Classical papers in evolutionary biology. Daniel R. Matute

Classical papers in evolutionary biology.
Daniel R. Matute
I. Sex
1. The origin of sex. Muller, H. J. (1964). The relation of recombination to mutational
advance. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,
1(1), 2-9; Kondrashov, A. S. (1988). Deleterious mutations and the evolution of sexual
reproduction. Nature, 336(6198), 435-440; Hill, W. G., and A. Robertson. 1966. The
effect of linkage on limits to artificial selection. Genet. Res. 8:269-294. Charlesworth, B.,
& Charlesworth, D. (1997). Rapid fixation of deleterious alleles can be caused by Muller's
ratchet. Genetical research, 70(01), 63-73; Barton, N. H., & Charlesworth, B. (1998). Why
sex and recombination?. Science, 281(5385), 1986-1990.
2. Asexual populations. Muller HJ (1932). "Some genetic aspects of sex". American
Naturalist 66 (703): 118–138.; Chao, L. (1990). Fitness of RNA virus decreased by
Muller's ratchet; Desai. Chao, L., Tran, T., & Matthews, C. (1992). Muller's ratchet and
the advantage of sex in the RNA virus Φ6. Evolution, 289-299; Neher, R. A., & Shraiman,
B. I. (2012). Fluctuations of fitness distributions and the rate of Muller’s ratchet. Genetics,
191(4), 1283-1293; Goyal, S., Balick, D. J., Jerison, E. R., Neher, R. A., Shraiman, B. I.,
& Desai, M. M. (2012). Dynamic mutation–selection balance as an evolutionary attractor.
Genetics, 191(4), 1309-1319.
II. The neutral theory
3. On the fitness effects of mutations I. Kimura M. (1968). Evolutionary Rate at the
Molecular Level. Nature 217:624-6; King JL, Jukes TH. (1969). Non-Darwinian Evolution.
Science 164:788-97; Nei, M., Suzuki, Y., and M. Nozawa. (2010). The neutral theory of
molecular evolution in the genomic era. Ann Rev Genomics Hum Genet. 11:265-89;
Wagner A. (2008). "Neutralism and selectionism: a network-based reconciliation". Nature
Reviews Genetics 9 (12): 965–974. Gould, S. J., & Lewontin, R. C. (1979). The spandrels
of San Marco and the Panglossian paradigm: a critique of the adaptationist programme.
Proceedings of the Royal Society of London. Series B. Biological Sciences, 205(1161),
581-598.
4. On the fitness effects of mutations II. Langley CH, Fitch WM. 1974. An examination of the
constancy of the rate of molecular evolution. Journal J Mol Evol.;3(3):161-77. 1);
Zuckerkandl and Pauling. Evolutionary Divergence and Convergence in Proteins," in
Evolving Genes and Proteins, eds. V. Bryson and H. Vogel (New York: Academic Press,
1965). pp. 97-166. 2; Kimura, "Evolutionary Rate at the Molecular Level," Nature 217
(1968), 624-626; King and Jukes. 1969. "Non-Darwinian Evolution," Science 164: 788798. Ohta, 1973. Slightly Deleterious Mutant Substitutions in Evolution. Nature 246: 9698.
III. Molecular evolution and Population genetics
5. Molecular evolution. Kreitman, M. (1983). Nucleotide polymorphism at the alcohol
dehydrogenase locus of Drosophila melanogaster. Nature, 304(5925), 412-417.
McDonald, J. H., & Kreitman, M. (1991). Adaptive protein evolution at the Adh locus in
Drosophila. Nature, 351(6328), 652-654. Hudson, R. R., Kreitman, M., & Aguadé, M.
