Frequently Asked Questions: High School Mathematics

Frequently Asked Questions:
High School Mathematics
October 2005
Frequently Asked Questions:
High School Mathematics
 Courses
 Pathways
 Assessment
and Evaluation
 Teaching and Learning
 Appendices
Courses
What are the course options, course
codes, and prerequisites?
See page 3.
How many students should we anticipate
will take courses at the different levels?

It is anticipated that approximately 30–40% of grade
10 students will enrol in graduation-level courses
and approximately 60–70% of grade 10 students will
enrol in the academic mathematics course.

It is anticipated that in grades 11 and 12, 30–40% of
students will enrol in graduation level courses, 40–
55% of students will enrol in academic-level courses,
and 15–20% of students will enrol in advanced-level
courses.
What courses must be offered to students
and which are optional for schools to offer?

Schools must offer all core courses as options for students:
– Mathematics 10
– Mathematics Foundations 10
– Mathematics 11 / Advanced Mathematics 11
– Mathematics Foundations 11
– Mathematics 12 / Advanced Mathematics 12
– Mathematics Foundations 12
– Pre-Calculus Mathematics 12.

Options that schools may choose to offer:
– Mathematics Foundations 10 Plus
– Mathematics 10 Plus
– Mathematics Essentials 10
– Mathematics Essentials 11
– Calculus 12
What courses could be combined into one
classroom, if necessary?





Mathematics 10 and Mathematics Foundations 10 could be
taught in a combined classroom.
Mathematics Foundations 10 and Mathematics Essentials 10
are not recommended to be taught in a combined classroom.
Mathematics 11 can be combined with either Advanced
Mathematics 11 or with Mathematics Foundations 11.
Mathematics Essentials 11 should not be combined with
Mathematics Foundations 11.
Mathematics 12 can be combined with either Advanced
Mathematics 12 or Mathematics Foundations 12.
Can high school mathematics courses be
taught through the whole year?



Year-long options through creative
timetabling.
Schools may also wish to consider
Mathematics 10 Plus and Mathematics
Foundations 10 Plus.
It is important that scheduling of grade 12
courses reflect prerequisites and provide for
students who wish to earn more than three
mathematics credits.
What are the differences between
Mathematics 10 and Mathematics 10
Plus?

Mathematics 10 Plus
–
–
–
–
–
is an academic, two-credit course
a Mathematics 10 credit (008008)
one elective credit, Mathematics 10 Plus
(008157).
Mathematics 10 Plus follows the Mathematics 10
curriculum but is presented over 220 hours.
additional time to support and/or extend the
learning to meet the needs of all students.
How do the two credits work in Mathematics 10
Plus and Mathematics Foundations 10 Plus?

Students taking Mathematics 10 Plus should be
enrolled in:
–
–

Mathematics 10 (course code 008008), a mathematics
credit
Mathematics 10 Plus (course code 008157), an elective
credit.
Students taking Mathematics Foundations 10 Plus
should be enrolled in:
–
–
Mathematics Foundations 10 (course code 008009), a
mathematics credit
Mathematics Foundations 10 Plus (course code 008158),
an elective credit.
Can Mathematics 10 Plus be taught as
separate courses?

The 220 hours afforded to this course will allow
the teacher to get to know each student’s
strengths and needs in mathematics very well.

This enables the teacher to address the
appropriate Mathematics 10 Plus outcomes for
that student.

For this reason Mathematics 10 Plus should be
viewed as a single course, ideally taught over
two semesters by the same teacher.
What credit options are there for students who
take Mathematics 10 Plus all year and then fail?

Teachers may use their professional judgement in
situations where a student fails.

If the student has achieved the outcomes for Plus elective
credit, a teacher may give credit for this course (008157)
and not for the Mathematics 10 course.

Teachers may also decide that a student’s performance is
sufficient to satisfy the Mathematics Foundations 10
credit (008009) and may assign this credit, making the
appropriate changes to the student’s record/transcript.

The student will need to be counselled regarding options
for earning the two required mathematics credits.
May schools continue to offer locally
developed mathematics courses?

Principals and guidance counsellors
are advised to check the approved
status and end dates for locally
developed courses in the course code
list.

See also Appendix A for a list of active
course codes.
What is the recommended sequence of
grade 11 and grade 12 courses?

Whenever possible students should take Mathematics 11
before Mathematics 12 and Advanced Mathematics 11
before Advanced Mathematics 12 and Mathematics
Foundations 11 before Mathematics Foundations 12.

Schools should make every effort to arrange schedules
that will allow this sequence of courses.

While the content of grade 11 courses is not prerequisite
to grade 12 courses, students naturally benefit from the
110 hours of mathematics learning in grade 11 courses
and have a stronger background on which to build as
they address requirements of grade 12 courses.
What are the IB and AP options in high
school mathematics?

The IB Diploma Program is currently being offered in
two Nova Scotia schools. The program is being
expanded to include several more high schools over
the next few years.

