(pdf) technique, bivariate

Transformations
Dear students,
Since we have covered the mgf technique extensively already, here we only review the cdf
and the pdf techniques, first for univariate (one-to-one and more-to-one) and then for
bivariate (one-to-one and more-to-one) transformations.
1. The cumulative distribution function (cdf) technique
Suppose Y is a continuous random variable with cumulative distribution function (cdf)
๐น๐‘Œ (๐‘ฆ) โ‰ก ๐‘ƒ(๐‘Œ โ‰ค ๐‘ฆ). Let ๐‘ˆ = ๐‘”(๐‘Œ) be a function of Y, and our goal is to find the distribution
of U. The cdf technique is especially convenient when the cdf ๐น๐‘Œ (๐‘ฆ) has closed form
analytical expression. This method can be used for both univariate and bivariate
transformations.
Steps of the cdf technique:
1. Identify the domain of Y and U.
2. Write๐น๐‘ˆ (๐‘ข) = ๐‘ƒ(๐‘ˆ โ‰ค ๐‘ข), the cdf of U, in terms of ๐น๐‘Œ (๐‘ฆ), the cdf of Y .
3. Differentiate ๐น๐‘ˆ (๐‘ข) to obtain the pdf of U, ๐‘“๐‘ˆ (๐‘ข).
Example 1. Suppose that ๐‘Œ ~ ๐‘ˆ(0,1). Find the distribution of ๐‘ˆ = ๐‘”(๐‘Œ) = โˆ’ ln ๐‘Œ.
Solution. The cdf of ๐‘Œ ~ ๐‘ˆ(0,1) is given by
0,
๐‘ฆโ‰ค0
๐น๐‘Œ (๐‘ฆ) = {๐‘ฆ, 0 < ๐‘ฆ โ‰ค 1
1,
๐‘ฆโ‰ฅ1
The domain (*domain is the region where the pdf is non-zero) for ๐‘Œ ~ ๐‘ˆ(0,1) is ๐‘…๐‘Œ =
{๐‘ฆ: 0 < ๐‘ฆ < 1}; thus, because ๐‘ข = โˆ’ ln ๐‘ฆ > 0, it follows that the domain for U is ๐‘…๐‘ˆ =
{๐‘ข: ๐‘ข > 0}.
The cdf of U is:
๐น๐‘ˆ (๐‘ข) = ๐‘ƒ(๐‘ˆ โ‰ค ๐‘ข) = ๐‘ƒ(โˆ’ ln ๐‘Œ โ‰ค ๐‘ข)
= ๐‘ƒ(ln ๐‘Œ > โˆ’๐‘ข)
= ๐‘ƒ(๐‘Œ > ๐‘’ โˆ’๐‘ข ) = 1 โˆ’ ๐‘ƒ(๐‘Œ โ‰ค ๐‘’ โˆ’๐‘ข ) = 1 โˆ’ ๐น๐‘Œ (๐‘’ โˆ’๐‘ข )
Because ๐น๐‘Œ (๐‘ฆ) = ๐‘ฆ for 0 < y < 1; i.e., for u > 0, we have
๐น๐‘ˆ (๐‘ข) = 1 โˆ’ ๐น๐‘Œ (๐‘’ โˆ’๐‘ข ) = 1 โˆ’ ๐‘’ โˆ’๐‘ข
Taking derivatives, we get, for u > 0,
๐‘“๐‘ˆ (๐‘ข) =
๐‘‘
๐‘‘
(1 โˆ’ ๐‘’ โˆ’๐‘ข ) = ๐‘’ โˆ’๐‘ข
๐น๐‘ˆ (๐‘ข) =
๐‘‘๐‘ข
๐‘‘๐‘ข
1
Summarizing,
๐‘“๐‘ˆ (๐‘ข) = {
๐‘’ โˆ’๐‘ข ,
0,
๐‘ข>0
otherwise
1
This is an exponential pdf with mean ฮป = 1; that is, U ~ exponential(ฮป = 1). โ–ก
Example 2. Suppose that ๐‘Œ ~ ๐‘ˆ (โˆ’ ๐œ‹โ„2 , ๐œ‹โ„2) . Find the distribution of the random variable
defined by U = g(Y ) = tan(Y ).
