Vegard’s law deviation in band gap and bowing parameter of ternary AlxGa1-xN compound semiconductors Speaker : Sheng-Horng Yen Bo-Ting Liou, and Yen-Kuang Kuo 2003/3/10 顏勝宏 2003/3/10 1 Simulation items Vegard’s law deviation of wurtzite AlxGa1-xN Bowing parameters of linear and nonlinear Influence of Vegard’s law or not in bowing parameter 顏勝宏 2003/3/10 2 What is Vegard’s law a(x)=3.084x + 3.162(1-x) AlxGa1-x N Al(x) a(x) 0 3.162 0.25 3.1425 0.5 3.123 0.75 3.1035 1 3.084 a(x)=3.084x + 3.162(1-x)-δx(1-x) δis deviation of Vegard’s law 顏勝宏 2003/3/10 3 What is bowing parameter Eg(x) = x · Eg,AlN + (1-x) ·Eg,GaN - b · x · (1-x) 顏勝宏 2003/3/10 4 Wurtzite AlxGa1-xN 六方晶系的wurtzite結構 顏勝宏 2003/3/10 5 Parameter Introduction Lattice Constance AlN:a(x) = 3.084 Å c(x) = 4.948 Å GaN:a(x) = 3.162 Å c(x) = 5.142 Å Energy Band-Gap AlN: 6.457 eV GaN: 3.420 eV 顏勝宏 2003/3/10 6 Numerical simulation tool CASTEP () 顏勝宏 2003/3/10 7 Convergence test Cutoff energy(eV),AlN 150 200 250 300 350 400 450 Width of top valence band at Γ point (eV) 8.745 7.563 7.484 7.133 6.821 6.834 6.839 Cutoff energy(eV),GaN 350 400 450 500 550 600 650 Width of top valence band at Γ point (eV) 7.996 7.682 7.382 7.424 7.349 7.335 7.324 顏勝宏 2003/3/10 8 Comparison the lattice constants obtained by this work and other present (1) AlN a (Å) c (Å) This work 3.076 4.935 PWPP16) 3.129 4.988 FPLMTO24) 3.073 4.904 MBPP18) 3.144 5.046 PWPP20) 3.084 4.948 NLCC21) 3.082 NLCC23) 3.10 5.01 EXPT. 25) 3.110 4.980 顏勝宏 2003/3/10 9 Comparison the lattice constants obtained by this work and other present (2) GaN This work 3.183 5.178 PWPP17) 3.126 5.119 MBPP18) 3.146 5.125 PWPP19) 3.162 5.142 NLCC22) 3.143 NLCC23) 3.20 5.22 EXPT. 25) 3.19 5.189 顏勝宏 2003/3/10 10 Lattice constants of AlxGa1-xN. Material a (Å) c (Å) GaN 3.183 5.178 Al0.125Ga0.875N 3.170 5.165 Al0.25Ga0.75N 3.169 5.151 Al0375Ga0.625N 3.151 5.112 Al0.50Ga0.50N 3.142 5.075 Al0.625Ga0.375N 3.125 5.055 Al0.75Ga0.25N 3.113 5.027 Al0.875Ga0.125N 3.087 4.975 AlN 3.076 4.935 顏勝宏 2003/3/10 11 Comparison Valence and Band-Gap of linear and nonlinear Material Width of top valence band at Γ point(eV) Band-gap energy(eV) Linear Nonlinear Linear Nonlinear GaN 7.479 7.335 3.420 3.420 Al0.125Ga0.875N 7.405 7.274 3.783 3.746 Al0.25Ga0.75N 7.322 7.145 4.135 4.017 Al0375Ga0.625N 7.204 7.087 4.540 4.447 Al0.50Ga0.50N 7.095 6.971 4.868 4.717 Al0.625Ga0.375N 7.012 6.927 5.244 5.144 Al0.75Ga0.25N 6.901 6.828 5.627 5.530 Al0.875Ga0.125N 6.792 6.814 6.036 6.031 AlN 6.643 6.685 6.457 6.457 顏勝宏 2003/3/10 12 Lattice Constant (Angstrom) Nonlinear lattice constance a(x) 3.20 3.18 3.16 3.14 3.12 3.10 3.08 3.06 0.0 0.2 0.4 0.6 0.8 1.0 Aluminum Composition x 顏勝宏 2003/3/10 13 Lattice Constant (Angstrom) Nonlinear lattice constance c(x) 5.20 5.15 5.10 5.05 5.00 4.95 4.90 0.0 0.2 0.4 0.6 0.8 1.0 Aluminum Composition x 顏勝宏 2003/3/10 14 Conclusion (1) δis -0.042±0.007 Å for a lattice constant δis -0.123±0.013 Å for c lattice constant 顏勝宏 2003/3/10 15 Energy Band-Gap (eV) Energy Band-Gap of linear and nonlinear 6.5 Nonlinear Linear 6.0 5.5 5.0 4.5 4.0 3.5 3.0 0.0 0.2 0.4 0.6 0.8 1.0 Aluminum Composition x 顏勝宏 2003/3/10 16 Energy Band-Gap (eV) Indirect Energy Band-Gap of linear and nonlinear 7.5 Nonlinear Linear 7.0 6.5 6.0 5.5 5.0 0.0 0.2 0.4 0.6 0.8 1.0 Aluminum Composition x 顏勝宏 2003/3/10 17 Conclusion (2) linear nonlinear direct indirect 顏勝宏 2003/3/10 18 顏勝宏 2003/3/10 19
© Copyright 2025 Paperzz