Grima MAT 151
Final exam review
Answers are located at the end of this review, not in a
separate document.
#1-2: find an equation for the line with the given properties. Express your answer in slope
intercept form.
2
1) Slope = 3; containing the point (6,5)
2) Passing through the points (3,1) and (4,5)
#3-4: Find the x and y-intercepts.
3) π¦ =
π₯ 2 β5π₯β6
π₯+1
4) x2 + y2 = 121
#5-8: find the domain and range.
5)
6)
7)
8)
Final exam review
#9-11: Use algebra to find the domain of each function. Write your answer in interval notation
π₯β4
9) π(π₯) = π₯ 2 +6π₯β7
10) π(π₯) = βπ₯ + 5
11) f(x) = 2x β 6
#12: Find the following:
a) the interval(s) where the function graphed is increasing
b) the interval(s) where the function graphed is decreasing
c) The values of x (if any) where the function has a local maximum
d) The local maximum value (if any)
e) The values of x (if any) where the function has a local minimum
f) The local minimum values (if any)
13) Find the average rate of change of f(x) = x3 + 6x2 from 0 to 2
14) Let π(π₯) = π₯ 2
a) Find f(x+2) - 4
b) Describe how the graph of the given function relates to the graph of π(π₯) = π₯ 2
15) Let π(π₯) = βπ₯
a) Find -g(x-3) - 5
b) Describe how the graph of the given function relates to the graph of π(π₯) = βπ₯
16) Let β(π₯) = |π₯|
a) Find h(x-3) + 4
b) Describe how the graph of the given function relates to the graph of β(π₯) = |π₯|
17) f(x) = x2
a) Find f(x-3) + 4 and describe the transformation as compared to the function f(x) = x2.
b) make a table of values and sketch a graph
c) state the domain and range of the function
d) state the intervals where the function in increasing and decreasing
e) state if the function has a local maximum, if it does state the local maximum value
f) state if the function has a local minimum, if it does state the local minimum value
18a) Use synthetic division to factor the polynomial, f(x) = x3 + x2 + 2x + 2
18b) Solve x3 + x2 + 2x + 2= 0
#19 β 20: For each problem find the following:
a) Domain
b) Vertical Asymptote (if any)
c) Horizontal asymptote, or slant asymptote
d) x- intercept(s) if any
e) y-intercept(s) if any
f) Sketch a graph of the function : label all the features found in parts b - e
19. f ( x ) ο½
2x ο« 6
xο3
20. f ( x) ο½
x ο1
x ο« 4 x ο 21
2
#21-22: Write each side with the same base then solve. Be sure to check your answer.
1 π₯β2
21) 3x-3 = 27
22) (2)
1
=8
#23-26: Solve the logarithmic equations, round to 2 decimals when needed.
23) log2(x+1) = 5
24) log4(x-5)=3
25) log2 (x+14) β log2 (x+6)= 1
26) log2 (x+2)+log2 (x+6) = 5
27) Solve using the substitution method
28) Solve using the elimination method.
4
1
xο« y ο½5
5
4
x ο½ y ο«1
2 x ο« 3 y ο½ 13
5 x ο 4 y ο½ 21
29) Solve each system of equations, by hand without matrices
2π₯ + 4π¦ β 5π§ = β5
βπ₯ + π¦ + 2π§ = 7
π₯ β 3π¦ + 3π§ = 4
(pair the middle equation with the other 2 and drop out the xβs)
#30-31: Solve the following systems of equations.
30)
x ο 7 y ο½ ο4
x 2 ο« y 2 ο½ 10
31)
x ο« 2 y ο½ 11
x 2 ο« y ο½ 13
32) Find the difference quotient for the function f(x) = x2 +3x - 5:
π(π₯ + β) β π(π₯)
β
Answers:
2
1) π¦ = 3 π₯+1
2) y = 4x β 11
3) x-intercepts (-1,0) and (6,0) y-intercept (0,-6)
4) x-intercepts (11,0) and (-11,0) y-intercepts (0,11) and (0, -11)
5) domain {3,4,5,7} Range {-1,2,6}
7) ππππππ (ββ, 0] πππππ (ββ, 2]
6) Domain [0,5] range [-5,4]
8) ππππππ (ββ, β) πππππ (ββ, β)
9) domain (ββ, β7) βͺ (β7,1) βͺ (1, β)
10) ππππππ [β5, β)
11) ππππππ (ββ, β)
12a) (ββ, β3) βͺ (β1, β)
12b) (-3,-1)
12e) x = -1
13) average rate of change = 16
12f) y = -12
12c) x = -3
12d) y = -8
14a) f(x+2) β 4 = (x + 2)2 - 4
14b) Same shape as f(x) = x2, except moved down 4 units and left 2 units
15a) -g(x-3) β 5 = ββπ₯ β 3 β 5
15b) Same shape as g(x) = βπ₯, except moved down 5 units, right 3 units and reflected over x-axis
16a) h(x-3) + 4 = |π₯ β 3| + 4
16b) Same shape as h(x) = |π₯|, except shifted up 4 units and right 3 units
17a) f(x-3) + 4 = (x-3)2 + 4
The graph has the same shape as f(x) = x2, except it is shifted right 3 units and up 4 units.
17b)
x
5
4
3
2
1
f(x) or y
8
5
4
5
8
Computation, use calculator to get y - column
(5-3)2 + 4
(4-3)2 + 4
(3-3)2 + 4
(2-3)2 + 4
(1-3)2 + 4
17c) Domain (ββ, β) Range [4, β) (see me for help if you need some finding the domain and range)
17d) The graph is increasing (3, β) and decreasing from (ββ, 3)
17e) The graph does not have a high point so it has no local maximum
17f) The low point is the local minimum. We say there is a local minimum at x = 3 and the local
minimum value is y = 4
18a)
f(x) = (x+1)(x2 + 2)
18b) x = -1, ±πβ2
19a) all real numbers except 3
19d) (-3,0)
19b) x = 3
19c) y = 2
19e) (0, -2)
19f)
y
8
6
4
2
x
-18
-16
-14
-12
-10
-8
-6
-4
-2
2
(-3,0)
4
6
8
10
12
14
16
18
-2
(0,-2)
-4
-6
-8
20a) all real numbers except -7,3
20b) x = -7 and x = 3
20c) y = 0 (the x-axis) 11d) (1,0)
20e) (0, 1/21)
20f)
y
4
3
2
1
x
-14 -13 -12 -11 -10
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
-1
-2
-3
-4
21) x = 6
22) x = 5
23) x = 31
24) x = 69
25) x = 2
26) x = 2
27) (5,4)
28) (5,1)
29) (1,2,3)
30) (-79/25, 3/25) and (3,1)
32) 2x + h + 3
31) (-5/2, 27/4) and (3,4)
© Copyright 2026 Paperzz