1987. A test of neutral molecular evolution based on nucleotide data. Genetics, 116(1),
153-159. Yang, Z. (1997). PAML: a program package for phylogenetic analysis by
maximum likelihood. Computer applications in the biosciences: CABIOS, 13(5), 555-556
6. Coalescent theory. Kingman, J. F. C. 1982. The coalescent. Stochastic processes and
their applications, 13(3), 235-248; Donnelly, P., & Tavaré, S. (1986). The ages of alleles
and a coalescent. Advances in Applied Probability, 1-19; Hudson, R. R. (1990). Gene
genealogies and the coalescent process. Oxford surveys in evolutionary biology, 7(1), 44
V. Adaptation
7. Natural selection: Darwin C (1859) On the Origin of Species by Means of Natural
Selection, or the Preservation of Favoured Races in the Struggle for Life John Murray,
London Chapters 3-5; Haldane, J.B.S. The cost of natural selection. (1957) Journal of
genetics: 55 pp 511-524. Price, G. R. (1970). Selection and covariance. Nature, 227,
520-21; Lande, R., & Arnold, S. J. (1983). The measurement of selection on correlated
characters. Evolution, 1210-1226; Clausen, J., Keck, D. D., & Hiesey, W. M. (1939). The
concept of species based on experiment. American Journal of Botany, 26(2), 103-106.
Kettlewell, H. B. D. (1955). Selection experiments on industrial melanism in the
Lepidoptera. Heredity, 9(3), 323-42.
8. Fisher’s geometric model: Fisher RA. 1930. The Genetical Theory of Natural Selection.
Clarendon Press, Oxford. Chapters 1 and 2; Orr and Coyne. 1992 The genetics of
adaptation: a reassessment. Am. Nat. 140: 725–742; Burch, C. L., & Chao, L. (1999).
Evolution by small steps and rugged landscapes in the RNA virus ϕ6. Genetics, 151(3),
921-927; Orr, H. A. (2005). The genetic theory of adaptation: a brief history. Nature
Reviews Genetics, 6(2), 119-127; Orr, H. A. (2006). The distribution of fitness effects
among beneficial mutations in Fisher's geometric model of adaptation. Journal of
theoretical biology, 238(2), 279-285.
VI. Adaptation (continued)
9. Longitudinal studies: Grant, P. R., & Grant, B. R. (2002). Unpredictable evolution in a 30year study of Darwin's finches. Science, 296(5568), 707-711. Elena, S. F., & Lenski, R.
E. (1997). Test of synergistic interactions among deleterious mutations in bacteria.
Nature, 390(6658), 395-398. Rambaut, A., Robertson, D. L., Pybus, O. G., Peeters, M., &
Holmes, E. C. (2001). Human immunodeficiency virus: phylogeny and the origin of HIV-1.
Nature, 410(6832), 1047-1048.
10. Shifting balance. Wright, S. 1932. The roles of mutation, inbreeding, crossbreeding and
selection in evolution. Proceedings of the VI International Congress of Genetrics: 1. pp
356-366; Wright, S. (1982). The shifting balance theory and macroevolution. Annual
review of genetics, 16(1), 1-20; Wade, M. J., & Goodnight, C. J. (1991). Wright's shifting
balance theory: an experimental study. Science, 253(5023), 1015-1018; Coyne, J.A.,
N.H. Barton, and M. Turelli. (1997) A critique of Wright's shifting balance theory of
evolution. Evolution 51: 643-671.
11. Fitness landscapes. Dean, A. 1995. A Molecular Investigation of Genotype by
Environment Interactions. Genetics. 139:19-33; Gavrilets, S. 1997. "Evolution and
speciation on holey adaptive landscapes.". Trends in ecology & evolution 12 (8): 307–12;
Lehman, N. and Joyce, G. 1993. Evolution in Vitro: Analysis of a Lineage of Ribozymes
Current Biology 3: 723–34; Kouyos, R. D., Leventhal, G. E., Hinkley, T., Haddad, M.,
Whitcomb, J. M., Petropoulos, C. J., & Bonhoeffer, S. (2012). Exploring the complexity of
the HIV-1 fitness landscape. PLoS genetics, 8(3), e1002551; Martin, C. H., & Wainwright,
P. C. (2013). Multiple fitness peaks on the adaptive landscape drive adaptive radiation in
the wild. Science, 339(6116), 208-211
VII. Speciation and reproductive isolation
12. Reproductive isolation. Dobzhansky, T. (1935). A critique of the species concept in
biology. Philosophy of Science, 344-355; Simpson, G. G. (1951). The species concept.
Evolution, 5(4), 285-298; Muller, H. J. (1942). Isolating mechanisms, evolution and
temperature. In Biol. Symp (Vol. 6, No. 811, pp. 71-125); Coyne, J. A., & Orr, H. A.
