Supporting Information: Structures and Dynamics of Silicon Substituted Ionic Liquids Boning Wu,1 Yuki Yamashita,2 Takatsugu Endo,2 Kenji Takahashi,2, a) and Edward W. Castner Jr.1, a) 1) Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 2) Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan a) 08854. United States Electronic mail: [email protected], [email protected] 1 I. MD SIMULATION METHODS The ionic liquids (ILs) are simulated using cubic boxes containing 1000 ion pairs. Pe- riodic boundary conditions are used in each direction. The leap-frog algorithm is used for integration at a time step of 1 fs. Initial conditions for the boxes were obtained from several simulations of 300 picoseconds, in which fractional charge was applied to the ions, and the charges are gradually increased to the full charge values. These simulations are done under Berendsen pressure and temperature coupling.1 Subsequently an 8 ns long simulated annealing was applied, during which the temperature is increased from 298 to 598 K then annealed back to 298 K. The final equilibration at 1 bar and 298 K continues for another 10 ns of simulation. The production MD run is done at the same temperature and pressure as the final equilibration run. During the production run, the coordinates are saved every 1 ps for 2 ns and the radial distributions g(r) and spatial distributions are averaged over these 2001 snapshots. The Nosé-Hoover thermostat2,3 and Parrinello-Rahman barostat4 are used during the simulated annealing, final equilibration and production run. The cutoffs for Coulomb and Lennard-Jones potentials are all set to 1.5 nm. Long range electrostatic potentials are treated using the Particle Mesh Ewald (PME) method5,6 , the interpolation order is set to 6 and FFT grid spacing is set to 0.08 nm. II. FORCE FIELD FOR MD SIMULATIONS OF IONIC LIQUIDS In this work, we used the modified OPLS-AA force field7 for ionic liquids by Lopes and Pádua, called the CL&P force field,8 while adding new parameters for silicon based on our previous work.9 The parameters for cations are parameterized based on the method in literature10,11 and our previous work.9 The parameters for anions are directly taken from the Lopes and Pádua’s force field,11,12 and the parameters for perfluoroalkyl chains are from OPLS-AA force field.13 The total potential of the system is the sum of the bonded interactions and non-bonded interactions: Vtotal = Vbonded + Vnon−bonded (1) where the bonded parameters include contributions from bonds, angles, proper dihedral angles and improper dihedral angles: 2 Vbonded = Vbond + Vangle + Vdih + Vimdih X1 = kb (rb − rb0 )2 2 b X1 + kaθ (θa − θa0 )2 2 a + 5 XX Cn (cos(φd ))n n=0 d + (2) X kφ (1 + cos(nφ − φs )) imd and non-bonded parameters include Lennard-Jones (L-J) type van der Waals parameters and Coulomb interactions: Vnon−bonded = VLJ + Vcoulomb XX σij σij 1 qi qj = 4ij (( )12 − ( )6 ) + ij ij 4π0 rij i j (3) the L-J force between different atoms were combined using the combining rule given in Eq. 4. The intra-molecular non-bonded potential between atoms that are connected by bonds or angles are excluded, and all non-bonded 1,4 interactions are scaled by a factor of 0.5. σij = (σi σj )1/2 ; ij = (i j )1/2 angle Si-C-C-C 15 angle C-Si-C-C )lom/Jk( ygrenE 10 5 0 0 50 100 150 Dihedral angle (degree) FIG. 1. The fitting of two dihedral angles for the trimethylsilylpropyl group. 