Garch-m • The process or return is dependent on the volatility r (t ) c a (t ) 2 t , c are constants a (t ) t (t ) 0 a 1 2 t 2 1 t 1 2 t 1 C is the “risk premium parameter”; c>0 indicates the return is positively related to its volatility. Spring 2004 K. Ensor, STAT 421 1 -0.2 0.2 S&P 500 0 200 400 600 800 Time Histogram ACF Series: x AR ( 21 ) Spectrum using yule-walker 0.0 S&P 500 Spring 2004 0.2 0.4 0 5 10 15 20 25 -24 spectrum -26 -28 -0.5 -1.0 -1.0 0 -0.2 0.0 ACF 0.0 -0.5 100 ACF 200 0.5 0.5 -22 300 1.0 1.0 PACF 0 5 10 Lag K. Ensor, STAT 421 15 Lag 20 25 0.0 0.1 0.2 0.3 0.4 0.5 frequency 2 Output from Splus m-garch fit garch(x~1+var.in.mean,~garch(1,1)) Estimated Coefficients: -------------------------------------------------------------Value Std.Error t value Pr(>|t|) 0.00548675 0.00226173 2.426 7.747e-003 ARCH-IN-MEAN 1.08783589 0.81822755 1.330 9.203e-002 A 0.00008764 0.00002507 3.496 2.494e-004 ARCH(1) 0.12268468 0.02047268 5.993 1.571e-009 GARCH(1) 0.84939373 0.01957565 43.390 0.000e+000 C -------------------------------------------------------------- Differs from Tsay’s fit slightly. Spring 2004 K. Ensor, STAT 421 3 Series and Conditional SD 0.20 Original Series 0.05 Conditional SD 0.4 Values 0.10 0.15 Square root Of volatility -0.2 0.0 0.2 S&P500 Index 0 Spring 2004 200 400 K. Ensor, STAT 421 600 800 4 Summary Graphs ACF of Observations ACF of Squared Observations ACF ACF 1.0 1.0 0.8 0.8 0.6 0.6 GARCH Standardized Residuals residuals 0.4 0.4 2 0.2 Standardized Residuals 0.2 0.0 0.0 0 5 10 15 20 25 30 0 5 10 15 Lags 20 25 30 Lags 0 -2 ACF of Std. Residuals -4 ACF 1.0 0 200 400 600 800 0.8 ACF of Squared Std. Residuals 0.6 ACF 1.0 0.4 QQ-Plot of Standardized Residuals 0.8 0.2 QQ-Plot 0.6 0.0 2 0 5 10 15 Lags 20 25 Standardized Residuals 0.4 30 0.2 0.0 0 5 10 15 20 25 0 -2 30 Lags 147 -4 173 742 Spring 2004 K. Ensor, STAT 421 -3 -2 -1 0 1 2 Quantiles of gaussian distribution 3 5 Hong Kong stock market index return (bottom graph) and estimated volatility. Series and Conditional SD 15 Conditional SD -10 -5 0 5 10 Values 2 4 6 8 Original Series 0 Spring 2004 100 200 K. Ensor, STAT 421 300 400 500 6 garchfit<-garch(HK~1+arma(1,0),~garch(1,1),cond.dist="t",dist.est=T) Estimated Coefficients: -------------------------------------------------------------Value Std.Error t value Pr(>|t|) AR(1) 0.0450 0.04578 0.983 0.163052 A 0.1688 0.08404 2.009 0.022568 ARCH(1) 0.1700 0.05835 2.913 0.001871 GARCH(1) 0.7732 0.06454 11.980 0.000000 -------------------------------------------------------------- Spring 2004 K. Ensor, STAT 421 7 HK - Garch fit +/- 2SD Series with 2 Conditional SD Superimposed garchfit Values 10 0 -10 0 Spring 2004 100 200 K. Ensor, STAT 421 300 400 500 8 ACF of Observations ACF of Squared Observations ACF ACF 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 -0.2 0 5 