(1989). Patterns of speciation in Drosophila. Evolution, 362-381; Haffer, J. (1969).
Speciation in Amazonian forest birds. Science, 165(3889), 131-137; Yukilevich, R.
(2012). Asymmetrical patterns of speciation uniquely support reinforcement in
Drosophila. Evolution, 66(5), 1430-1446; Straw, R. M. (1955). Hybridization, homogamy,
and sympatric speciation. Evolution, 441-444.
13. Speciation modes. White, M. J. D. (1968). Models of Speciation New concepts suggest
that the classical sympatric and allopatric models are not the only alternatives. Science,
159(3819), 1065-1070; Futuyma, D. J., & Mayer, G. C. (1980): Felsenstein, J. (1981).
Skepticism towards Santa Rosalia, or why are there so few kinds of animals?. Evolution,
124-138; Futuyma, D. J., & Mayer, G. C. (1980). Non-allopatric speciation in animals.
Systematic Biology, 29(3), 254-271; Chesser, R. T., & Zink, R. M. (1994). Modes of
speciation in birds: a test of Lynch's method. Evolution, 490-497; Bush, G. L. (1975).
Modes of animal speciation. Annual Review of Ecology and Systematics, 339-364;
MacArthur, R. H., & Wilson, E. O. (1963). An equilibrium theory of insular zoogeography.
Evolution, 373-387.
VIII. Hybrid zones
14. Hybrid zones. Barton, N. H. (1979). The dynamics of hybrid zones. Heredity, 43, 341359; Harrison, R. G. (1990). Hybrid zones: windows on evolutionary process. Oxford
surveys in evolutionary biology, 7, 69-128; Bigelow, R. S. (1965). Hybrid zones and
reproductive isolation. Evolution, 449-458; Remington, C. L. (1968). Suture-zones of
hybrid interaction between recently joined biotas. In Evolutionary biology (pp. 321-428).
Springer US; Short, L. L. (1969). Taxonomic aspects of avian hybridization. The Auk, 84105.
15. Reinforcement. D.J. Howard Reinforcement: origin, dynamics and fate of an evolutionary
hypothesis R.G. Harrison (Ed.), Hybrid Zones and the Evolutionary Process, Oxford
University Press, New York (1993), pp. 46–69; Liou, L. W., & Price, T. D. (1994).
Speciation by reinforcement of premating isolation. Evolution, 1451-1459; Dobzhansky,
T. (1940). Speciation as a stage in evolutionary divergence. American Naturalist, 312321; Noor, M. A. (1995). Speciation driven by natural selection in Drosophila. Nature,
375(6533), 674-675; Koopman, K. F. (1950). Natural selection for reproductive isolation
between Drosophila pseudoobscura and Drosophila persimilis. Evolution, 135-148;
Haldane, J. B. S. (1948). The theory of a cline. Journal of genetics, 48(3), 277-284.
IX. Sexual selection
16. Sexual selection. Zahavi, A. 1975. Mate selection - a selection of a handicap. J. Theor.
Biol. 53:205-214; Kirkpatrick, M., and Ryan, M.J. 1991. The evolution of mating
preferences and the paradox of the lek. Nature. 350:33-38; West-Eberhard, M. J. (1983).
Sexual selection, social competition, and speciation. Quarterly Review of Biology, 155183; Bateman AJ (1948) Intra-sexual selection in Drosophila. Heredity (Edinb) 2:349–
368; Gowaty, P. A., Kim, Y. K., & Anderson, W. W. (2012). No evidence of sexual
selection in a repetition of Bateman’s classic study of Drosophila melanogaster.
Proceedings of the National Academy of Sciences, 109(29), 11740-11745.
X. Hybridization
17. Hybridization. Anderson, E., & Stebbins Jr, G. L. (1954). Hybridization as an evolutionary
stimulus. Evolution, 378-388; Mallet, J. (2005). Hybridization as an invasion of the
genome. Trends in Ecology & Evolution, 20(5), 229-237; Seehausen, O. (2004).