3 (4) HC HA H1 HC H1 HC HC CSi H1 CR H1 C1 NA C1 C3 C2 NA + H1 HC Si CSi HC HA HC CSi HC CW CW HC HA HC HC HC HC Si-C3-mim+ H1 H1 HC HC H1 C2 HC HC H1 C1 C1 CSi H1 C2 C1 C2 C1 H1 HC H1 HC C3 NT HC HC HC Si HC H1 HC CSi HC H1 CSi HC HC HC HC HC Si-C3-pyrr+ FIG. 2. Atom labels for the Si-C3 -mim+ and Si-C3 -Pyrr+ cations. The force field parameters for the Si-C3 -mim+ and Si-C3 -Pyrr+ cations are shown in Table I, with the atom labels defined in Fig. 2. The bonded and non-bonded potentials for non-silicon parts are all taken from CL&P force field.10,11 The partial charges on silicon atoms and its connected structure are proposed using the method by Sun,14,15 in which a silicon atom will donates 0.135 electrons to each carbon it is bonded to. The Lennard-Jones parameters are taken from OPLS-AA force field, which is originally copied from Gromos53a6 force field.16 Some bond and angle parameters by the force field for silane by Frierson et al. 15 To obtain the torsion profiles for the two needed dihedral angles, CT-CT-CT-Si and CT-CT-Si-CT, the same methods used in our previous work are adopted here.9 A virtual molecule, trimethylpropylsilane (CH3 CH2 CH2 Si(CH3 )3 ) is proposed for dihedral scanning. The torsion barriers for the selected dihedral angles are obtained by subtracting total energy and the contribution of non-bonded parameters. The total quantum energy is from a relaxed scan with a step length of 10 degree at MP2/cc-pVTZ level, and the non-bonded contribution 4 is obtained using a single molecule molecular dynamics simulations in which the atomic positions are fixed at the result of relaxed optimization. The 1,4 interactions are scaled by a factor of 0.5 in this scan. The scan and fits of energy profile is shown in Fig. 1. The red curve is the result of fits of Si-C-C-C angle in CH3 CH2 CH2 Si(CH3 )3 , which contains one CT-CTCT-Si angle, 4 HC-CT-CT-HC angles, two HC-CT-CT-CT angles and two Si-CT-CT-HC angles. The blue curve is for the C-Si-C-C angle, which can be split to six Ct-Si-CT-HC and three CT-Si-CT-CT angles. The profiles of HC-CT-CT-HC, HC-CT-CT-CT, Si-CT-CT-HC and Ct-Si-CT-HC can be obtained from OPLS-AA force field7 and previous work,9 , therefore our desired angle, CT-CT-CT-Si and CT-CT-Si-CT can be obtained after subtracting them. TABLE I. Force field parameters used for Si-C3 -mim+ and Si-C3 -Pyrr+ cations. L-J parameters Atomtype σ q Source Atomtype σ C1 0.350 0.27614 -0.170 Ref. 10 C2 0.350 0.27614 0.010 Ref. 10 C3 0.350 0.27614 -0.255 Ref. 10,14 CSi 0.350 0.27614 -0.315 Ref. 10,14 CW 0.355 0.29288 -0.130 Ref. 10 CR 0.355 0.29288 -0.110 Ref. 10 NA 0.325 0.71128 0.150 Ref. 10 HA 0.242 