Solution. The cdf of ๐‘Œ ~ ๐‘ˆ (โˆ’ ๐œ‹โ„2 , ๐œ‹โ„2) is given by
0,
๐‘ฆ + ๐œ‹โ„2
๐น๐‘Œ (๐‘ฆ) =
,
๐œ‹
{
1,
๐‘ฆ โ‰ค โˆ’ ๐œ‹โ„2
โˆ’ ๐œ‹โ„2 < ๐‘ฆ โ‰ค ๐œ‹โ„2
๐‘ฆ โ‰ฅ ๐œ‹โ„2
The domain for Y is ๐‘…๐‘Œ = {๐‘ฆ: โˆ’ ๐œ‹โ„2 < ๐‘ฆ < ๐œ‹โ„2}. Sketching a graph of the tangent function
from โˆ’ ๐œ‹โ„2 to ๐œ‹โ„2, we see that โˆ’โˆž < ๐‘ข < โˆž .
Thus, ๐‘…๐‘ˆ = { ๐‘ข: โˆ’ โˆž < ๐‘ข < โˆž} โ‰ก ๐‘…, the set of all reals. The cdf of U is:
๐น๐‘ˆ (๐‘ข) = ๐‘ƒ(๐‘ˆ โ‰ค ๐‘ข) = ๐‘ƒ[tan(๐‘Œ) โ‰ค ๐‘ข]
= ๐‘ƒ[๐‘Œ โ‰ค tanโˆ’1(๐‘ข)] = ๐น๐‘Œ [tanโˆ’1(๐‘ข)]
Because ๐น๐‘Œ (๐‘ฆ) =
๐‘ฆ+๐œ‹โ„2
for โˆ’ ๐œ‹โ„2 < ๐‘ฆ < ๐œ‹โ„2 ; i. e. , for ๐‘ข โˆˆ โ„› , we have
tanโˆ’1(๐‘ข) + ๐œ‹โ„2
๐น๐‘ˆ (๐‘ข) = ๐น๐‘Œ [tanโˆ’1 (๐‘ข)] =
๐œ‹
The pdf of U, for ๐‘ข โˆˆ โ„›, is given by
๐‘‘
๐‘‘ tanโˆ’1(๐‘ข) + ๐œ‹โ„2
1
๐‘“๐‘ˆ (๐‘ข) =
๐น๐‘ˆ (๐‘ข) =
[
]=
.
๐‘‘๐‘ข
๐‘‘๐‘ข
๐œ‹
๐œ‹(1 + ๐‘ข2 )
Summarizing,
๐œ‹
1
, โˆ’โˆž<๐‘ข <โˆž
๐‘“๐‘ˆ (๐‘ข) = {๐œ‹(1 + ๐‘ข2 )
0,
otherwise.
A random variable with this pdf is said to have a (standard) Cauchy distribution. One
interesting fact about a Cauchy random variable is that none of its moments are finite. Thus,
if U has a Cauchy distribution, E(U), and all higher order moments, do not exist.
Exercise: If U is standard Cauchy, show that๐ธ(|๐‘ˆ|) = +โˆž. โ–ก
2. The probability density function (pdf) technique, univariate
Suppose that Y is a continuous random variable with cdf ๐น๐‘Œ (๐‘ฆ) and domain ๐‘…๐‘Œ , and let ๐‘ˆ =
๐‘”(๐‘Œ), where ๐‘”: ๐‘…๐‘Œ โ†’ โ„› is a continuous, one-to-one function defined over ๐‘…๐‘Œ . Examples of
such functions include continuous (strictly) increasing/decreasing functions. Recall from
2
calculus that if ๐‘” is one-to-one, it has an unique inverse ๐‘”โˆ’1 . Also recall that if ๐‘” is
increasing (decreasing), then so is ๐‘”โˆ’1 .