Hybridization and adaptive radiation. Trends in ecology & evolution, 19(4), 198-207;
Rieseberg, L. H., Van Fossen, C., & Desrochers, A. M. (1995). Hybrid speciation
accompanied by genomic reorganization in wild sunflowers. Nature, 375(6529), 313-316.
18. The evolution of hybrid incompatibilities. Turelli, M., & Orr, H. A. (2000). Dominance,
epistasis and the genetics of postzygotic isolation. Genetics, 154(4), 1663-1679: Orr, H.
A., & Turelli, M. (2001). The evolution of postzygotic isolation: accumulating Dobzhansky‐
Muller incompatibilities. Evolution, 55(6), 1085-1094; Turelli, M., & Orr, H. A. (1995). The
dominance theory of Haldane's rule. Genetics, 140(1), 389-402; Turelli, M., & Begun, D.
J. (1997). Haldane's rule and X-chromosome size in Drosophila. Genetics, 147(4), 17991815; Orr, H. A., & Orr, L. H. (1996). Waiting for speciation: the effect of population
subdivision on the time to speciation. Evolution, 1742-1749; Orr, H. A. (1995). The
population genetics of speciation: the evolution of hybrid incompatibilities. Genetics,
139(4), 1805-1813.
XII. Genome evolution
19. Chromosomal rearrangements. Levene, H., & Dobzhansky, T. (1958). New evidence of
heterosis in naturally occurring inversion heterozygotes in Drosophila pseudoobscura.
Heredity, 12, 37-49; Carson, H. L. Chromosomal sequences and interisland colonizations
in Hawaiian Drosophila(1983) Genetics: 10: 465-482; Wilson, A. C., Sarich, V. M., &
Maxson, L. R. (1974). The importance of gene rearrangement in evolution: evidence from
studies on rates of chromosomal, protein, and anatomical evolution. Proceedings of the
National Academy of Sciences, 71(8), 3028-3030; Navarro, A., & Barton, N. H. (2003).
Chromosomal speciation and molecular divergence--accelerated evolution in rearranged
chromosomes. Science, 300(5617), 321-324.; Faria, R., & Navarro, A. (2010).
Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends in
Ecology & Evolution, 25(11), 660-669.
20. Genome size evolution. Sessions, S. K., & Larson, A. (1987). Developmental correlates
of genome size in plethodontid salamanders and their implications for genome evolution.
Evolution, 1239-1251; Lynch, M., and J. S. Conery. 2003. The origins of genome
complexity. Science 302: 1401-1404; Charlesworth, B., & Charlesworth, D. (2000). The
degeneration of Y chromosomes. Philosophical Transactions of the Royal Society of
London. Series B: Biological Sciences, 355(1403), 1563-1572; Petrov, D. A. (2001).
Evolution of genome size: new approaches to an old problem. Trends in Genetics, 17(1),
23-28; Eichler, E. E., & Sankoff, D. (2003). Structural dynamics of eukaryotic
chromosome evolution. Science, 301(5634), 793-797.
XIII. Cooperation and altruism
21. Trivers, R. L. (1971). The evolution of reciprocal altruism. Quarterly review of biology, 3557. Axelrod, R., & Hamilton, W. D. (1981). The evolution of
cooperation. Science,211(4489), 1390-1396. Smith, J. M. (1964). Group selection and kin
selection. Nature, 201, 1145-1147. Eberhard, M. J. W. (1975). The evolution of social
behavior by kin selection. Quarterly Review of Biology, 1-33. Wade, M. J. (1985). Soft
selection, hard selection, kin selection, and group selection. American naturalist, 61-73.
Wade, M. J. (1980). An experimental study of kin selection. Evolution, 844-855.
XIV. Phenotypic plasticity
22. Waddington, C. H. (1942). Canalization of development and the inheritance of acquired
characters. Nature, 150(3811), 563-565; Waddington, C. H. (1953). Genetic assimilation
of an acquired character. Evolution, 118-126; Via, S., Gomulkiewicz, R., De Jong, G.,
Scheiner, S. M., Schlichting, C. D., & Van Tienderen, P. H. (1995). Adaptive phenotypic
plasticity: consensus and controversy. Trends in Ecology & Evolution, 10(5), 212-217;
Via, S., & Lande, R. (1985). Genotype-environment interaction and the evolution of
phenotypic plasticity. Evolution, 505-522; Pigliucci, M. (2005). Evolution of phenotypic
plasticity: where are we going now?. Trends in Ecology & Evolution, 20(9), 481-486;
Price, T. D., Qvarnström, A., & Irwin, D. E. (2003). The role of phenotypic plasticity in
driving genetic evolution. Proceedings of the Royal Society of London. Series B:
Biological Sciences, 270(1523), 1433-1440.