0.12552 0.210 Ref. 10 HC 0.250 0.12552 0.060 Ref. 10 Si 0.339 2.44704 0.540 OPLS-AAa , Ref. 14 H1 0.250 0.12552 0.130 Ref. 10 NT 0.325 0.71128 0.120 Ref. 11 Bond and angle parameters Bond type rb0 kb Source of rb0 Source of kb Bond type C3-Si 0.1907 359000 this work CSi-HC 0.1090 284500 CL&P Angle type θa0 ka d worke C2-C3-Si 113.8 488.3 this 110.7 450.0 this worke 193.3 worke 110.8 Si-CSi this C0 Source Source of rb0 Source of kb 0.1870 359000 Gromos53a6 Gromos53a6 kb CL&P OPLS-AA θa0 ka Source of θa0 worke C3-Si-CSi 108.2 450.0 this Gromos53a6 HC-C3-Si 108.3 193.3 this worke Source of ka Gromos53a6 Ref. 15 Ref. 15 Dihedral angle parameters Dihedral angle type q a rb0 Source of θa0 Source of ka Angle type CSi-Si-CSi Si-CSi-HC Gromos53a6 a,b C1 C2 C3 Source CT-Si-CT-HC 0.3358 1.0074 0.0000 -1.3432 this work CT-CT-CT-Si -1.2584 -1.5312 4.8460 -2.0564 this work CT-CT-Si-CT 0.4923 1.4771 0.0000 -1.9692 this work 0 : nm ; k b : kJ mol−1 nm−2 ; k θ −1 rad−2 ; Units: σ: nm ; : kJ mol−1 ; rij ij ijk : kJ mol a Only can’t be found in CL&P force field8,10,11 are listed here 5 b C1, C2, C3 and CSi are all count as CT here III. THE VAN DER WAALS VOLUME AND RADIUS OF IONIC LIQUID CATIONS AND ANIONS The van-der Waals volumes and radii are calculated the total electron density via Monte Carlo integration using Gaussian09 D01 package at a HF/6-31g(d) theory level with structures optimized at the same level. The SiOSi-mim+ cation is calculated at the MP2/cc-pVTZ level. The radius is calculated assuming spherical molecules. The van der Waals volume of the molecule is defined by the value at which the electron density is larger than 0.002 e/a30 . 5000 test points per a30 for each molecule is used in Monte Carlo integration. The volumes and radius are shown in Table II. TABLE II. The calculated Van der Waals volume and radius of all ions calculated using Monte Carlo method at hf/6-31g(d) level of theory Ion Volume (Å3 ) Radius (Å) Volume (Å3 ) Radius (Å) -mim+ 238.2 3.85 241.6 3.86 Si-C3 -Pyrr+ 257.8 3.95 C-mim+ 183.4 3.52 Pyrr+ 4,1 183.2 3.52 Pyrr+ 3,1 164.8 3.40 195.6 3.60 SiOSi-mim+ 281.9 4.07 Si-pyrr+ Si-C3 216.4 3.72 N N CnH2n+1 125.9 165.3 207.8 N+ 3.11 112.1 2.99 3.40 NTf− 2 167.7 3.42 3.67 BETI− 221.9 3.76 FTFSI− 138.1 3.21 O CnH2n+1 Pyrrn,1+ Volume (Å3 ) Radius (Å) Ion FSI− O N S F Imn,1+ IV. Ion Im+ 2,1 Im+ 4,1 Im+ 6,1 Im+ 8,1 Si-mim+ S O O CF3 FTFSI- DIFFUSIVITIES AND VISCOSITIES OF IONIC LIQUIDS FROM THIS WORK AND FROM LITERATURE The diffusion coefficients of eight ionic liquids measured in this work at three different temperatures are shown in Table III. The viscosities are fit into Vogel-Fulcher-Tammann (VFT) equations, and the parameters of these ILs are shown in Table IV. 6 TABLE III. Diffusion coefficients of silicon ionic liquids and C-mim+ / NTf− 2 measured in this work 298.15 K 303.15 K 308.15 K in 10−7 cm2 /s a Si-mim+ / NTf− 2 Dcation 1.351 1.593 1.884 Danion 1.306 1.581 1.894 a C-mim+ / NTf− 2 Dcation 0.681 0.868 1.075 Danion 0.644 0.792 0.998 Dcation Si-C3 -mim+ / NTf− 2 0.799 1.014 