The Department is currently working with boards to
expand opportunities for students to prepare for and
take Advanced Placement Examinations.
Pathways
What are the possible course pathways
through high school mathematics?
See Appendix B.
When a student is entering grade 10, what
should he or she consider when registering for
math courses?

Considerations
–
–
–
–
–
–
–
previous mathematics achievement
interest
attitude
ability to work independently
work habits
future plans
the appropriate level of challenge of the course
How does a student’s mathematics course
choices influence his or her post-secondary
options?

Post-secondary programs have different mathematics
prerequisites and should be carefully investigated during the
course selection process.

It is important to note that many post-secondary programs do
not have a mathematics prerequisite and that graduation-level
mathematics credits will satisfy admissions requirements.

Selecting courses on the premise of “keeping all doors opened”
without considering the above, is not in the best interest of
students. Doing well in the appropriate course gives students
more options than struggling through an ill chosen course.

See the Mathematics: Career Pathways poster.
How should recommendations regarding
student placement be communicated from the
junior to the senior high school?
Protocols should be established within school
boards to ensure effective communication
between the junior high school and senior
high school regarding recommendations
made to students and their parents about
selection of mathematics courses and
appropriate placement of students.
If a student chooses a course against the
recommendations of the school and teacher, should
resource support be made available to the student?


Allocation of resource support must be
prioritized by PPTs and the school principal.
PPTs and principals must consider many
factors when determining a priority list,
including whether or not the student is in the
appropriate course.
Students and parents should understand this
in advance of course selection.
What are the course codes for students
following an IPP?

Mathematics 10 IPP (008102)

Mathematics 11 IPP (008109)

Mathematics 12 IPP (008110)

Advanced Mathematics 11 IPP (008193)

Advanced Mathematics 12 IPP (008108)

Pre-Calculus Mathematics 12 IPP (008194)
In which courses should a student
following an IPP be placed?

Students should be placed in settings where they will
receive the appropriate support depending on the
nature of the IPP.

Considerations:
–
the strengths and needs of the student
–
the learning environment that will offer the student the appropriate
challenge and support
–
class sizes
–
the capacity of the teacher to address the individual’s program and
learning needs
–
student’s access to learning experiences and resources identified
in the IPP
What is the profile of a student in each
course?
See pages 10–11.
How can attendance or lack of attendance
affect a student’s ability to complete a
course?

With the learning outcomes framework we have in
Nova Scotia, attendance should not be a factor, per
se, in the evaluation of a student’s achievement.

While students clearly benefit from regular
attendance and uninterrupted learning, what matters
is the extent to which the student can demonstrate
achievement of the prescribed outcomes.

A provincial attendance committee is currently
investigating options for improving student
attendance.
Assessment and Evaluation
How should students in high school
mathematics be evaluated by the classroom
teacher?

Teachers should develop assessment and evaluation plans.

Plans must be matched to the curriculum outcomes of each of
the mathematics courses.

Paper-and-pencil tests (quizzes and exams), projects,
assignments, and portfolios.

The evaluation plan shows how information about student
learning will be evaluated by the teacher, using his or her
professional judgement.

It is not acceptable to use marks that are not linked to course
outcomes, such as homework completion, attendance, or
having the proper materials in class.
Which high school mathematics courses
have a Nova Scotia Examination (NSE)?

Courses requiring students to write an
NSE
–
Mathematics 12
–
Advanced Mathematics 12
Can a student earn an exam exemption in
a mathematics course?

There may be no exemptions in courses
with NSE.

While practising formal examination
procedures can only help a student when
writing an NSE and future exams,
exemption policies are the responsibility of
the boards.
Can students rewrite NSE without
retaking the course?


No, a supplementary is not available at the
present time.
Students must be enrolled in Mathematics 12
or Advanced Mathematics 12 to write an
examination.
Do students doing summer school or
correspondence write an NSE?



All student receiving a credit for Mathematics 12 or
Advanced Mathematics 12 should be writing an
NSE.
Dates of these exams are published well in advance,
and arrangements can be made for students taking
correspondence courses to write them. In some
cases arrangements cannot be made, and an
alternative will need to be used.
The calculation of summer school marks is
determined by school boards.
Who marks NSE in mathematics?

The department provides examinations in
Mathematics 12 and Advanced Mathematics
12. These are administered and marked by
the students’ teachers following guidelines
prepared by the department. The department
collects a random representative sample of
student booklets and marks these centrally
providing board and provincial statistics.
May schools provide adaptations for NSE
in mathematics?

Students who have documented adaptations
in mathematics (in their cumulative record
file) may be provided these adaptations
when writing the examination.
Teaching and Learning
Appendices
Appendix A: Active Course Codes for
High School Mathematics

See pages 17–19.
Appendix B: Suggested Student Pathways
through High School Mathematics
Frequently Asked Questions:
High School Mathematics
Donna Karsten
Mathematics Consultant
902-424-5437
[email protected]