Derivation of the pdf technique formula using the cdf method:
Suppose that ๐‘”(๐‘ฆ) is a strictly increasing function of y defined over ๐‘…๐‘Œ . Then, it follows
that ๐‘ข = ๐‘”(๐‘ฆ) โ‡” ๐‘”โˆ’1 (๐‘ข) = ๐‘ฆ and
๐น๐‘ˆ (๐‘ข) = ๐‘ƒ(๐‘ˆ โ‰ค ๐‘ข) = ๐‘ƒ[๐‘”(๐‘Œ) โ‰ค ๐‘ข] = ๐‘ƒ[๐‘Œ โ‰ค ๐‘”โˆ’1 (๐‘ข)] = ๐น๐‘Œ [๐‘”โˆ’1 (๐‘ข)]
Differentiating ๐น๐‘ˆ (๐‘ข) with respect to u, we get
๐‘“๐‘ˆ (๐‘ข) =
๐‘‘
๐‘‘
๐‘‘ โˆ’1
๐น๐‘ˆ (๐‘ข) =
๐น๐‘Œ [๐‘”โˆ’1 (๐‘ข)] = ๐‘“๐‘Œ [๐‘”โˆ’1 (๐‘ข)]
๐‘” (๐‘ข) (by chain rule)
๐‘‘๐‘ข
๐‘‘๐‘ข
๐‘‘๐‘ข
๐‘‘
Now as ๐‘” is increasing, so is ๐‘”โˆ’1 ; thus, ๐‘‘๐‘ข ๐‘”โˆ’1 (๐‘ข) > 0. If ๐‘”(๐‘ฆ) is strictly decreasing, then
๐‘‘
๐น๐‘ˆ (๐‘ข) = 1 โˆ’ ๐น๐‘Œ [๐‘”โˆ’1 (๐‘ข)] and ๐‘‘๐‘ข ๐‘”โˆ’1 (๐‘ข) < 0, which gives
๐‘“๐‘ˆ (๐‘ข) =
๐‘‘
๐‘‘
๐‘‘ โˆ’1
๐น๐‘ˆ (๐‘ข) =
{1 โˆ’ ๐น๐‘Œ [๐‘”โˆ’1 (๐‘ข)]} = โˆ’๐‘“๐‘Œ [๐‘”โˆ’1 (๐‘ข)]
๐‘” (๐‘ข)
๐‘‘๐‘ข
๐‘‘๐‘ข
๐‘‘๐‘ข
Combining both cases, we have shown that the pdf of U, where nonzero, is given by
๐‘‘
๐‘“๐‘ˆ (๐‘ข) = ๐‘“๐‘Œ [๐‘”โˆ’1 (๐‘ข)] | ๐‘”โˆ’1 (๐‘ข) |.
๐‘‘๐‘ข
It is again important to keep track of the domain for U. If ๐‘…๐‘Œ denotes the domain of Y, then
๐‘…๐‘ˆ , the domain for U, is given by ๐‘…๐‘ˆ = {๐‘ข: ๐‘ข = ๐‘”(๐‘ฆ); ๐‘ฆ โˆˆ ๐‘…๐‘Œ }.
Steps of the pdf technique:
1. Verify that the transformation u = g(y) is continuous and one-to-one over ๐‘…๐‘Œ .
2. Find the domains of Y and U.
3. Find the inverse transformation ๐‘ฆ = ๐‘”โˆ’1 (๐‘ข) and its derivative (with respect to u).
4. Use the formula above for ๐‘“๐‘ˆ (๐‘ข).
Example 3. Suppose that Y ~ exponential(ฮฒ); i.e., the pdf of Y is
1 โˆ’๐‘ฆ/๐›ฝ
๐‘’
,
๐‘ฆ>0
๐‘“๐‘Œ (๐‘ฆ) = { ๐›ฝ
0,
otherwise.
Let ๐‘ˆ = ๐‘”(๐‘Œ) = โˆš๐‘Œ, . Use the method of transformations to find the pdf of U.
