0.9 the error bound 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 εopt = O s 0 kn kd 0.02 ! , 0.04 0.06 0.08 0.1 0.12 the high−gain parameter epsilon kd = sup |ẍ1 (t)|, t≥0 0.14 0.16 kn = sup |v(t)| t≥0 – p. 14/1
© Copyright 2026 Paperzz