1.218 Danion 0.912 1.120 1.406 Dcation 1.104 1.334 1.644 Danion 1.472 1.707 2.121 Dcation 0.363 0.471 0.572 Danion 0.364 0.471 0.603 Si-C3 Si-C3 -mim+ / FSI− -mim+ / BETI− Si-C3 -Pyrr+ / NTf− 2 Dcation 0.361 0.456 0.552 Danion 0.466 0.578 0.743 a D SiOSi-mim+ / NTf− cation 2 1.190 1.418 1.670 Danion 1.485 1.808 2.178 Si-pyrr+ / NTf− 2 a Dcation 0.728 0.830 0.996 Danion 0.768 0.965 1.284 A little off from the values in Reference 17, with an acceptable error ; TABLE IV. VFT of silicon ionic liquids and C-mim+ / NTf− 2 from literature or this work in the range from 293 K to 363 K ln(η) = ln(η0 )+(D × T0 /(T − T0 )) ln(η0 ) (ln(cP)) a Si-mim+ / NTf− 2 a C-mim+ / NTf− 2 −a + Si-mim / BF4 a C-mim+ / BF− 4 −b + Si-pyrr / NTf2 Si-C3 -mim+ / NTf− 2 Si-C3 -mim+ / FSI− Si-C3 a Data from Ref. 18, VFT fits see -mim+ / BETI− D T0 (K) -2.036 4.43 176.5 -2.264 4.979 175.8 -3.166 5.886 183.1 -5.914 10.226 172.1 -1.6122 3.9897 187.83 -2.8358 6.1764 165.29 -2.5488 6.5794 154.47 -4.6048 12.608 133.8 Si-C3 -Pyrr+ / NTf− 2 -4.1765 10.252 144.68 c SiOSi-mim+ / NTf− 2 -2.5051 6.5644 151.61 Ref.17,19 ; b VFT parameters from previous work9 ; c Data from this work. Though VFT parameters are very different in Ref. 19, the viscosity vs. temperature curve it reproduced is very similar in the measured temperature range 7 The VFT fits of diffusion coefficients and viscosities of ILs with hydrocarbon side chains are shown in Table V and VI, respectively. For better comparison, all diffusion coefficients here are used PG-SE NMR technique. The diffusivities or viscosities at different temperatures are extracted from VFT fits, if the fit parameters are available. TABLE V. Diffusion coefficients of non-silicon ionic liquids from literature D0 − Im+ 2,1 / NTf2 − Im+ 4,1 / NTf2 − Im+ 6,1 / NTf2 − Im+ 8,1 / NTf2 − Im+ 4,1 / BETI − Pyrr+ 3,1 / FTFSI VFT parameters Diffusivity (10−7 cm2 /s)a D = D0 exp[−B/(T − T0 )] at different temperatures (10−4 cm2 s−1 ) B (K) T0 (K) 298.15K 303.15K 308.15K 305K Reference Dcation 1.10 816 147 4.98 5.91 6.95 20 Danion 0.90 857 147 3.10 3.72 4.41 20 Dcation 1.10 845 157 2.76 3.39 4.11 20 Danion 1.30 933 152 2.20 2.71 3.30 20 Dcation 1.50 965 156 1.69 2.13 2.64 20 Danion 1.70 1010 154 1.54 1.95 2.43 20 Dcation 3.10 1246 140 1.17 1.49 1.88 20 Danion 2.50 1167 146 1.17 1.49 1.87 20 Dcation 1.70 995 160 1.27 1.63 2.06 21 Danion 1.90 1109 154 0.87 1.12 1.43 21 Dcation 3.84 22 Danion 3.53 22 − Pyrr+ 4,1 / FTFSI Dcation 2.94 22 − Pyrr+ 4,1 / NTf2 Dcation 1.20 914 164 1.32 1.68 2.12 Danion 1.30 961 161 1.18 1.51 1.90 Danion 2.83 22 − D Pyrr+ cation 4,1 / BETI 23 0.90 Danion 0.62 − Im+ 2,1 / BF4 Dcation 1.60 970 Danion 1.60 − Im+ 4,1 / BF4 Dcation 1.40 Danion 2.80 a 23 5.90 6.91 24 24 130 5.00 1000 130 4.18 4.97 5.84 25 935 162 1.46 1.86 2.33 21 1108 153 1.36 1.75 2.22 21 Numbers are extracted from VFT fitting when VFT parameters are available ; 8 25 TABLE VI. Viscosity from literature VFT parameters Viscosity (cP) η = η0 exp[B/(T − T0 )] at different temperatures D0 (cP) B (K) T0 (K) 298.15K 303.15K 