10 15 20 25 0ACF of Std. Residuals 5 Lags 10 15 20 25 Lags ACF 1.0 0.8 GARCH Standardized Residuals ACF of Squared Std. Residuals ACF 0.6 1.0 residuals 0.4 0.8 2 0.2 0.6 0.0 0.4 QQ-Plot 0 6 0.2 0 5 10 15 20 25 4 Lags 0.0 -2 0 5 10 15 Lags -4 Standardized Residuals Standardized Residuals QQ-Plot of Standardized Residuals 2 20 0 25 -2 2 3 -4 -6 -6 1 -5 0 100 Spring 2004 200 300 400 500 K. Ensor, STAT 421 0 5 Quantiles of t distribution 9 garchfit<-garch(HK~1+arma(1,0),~garch(1,1),cond.dist="gaussian",dist.est=T) -------------------------------------------------------------- Estimated Coefficients: -------------------------------------------------------------Value Std.Error t value Pr(>|t|) AR(1) 0.1199 0.05709 2.100 1.811e-002 A 0.1424 0.04834 2.946 1.687e-003 ARCH(1) 0.1782 0.03693 4.827 9.287e-007 GARCH(1) 0.7592 0.04913 15.452 0.000e+000 -------------------------------------------------------------- Spring 2004 K. Ensor, STAT 421 10 Series and Conditional SD 15 Conditional SD -10 -5 0 5 10 Values 2 4 6 8 10 Original Series 0 Spring 2004 100 200 300 K. Ensor, STAT 421 400 500 11 Series with 2 Conditional SD Superimposed garchfit 20 Values 10 0 -10 -20 0 Spring 2004 100 200 300 K. Ensor, STAT 421 400 500 12 GARCH Standardized Residuals residuals 0 -2 -4 QQ-Plot of Standardized Residuals -6 QQ-Plot 0 100 200 300 400 500 2 Standardized Residuals Standardized Residuals 2 0 -2 471 434 -4 -6 Spring 2004 K. Ensor, STAT 421 51 -3 -2 -1 0 1 Quantiles of gaussian distribution 2 3 13 Japanese stock market index and volatility based on Gaussian GARCH(1,1) model Series and Conditional SD 15 Conditional SD -10 -5 0 5 10 Values 2 4 6 8 Original Series 0 Spring 2004 100 200 300 K. Ensor, STAT 421 400 500 14 garchfit<-garch(JI~- 1,~garch(1,1),cond.dist="gaussian",dist.est= T) -------------------------------------------------------------- Estimated Coefficients: -------------------------------------------------------------Value Std.Error t value Pr(>|t|) A 0.1352 0.04517 2.993 1.452e-003 ARCH(1) 0.1713 0.03409 5.024 3.552e-007 GARCH(1) 0.7708 0.04609 16.722 0.000e+000 -------------------------------------------------------------- Spring 2004 K. Ensor, STAT 421 15 JI Series with 2 Conditional SD Superimposed garchfit 20 Values 10 0 -10 -20 0 Spring 2004 100 200 300 K. Ensor, STAT 421 400 500 16 ACF of Observations ACF of Squared Observations ACF ACF 1.0 1.0 0.8 0.8 JI 0.6 0.6 0.4 0.4 0.2 0.2 ACF of Std. Residuals 0.0 0.0 ACF -0.2 1.0 0 5 10 15 20 0 25 5 Lags 10 15 0.8 20 25 Lags 0.6 ACF of Squared Std. Residuals GARCH Standardized Residuals 0.4 ACF residuals 1.0 0.2 2 0.8 0.6 0 0 5 10 15 Lags0.4 20 QQ-Plot of Standardized Residuals 25 QQ-Plot -2 0.2 -4 2 0.0 0 -6 5 10 15 Lags 0 100 200 300 400 500 Standardized Residuals Standardized Residuals 0.0 0 20-2 471 434 -4 -6 Spring 2004 K. Ensor, STAT 421 25 51 -3 -2 -1 0 1 2 Quantiles of gaussian distribution 17 3 Let’s trying looking at the multivariate GARCH. Original Observations -4 15 Series 1 -10 -5 0 5 10 Values -2 0 2 4 6 8 Series 2 0 Spring 2004 100 200 300 K. Ensor, STAT 421 400 500 18 Series 1: Hong Kong Stock Index Series 2: Japanese Stock Index ACF of Observations Series 1 and Series 2 -0.2 -0.1 0.0 0.0 0.2 0.1 ACF 0.4 0.6 0.2 0.8 0.3 1.0 Series 1 0 5 10 15 20 25 0 5 10 20 25 20 25 Series 2 -0.1 0.0 0.0 0.2 0.4 ACF 0.1 0.6 0.2 0.8 0.3 1.0 Series 2 and Series 1 15 -25 Spring 2004 -20 -15 Lag -10 -5 0 0 5 10 K. Ensor, STAT 421 Lag 15 19 Series 1: Hong Kong Stock Index Squared Series 2: Japanese Stock Index Squared Multivariate Series : X Series 1 and Series 2 0.0 -0.05 0.2 0.0 ACF 0.4 0.05 0.6 0.10 0.8 0.15 1.0 Series 1 0 5 10 15 20 0 5 15 20 15 20 Series 2 0.0 0.0 0.2 0.2 0.4 ACF 0.6 0.4 0.8 0.6 1.0 Series 2 and Series 1 10 -20 Spring 2004 -15 Lag -10 -5 0 0 5 K. Ensor, STAT 421 10 Lag 20 -------------------------------------------------------------mgarchfit=mgarch(X~- 1+arma(1,0),~garch(1, 1)) Estimated Coefficients: -------------------------------------------------------------Value Std.Error t value Pr(>|t|) AR(1; 1, 1) 0.124329 0.058850 2.1126 1.757e-002 AR(1; 2, 2) 0.017088 0.047872 0.3569 3.606e-001 A(1, 1) 0.144756 0.050129 2.8877 2.027e-003 A(2, 2) 0.003265 0.006921 0.4718 3.187e-001 ARCH(1; 1, 1) 0.186976 0.039732 4.7059 1.649e-006 ARCH(1; 2, 2) 0.069114 0.016141 4.2818 1.117e-005 GARCH(1; 1, 1) 0.755876 0.050284 15.0320 0.000e+000 GARCH(1; 2, 2) 0.937297 0.017199 54.4981 0.000e+000 -------------------------------------------------------------Page 367 of text Spring 2004 K. Ensor, STAT 421 21 MGARCH Residuals -4 15 Series 1 -10 -5 0 5 10 Residuals -2 0 2 4 6 8 Series 2 0 Spring 2004 100 200 300 K. Ensor, STAT 421 400 500 22 MGARCH Volatility 1.0 10 0.6 Series 1 2 4 6 8 Conditional SD 1.4 1.8 Series 2 0 Spring 2004 100 200 300 K. Ensor, STAT 421 400 500 23 ACF of Standardized Residuals ACF of Squared Std. Residuals Series 1 Series 1 and Series 2 0.20 0.10 0.15 0.8 0.0 0.05 ACF 0.4 -0.05 0.2 -0.1 -0.10 0.0 0.0 0.0 0.2 ACF 0.4 0.1 0.6 0.6 0.2 0.8 1.0 Series 1 and Series 2 1.0 Series 1 0 5 10 15 20 25 0 5 10 20 25 0 5 10 20 25 5 10 Series 2 and Series 1 15 20 25 20 25 Series 2 0.8 0.05 0.8 0.4 0.2 -0.1 0.0 0.0 -0.05 0.2 0.4 ACF 0.0 0.6 0.6 0.2 ACF 0.1 0.0 0 1.0 Series 2 15 1.0 Series 2 and Series 1 15 -25 -20 -15 Lag -10 -5 0 0 5 10 Lag 15 20 25 -25 -20 -15 Lag -10 -5 0 0 5 10 Lag 15 Standardized Residuals 4 Series 2 2 QQ-Plot of Standardized Residuals -3 -2 -1 Series 1 Standardized Residuals 0 -2 2 0 1 2 3 491 352 2 0 -2 37 471 434 -2 -4 -6 51 -4 -3 -2 -1 0 1 2 3 Quantiles of gaussian distribution -6 Standardized Residuals Series 1 0 Series 2 4 0 100 Spring 2004 200 300 400 500 K. Ensor, STAT 421 24
© Copyright 2026 Paperzz