Solution. First, we note that the transformation ๐‘”(๐‘Œ) = โˆš๐‘Œ is a continuous strictly
increasing function of y over ๐‘…๐‘Œ = {๐‘ฆ: ๐‘ฆ > 0}, and, thus, ๐‘”(๐‘Œ) is one-to-one. Next, we need
to find the domain of U. This is easy since y > 0 implies ๐‘ข = โˆš๐‘ฆ > 0 as well.
3
Thus, ๐‘…๐‘ˆ = {๐‘ข: ๐‘ข > 0}. Now, we find the inverse transformation:
๐‘”(๐‘ฆ) = ๐‘ข = โˆš๐‘ฆ โ‡” ๐‘ฆ = ๐‘”โˆ’1 (๐‘ข) = ๐‘ข2 (by inverse transformation)
and its derivative:
๐‘‘ โˆ’1
๐‘‘
(๐‘ข2 ) = 2๐‘ข.
๐‘” (๐‘ข) =
๐‘‘๐‘ข
๐‘‘๐‘ข
Thus, for u > 0,
๐‘“๐‘ˆ (๐‘ข) = ๐‘“๐‘Œ [๐‘”โˆ’1 (๐‘ข)] |
2
๐‘‘ โˆ’1
๐‘” (๐‘ข) |
๐‘‘๐‘ข
2
1 โˆ’๐‘ข
2๐‘ข โˆ’๐‘ข๐›ฝ
= ๐‘’ ๐›ฝ × |2๐‘ข| =
๐‘’ .
๐›ฝ
๐›ฝ
Summarizing,
2
2๐‘ข โˆ’๐‘ข๐›ฝ
๐‘ข>0
๐‘“๐‘ˆ (๐‘ข) = { ๐›ฝ ๐‘’ ,
0,
otherwise.
This is a Weibull distribution. The Weibull family of distributions is common in life
science (survival analysis), engineering and actuarial science applications. โ–ก
Example 4. Suppose that Y ~ beta(ฮฑ = 6; ฮฒ = 2); i.e., the pdf of Y is given by
42๐‘ฆ 5 (1 โˆ’ ๐‘ฆ),
๐‘“๐‘Œ (๐‘ฆ) = {
0,
0<๐‘ฆ<1
otherwise.
What is the distribution of U = g(Y ) = 1 โˆ’Y ?
Solution. First, we note that the transformation g(y) = 1 โˆ’Y is a continuous decreasing
function of y over ๐‘…๐‘Œ = {๐‘ฆ: 0 < ๐‘ฆ < 1}, and, thus, g(y) is one-to-one. Next, we need
to find the domain of U. This is easy since 0 < y < 1 clearly implies 0 < u < 1. Thus,
๐‘…๐‘ˆ = {๐‘ฆ: 0 < ๐‘ข < 1}. Now, we find the inverse transformation:
๐‘”(๐‘ฆ) = ๐‘ข = 1 โˆ’ ๐‘ฆ โ‡” ๐‘ฆ = ๐‘”โˆ’1 (๐‘ข) = 1 โˆ’ ๐‘ข (by inverse transformation)
and its derivative:
๐‘‘ โˆ’1
๐‘‘
(1 โˆ’ ๐‘ข) = โˆ’1.
๐‘” (๐‘ข) =
๐‘‘๐‘ข
๐‘‘๐‘ข
Thus, for 0 < u < 1,
4
๐‘“๐‘ˆ (๐‘ข) = ๐‘“๐‘Œ [๐‘”โˆ’1 (๐‘ข)] |
๐‘‘ โˆ’1
๐‘” (๐‘ข) |
๐‘‘๐‘ข
= 42(1 โˆ’ ๐‘ข)5 [1 โˆ’ (1 โˆ’ ๐‘ข)] × |โˆ’1| = 42๐‘ข(1 โˆ’ ๐‘ข)5 .
Summarizing,
๐‘“๐‘ˆ (๐‘ข) = {
42๐‘ข(1 โˆ’ ๐‘ข)5 ,
0,
0<๐‘ข<1
otherwise.