308.15K 305K Reference a − Im+ 2,1 / NTf2 0.4 509 182 32.0 26.7 22.6 20 − Im+ 4,1 / NTf2 + Im6,1 / NTf− 2 − Im+ 8,1 / NTf2 + Im4,1 / BETI− − Pyrr+ 3,1 / FTFSI − Pyrr+ 4,1 / FTFSI − + Pyrr4,1 / NTf2 − Pyrr+ 4,1 / BETI + − Im2,1 / BF4 − Im+ 4,1 / BF4 0.25 625 180 49.6 40.0 32.8 20 0.16 757 173 67.8 53.7 43.3 20 0.15 802 173 91.0 71.2 56.7 20 0.17 763 180 108.4 83.4 65.5 21 0.383 580.2 169 34.2 28.9 24.8 22 0.249 725.7 160 47.6 39.6 33.4 22 0.45 534 199 98.2 75.8 60.0 23 0.2 750 150 31.6 26.8 22.9 25 0.21 697 185 99.4 76.6 60.3 21 200 Note that this equation is slight different from what we used in Table IV ; b VFT parameters are available ; 9 24 Numbers are extracted from VFT fitting when The linear fitting results between the measured diffusivities using PG-SE NMR method and estimated diffusivities using Stokes-Einstein Equation are shown in Table VII. The anions have a similar slope of both silicon and carbon ionic liquids, but the slope for cations are very different. TABLE VII. The relation between measured diffusivity and Stokes-Einstein diffusivity. Dexp = a + bDS-E a Anion Carbon ILs 0.75 ± 0.61 × Silicon ILs b 10−10 1.52 ± 0.04 1.27 ± 0.49 × 10−10 1.48 ± 0.06 Cation Carbon ILs −2.27 ± 1.18 × 10−10 2.17 ± 0.08 Silicon ILs 1.02 ± 0.46 × 10−10 1.46 ± 0.03 10 REFERENCES 1 H. J. C. Berendsen, D. van der Spoel, and R. van Drunen, “GROMACS: A message-passing parallel molecular dynamics implementation.” Comp. Phys. Comm. 91, 43–56 (1995). 2 S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods.” J. Chem. Phys. 81, 511–519 (1984). 3 S. Nosé, “A molecular dynamics method for simulations in the canonical ensemble.” Mol. Phys. 52, 255–268 (1984). 4 M. Parrinello and A. Rahman, “Polymorphic transitions in single crystals: A new molecular dynamics method.” J. Appl. Phys. 52, 7182–7190 (1981). 5 T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An N*log(N) method for Ewald sums in large systems,” J. Chem. Phys. 98, 10089–10092 (1993). 6 U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, “A smooth particle mesh Ewald method,” J. Chem. Phys. 103, 8577–8593 (1995). 7 R. C. Rizzo and W. L. Jorgensen, “OPLS All-Atom Model for Amines: Resolution of the Amine Hydration Problem,” J. Am. Chem Soc. 121, 4827–4836 (1999). 8 J. N. C. Lopes and A. A. H. Pádua, “CL&P: A generic and systematic force field for ionic liquids modeling,” Theor Chem Acc 131, 1129 (2012). 9 B. Wu, H. Shirota, and J. Edward W. Castner, “Structure of Ionic Liquids with Cationic Silicon-Substitutions,” J. Chem. Phys. in press, 032634JCP (2016). 10 J. N. C. Lopes, J. Deschamps, and A. A. H. Pádua, “Modeling Ionic Liquids Using a Systematic All-Atom Force Field,” J. Phys. Chem. B 108, 2038–2047 (2004). 11 J. N. C. Lopes and A. A. H. Pádua, “Molecular Force Field for Ionic Liquids Composed of Triflate or Bistriflylimide Anions,” J. Phys. Chem. B 108, 16893–16898 (2004). 