XIV. Coevolution
23. Coevolution. Ehrlich, P.R. & Raven, P.H Butterflies and plants: a study in coevolution
(1964) Evolution: 18 pp 586-608. Holling, C. S. (1959). Some characteristics of simple
types of predation and parasitism. The Canadian Entomologist, 91(07), 385-398. Janzen,
D. H. (1980). When is it coevolution. Evolution, 34(3), 611-612. Stebbins, G. L. (1981).
Coevolution of grasses and herbivores. Annals of the Missouri Botanical Garden, 75-86;
Connell, J. H. (1980). Diversity and the coevolution of competitors, or the ghost of
competition past. Oikos, 131-138. Janzen, D. H. (1966). Coevolution of mutualism
between ants and acacias in Central America. Evolution, 249-275; Slatkin, M., & Smith, J.
M. (1979). Models of coevolution. Quarterly Review of Biology, 233-263.
24. Red Queen and conflict. . Van Valen. (1973). A new evolutionary law. Evolutionary
Theory 1: 1—30; van Valen, L. (1976). The red queen lives. Nature, 260, 575. Hallam, A.
(1976). The Red Queen dethroned. Nature, 259, 12-13. Chr, N. (1979). Where have all
the species gone? On the nature of extinction and the Red Queen hypothesis. Oikos,
196-227. Salthe, S. N. (1975). Some comments on Van Valen's law of extinction.
Paleobiology, 356-358. Smith, J. M., & Price, G. R. (1973). The Logic of Animal
Conflict. Nature, 246, 15. Chapman, T., Arnqvist, G., Bangham, J., & Rowe, L. (2003).
Sexual conflict. Trends in Ecology & Evolution, 18(1), 41-47
Multilevel selection
25. Species selection. Stanley, S. M. (1975). A theory of evolution above the species level.
Proceedings of the National Academy of sciences, 72(2), 646-650; Gould, N. E. S. J.
(2014). Punctuated equilibria: an alternative to phyletic gradualism. Essential Readings in
Evolutionary Biology, 239; Jablonski, D. (2008). Species selection: theory and data.
Annual Review of Ecology, Evolution, and Systematics, 39, 501-524; Rabosky, D. L., &
McCune, A. R. (2010). Reinventing species selection with molecular phylogenies. Trends
in ecology & evolution, 25(2), 68-74.
26. Below the individual level: Rispe, C., & Moran, N. A. (2000). Accumulation of deleterious
mutations in endosymbionts: Muller’s ratchet with two levels of selection. The American
Naturalist, 156(4), 425-441. Orgel, L. E., & Crick, F. H. (1980). Selfish DNA: the ultimate
parasite. Nature, 284, 604-607. Doolittle, W. F., & Sapienza, C. (1980). Selfish genes,
the phenotype paradigm and genome evolution. Nature, 284(5757), 601-3. Hickey 1982
Selfish DNA: sexually-transmitted parasite.
Conclusions
27. On the new for a new synthesis. Carroll, R. L. (2000). Towards a new evolutionary
synthesis. Trends in ecology & evolution, 15(1), 27-32. Mayr, E., & Provine, W. B. (Eds.).
(1998). The evolutionary synthesis: perspectives on the unification of biology. Harvard
University Press. Pigliucci, M. (2007). Do we need an extended evolutionary synthesis?.
Evolution, 61(12), 2743-2749. Koonin, E. V. (2009). The< i> Origin</i> at 150: is a new
evolutionary synthesis in sight?. Trends in genetics, 25(11), 473-475. Carroll, S. B.
(2008). Evo-devo and an expanding evolutionary synthesis: a genetic theory of
morphological evolution. Cell, 134(1), 25-36.