We recognize this is a beta distribution with parameters ฮฑ = 2 and ฮฒ = 6. โ–ก
More-to-one transformation: What happens if u = g(y) is not a one-to-one transformation?
In this case, we can still use the method of transformations, but we have โ€œbreak up" the
transformation ๐‘”: ๐‘…๐‘Œ โ†’ ๐‘…๐‘ˆ into disjoint regions where g is one-to-one.
RESULT: Suppose that Y is a continuous random variable with pdf๐‘“๐‘Œ (๐‘ฆ) and that U = g(Y ),
not necessarily a one-to-one (but continuous) function of y over RY . However, suppose that
we can partition ๐‘…๐‘Œ into a finite collection of sets, say, A0, A1, A2, โ€ฆ , Ak, where ๐‘ƒ(๐‘Œ โˆˆ ๐ด0 ) =
0, ๐‘Ž๐‘›๐‘‘ ๐‘ƒ(๐‘Œ โˆˆ ๐ด๐‘– ) > 0 for all i โ‰  0, and ๐‘“๐‘Œ (๐‘ฆ) is continuous on each Ai , i โ‰  0. Furthermore,
suppose that the transformation is 1-to-1 from Ai (i = 1, 2, โ€ฆ, k,) to B, where B is the domain
of U = g(Y ) such that ๐‘”๐‘–โˆ’1 (โˆ™) is a 1-to-1 inverse mapping of Y to U = g(Y ) from B to Ai.
Then, the pdf of U is given by
๐‘˜
๐‘‘
[๐‘”๐‘– โˆ’1 (๐‘ข)] | ๐‘”๐‘– โˆ’1 (๐‘ข) | ,
โˆ‘
๐‘“
๐‘Œ
๐‘“๐‘ˆ (๐‘ข) = {
๐‘‘๐‘ข
๐‘ข โˆˆ ๐‘…๐‘ˆ
๐‘–=1
0,
otherwise.
๐‘‘
That is, writing the pdf of U can be done by adding up the terms ๐‘“๐‘Œ [๐‘”๐‘– โˆ’1 (๐‘ข)] |๐‘‘๐‘ข ๐‘”๐‘– โˆ’1 (๐‘ข) |
corresponding to each disjoint set Ai, i = 1, 2,โ€ฆ,k.
Example 5. Suppose that Y ~ N(0, 1); that is, Y has a standard normal distribution; i.e.,
1
๐‘“๐‘Œ (๐‘ฆ) = {โˆš2๐œ‹
0,
๐‘’ โˆ’๐‘ฆ
2 /2
, โˆ’โˆž < ๐‘ฆ < โˆž
otherwise.
Consider the transformation: ๐‘ˆ = ๐‘”(๐‘Œ) = ๐‘Œ 2 .
Solution 1 (the pdf technique):
This transformation is not one-to-one on ๐‘…๐‘Œ = โ„› = {๐‘ฆ: โˆ’โˆž < ๐‘ฆ < โˆž} , but it is one-to-one
on A1 = (โˆ’โˆž, 0) and A2 = (0, โˆž) (separately) since ๐‘”(๐‘ฆ) = ๐‘ฆ 2 is decreasing on A1 and
5
increasing on A2, and A0 = {0} where ๐‘ƒ(๐‘Œ โˆˆ ๐ด0 ) = ๐‘ƒ(๐‘Œ = 0) = 0. Furthermore, note that A0,
A1 and A2 partitions ๐‘…๐‘Œ . Summarizing,
Partition
A1 = (โˆ’โˆž, 0)
A2 = (0, โˆž)
Transformation
๐‘”(๐‘ฆ) = ๐‘ฆ 2 = ๐‘ข
๐‘”(๐‘ฆ) = ๐‘ฆ 2 = ๐‘ข
Inverse transformation
๐‘”1 โˆ’1 (๐‘ข) = โˆ’โˆš๐‘ข = ๐‘ฆ
๐‘”2 โˆ’1 (๐‘ข) = โˆš๐‘ข = ๐‘ฆ
And, on both sets A1 and A2,
๐‘‘
1
| ๐‘”๐‘– โˆ’1 (๐‘ข) | =
.