12 K. Shimizu, D. Almantariotis, M. F. C. Gomes, A. A. H. Pádua, and J. N. C. Lopes, “Molecular Force Field for Ionic Liquids V: Hydroxyethylimidazolium, Dimethoxy-2Methylimidazolium, and Fluoroalkylimidazolium Cations and Bis(Fluorosulfonyl)Amide, Perfluoroalkanesulfonylamide, and Fluoroalkylfluorophosphate Anions,” J. Phys. Chem. B 114, 3592–3600 (2010). 13 E. K. Watkins and W. L. Jorgensen, “Perfluoroalkanes: Conformational Analysis and Liquid-State Properties from ab Initio and Monte Carlo Calculations,” J. Phys. Chem. A 105, 4118–4125 (2001). 11 14 H. Sun, “Ab initio calculations and force field development for computer simulation of polysilanes,” Macromolecules 28, 701–712 (1995). 15 M. R. Frierson, M. R. Imam, V. B. Zalkow, and N. L. Allinger, “The MM2 Force Field for Silanes and Polysilanes,” J. Org. Chem. 53, 5248–5258 (1988). 16 C. Oostenbrink, A. Villa, A. E. Mark, and W. F. V. Gunsteren, “A Biomolecular Force Field Based on the Free Enthalpy of Hydration and Solvation: The GROMOS Force-Field Parameter Sets 53A5 and 53A6,” J Comput. Chem. 25, 1656–1676 (2004). 17 S. H. Chung, R. Lopato, S. G. Greenbaum, H. Shirota, E. W. Castner, Jr., and J. F. Wishart, “A nuclear magnetic resonance study of room temperature ionic liquids with CH2 Si(CH3 )3 vs. CH2 C(CH3 )3 substitutions on the imidazolium cations,” J. Phys. Chem. B 111, 4885–4893 (2007). 18 H. Shirota and E. W. Castner, Jr., “Why Are Viscosities Lower for Ionic Liquids with -CH2Si(CH3)3 vs -CH2C(CH3)3 Substitutions on the Imidazolium Cations?” J. Phys. Chem. B 109, 21576–21585 (2005). 19 H. Shirota, J. F. Wishart, and E. W. Castner, Jr., “Intermolecular Interactions and Dynamics of Room Temperature Ionic Liquids That Have Silyl- and Siloxy-Substituted Imidazolium Cations,” J. Phys. Chem. B 111, 4819–4829 (2007). 20 H. Tokuda, K. Hayamizu, K. Ishii, M. A. B. H. Susan, and M. Watanabe, “Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in Imidazolium Cation,” J. Phys. Chem. B 109, 6103–6110 (2005). 21 H. Tokuda, K. Hayamizu, K. Ishii, M. A. B. H. Susan, and M. Watanabe, “Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 1. Variation of Anionic Species,” J. Phys. Chem. B 108, 16593–16600 (2004). 22 J. Reiter, S. Jeremias, E. Paillard, M. Winter, and S. Passerini, “Fluorosulfonyl- (trifluoromethanesulfonyl)imide ionic liquids with enhanced asymmetry,” Phys. Chem. Chem. Phys. 15, 2565–2571 (2013). 23 H. Tokuda, K. Ishii, M. A. B. H. Susan, S. Tsuzuki, K. Hayamizu, and M. Watanabe, “Physicochemical Properties and Structures of Room-Temperature Ionic Liquids. 3. Variation of Cationic Structures,” J. Phys. Chem. B 110, 2833–2839 (2006). 24 F. Castiglione, M. Moreno, G. Raos, A. Famulari, A. Mele, G. B. Appetecchi, and S. Passerini, “Structural Organization and Transport Properties of Novel PyrrolidiniumBased Ionic Liquids with Perfluoroalkyl Sulfonylimide Anions,” J. Phys. Chem. B 113, 12 10750–10759 (2009). 25 A. Noda, K. Hayamizu, and M. Watanabe, “Pulsed-Gradient Spin-Echo 1 H and 19 F NMR Ionic Diffusion Coefficient, Viscosity, and Ionic Conductivity of Non-Chloroaluminate Room-Temperature Ionic Liquids,” J. Phys. Chem. B 105, 4603–4610 (2001). 13
© Copyright 2025 Paperzz