Functional Analysis Exercise sheet 1 — Solutions 1. We use that N X |xn + yn |p ≤ n=1 N X (2 max(|xn |, |yn |))p ≤ 2p n=1 N X (|xn |p + |yn |p ). n=1 Hence, if x = (xn )n∈N and y = (yn )n∈N are in `p , then also ∞ X |xn + yn |p < ∞. n=1 This proves that `p is closed under addition. Also for α ∈ F, ∞ X |αxn |p = |α|p n=1 ∞ X |xn |p . n=1 Hence, if x ∈ `p , then αx ∈ `p too. 2. The property x ∈ `p is equivalent to converges if and only if p > 2. P∞ 1 n=1 np/2 < ∞. This series 3. We have kx + yk2 = hx, xi + 2Re hx, yi + hy, yi , kx − yk2 = hx, xi − 2Re hx, yi + hy, yi , kx + iyk2 = hx, xi + 2Re hx, iyi + hiy, iyi = hx, xi + 2Im hx, yi − hy, yi , kx − iyk2 = hx, xi − 2Re hx, iyi + hiy, iyi = hx, xi − 2Im hx, yi − hy, yi . Adding these equalities, we deduce the formula. 4. We have kx + yk2 = hx, xi + 2Re hx, yi + hy, yi , kx − yk2 = hx, xi − 2Re hx, yi + hy, yi . Adding these equalities, we deduce the formula. The equality says that the sum of the squares of sides of a parallelogram is equal to the sum of the squares of diagonals. 5. kx + yk2 = hx, xi + 2Re hx, yi + hy, yi = kxk2 + kyk2 . 6. We have | hxn , yn i − hx, yi | ≤ | hxn , yn i − hx, yn i | + | hx, yn i − hx, yi | = | hxn − x, yn i | + | hx, yn − yi | ≤ kxn − xkkyn k + kxkkyn − yk 1 Since yn → y, kyn k ≤ kyn − yk + kyk ≤ 1 + kyk for all sufficiently large n. Hence, for all sufficiently large n, | hxn , yn i − hx, yi | ≤ kxn − xk(1 + kyk) + kxkkyn − yk → 0. This proves the claim. p 7. Consider the function φ(t) = tb − tp on [0, ∞]. Since φ0 (t) = b − tp−1 , we have φ0 > 0 for t < b1/(p−1) , and φ0 < 0 for t > b1/(p−1) . Hence, φ achieves its maximal value at t = b1/(p−1) . This maximal value is φ(b1/(p−1) ) = b1+1/(p−1) − bp/(p−1) 1 bq = (1 − )bp/(p−1) = . p p q This implies the Young inequality. 2
© Copyright 2026 Paperzz