๐‘‘๐‘ข
2 โˆš๐‘ข
Clearly, ๐‘ข = ๐‘ฆ 2 > 0; thus, ๐‘…๐‘ˆ = {๐‘ข: ๐‘ข > 0}, and the pdf of U is given by
2
2
1 โˆ’(โˆ’โˆš๐‘ข)
1
1 โˆ’(โˆš๐‘ข)
1
2
(
)+
๐‘’ 2 (
), ๐‘ข > 0
๐‘“๐‘ˆ (๐‘ข) = { โˆš2๐œ‹ ๐‘’
2โˆš๐‘ข
2 โˆš๐‘ข
โˆš2๐œ‹
0,
otherwise.
1
Thus, for u > 0, and recalling that ฮ“ (2) = โˆš๐œ‹, ๐‘“(๐‘ข) collapses to
2 โˆ’๐‘ข 1
๐‘“๐‘ˆ (๐‘ข) =
๐‘’ 2(
)
2 โˆš๐‘ข
โˆš2๐œ‹
1
๐‘ข
1 1โˆ’1 โˆ’๐‘ข
1
โˆ’1 โˆ’
2 ๐‘’ 2.
=
๐‘ข2 ๐‘’ 2 =
๐‘ข
1 1
โˆš2๐œ‹
ฮ“ (2) 22
Summarizing, the pdf of U is
1
๐‘ข
1
โˆ’1 โˆ’
2 ๐‘’ 2, ๐‘ข > 0
๐‘ข
1
๐‘“๐‘ˆ (๐‘ข) = { ฮ“ (1) 22
2
0,
otherwise.
That is, U ~ gamma(1/2, 2). Recall that the gamma(1/2, 2) distribution is the same as a ๐œ’ 2
distribution with 1 degree of freedom; that is, ๐‘ˆ ~ ๐œ’ 2 (1). โ–ก
Solution 2 (the cdf technique):
๐น๐‘ˆ (๐‘ข) = ๐‘ƒ(๐‘ˆ โ‰ค ๐‘ข) = ๐‘ƒ(๐‘Œ 2 โ‰ค ๐‘ข) = 1 โˆ’ ๐‘ƒ(๐‘Œ 2 > ๐‘ข)
= 1 โˆ’ ๐‘ƒ(๐‘Œ > โˆš๐‘ข ๐‘œ๐‘Ÿ ๐‘Œ < โˆ’โˆš๐‘ข) = 1 โˆ’ ๐‘ƒ(๐‘Œ > โˆš๐‘ข ) โˆ’ ๐‘ƒ( ๐‘Œ < โˆ’โˆš๐‘ข)
= ๐‘ƒ(๐‘Œ โ‰ค โˆš๐‘ข ) โˆ’ ๐‘ƒ( ๐‘Œ โ‰ค โˆ’โˆš๐‘ข) = ๐น๐‘Œ (โˆš๐‘ข) โˆ’ ๐น๐‘Œ (โˆ’โˆš๐‘ข)
Taking derivative with respect to ๐‘ข at both sides, we have:
๐‘“๐‘ˆ (๐‘ข) = ๐‘“๐‘Œ (โˆš๐‘ข)
๐‘‘ โˆš๐‘ข
๐‘‘ โˆš๐‘ข
+ ๐‘“๐‘Œ (โˆ’โˆš๐‘ข)
๐‘‘๐‘ข
๐‘‘๐‘ข
6
=
1
โˆš2๐œ‹
=
๐‘’
โˆ’
(โˆ’โˆš๐‘ข)
2
1
โˆš2๐œ‹
1
2
1
1
(
)+
๐‘’
2 โˆš๐‘ข
โˆš2๐œ‹
๐‘ข
๐‘ข2โˆ’1 ๐‘’ โˆ’ 2 =
โˆ’
(โˆš๐‘ข)
2
2
(
1
2โˆš๐‘ข
)
1
๐‘ข
1
โˆ’1 โˆ’
2 ๐‘’ 2, ๐‘ข > 0
๐‘ข
1 1
ฮ“ (2) 22
That is, U ~ gamma(1/2, 2). Recall that the gamma(1/2, 2) distribution is the same as a ๐œ’ 2
distribution with 1 degree of freedom; that is, ๐‘ˆ ~ ๐œ’ 2 (1). โ–ก
3. The probability density function (pdf) technique, bivariate
Here we discuss transformations involving two random variable ๐‘Œ1 , ๐‘Œ2 . The bivariate
transformation is
๐‘ˆ1 = ๐‘”1 (๐‘Œ1 , ๐‘Œ2 )
๐‘ˆ2 = ๐‘”2 (๐‘Œ1 , ๐‘Œ2 )
Assuming that ๐‘Œ1 and ๐‘Œ2 are jointly continuous random variables, we will discuss the oneto-one transformation first. Starting with the joint distribution of ๐’€ = (๐‘Œ1 , ๐‘Œ2 ), our goal is to
derive the joint distribution of ๐‘ผ = (๐‘ˆ1 , ๐‘ˆ2 ).
Suppose that ๐’€ = (๐‘Œ1 , ๐‘Œ2 ) is a continuous random vector with joint pdf๐‘“๐‘Œ1 ,๐‘Œ2 (๐‘ฆ1 , ๐‘ฆ2 ). Let
๐‘”: โ„› 2 โ†’ โ„› 2 be a continuous one-to-one vector-valued mapping from ๐‘…๐‘Œ1 ,๐‘Œ2 to ๐‘…๐‘ˆ1 ,๐‘ˆ2 , where
๐‘ˆ1 = ๐‘”1 (๐‘Œ1 , ๐‘Œ2 ) and ๐‘ˆ2 = ๐‘”2 (๐‘Œ1 , ๐‘Œ2 ), and where ๐‘…๐‘Œ1 ,๐‘Œ2 and ๐‘…๐‘ˆ1 ,๐‘ˆ2 denote the two-dimensional
domain of ๐’€ = (๐‘Œ1 , ๐‘Œ2 ) and ๐‘ผ = (๐‘ˆ1 , ๐‘ˆ2 ), respectively. If ๐‘”1 โˆ’1 (๐‘ข1 , ๐‘ข2 ) and ๐‘”2 โˆ’1 (๐‘ข1 , ๐‘ข2 ) have
continuous partial derivatives with respect to both ๐‘ข1 and ๐‘ข2 , and the Jacobian, J, where,
with โ€œdetโ€ denoting โ€œdeterminantโ€,
๐œ•๐‘”1 โˆ’1 (๐‘ข1 , ๐‘ข2 ) ๐œ•๐‘”1 โˆ’1 (๐‘ข1 , ๐‘ข2 )
๐œ•๐‘ข1
๐œ•๐‘ข2
| โ‰  0,
๐ฝ = det ||
|
โˆ’1 (๐‘ข
โˆ’1 (๐‘ข
)
๐œ•๐‘”2
๐œ•๐‘”2
1 , ๐‘ข2
1 , ๐‘ข2 )
๐œ•๐‘ข1
๐œ•๐‘ข2
then
๐‘“ [๐‘” โˆ’1 (๐‘ข1 , ๐‘ข2 ), ๐‘”2 โˆ’1 (๐‘ข1 , ๐‘ข2 )]|๐ฝ|, (๐‘ข1 , ๐‘ข2 ) โˆˆ ๐‘…๐‘ˆ1 ,๐‘ˆ2
๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ) = { ๐‘Œ1 ,๐‘Œ2 1
0,
otherwise,
where |J| denotes the absolute value of J.
RECALL: The determinant of a 2 × 2 matrix, e.g.,
๐‘Ž ๐‘
det |
| = ๐‘Ž๐‘‘ โˆ’ ๐‘๐‘.
๐‘ ๐‘‘
Steps of the pdf technique:
1. Find ๐‘“๐‘Œ1 ,๐‘Œ2 (๐‘ฆ1 , ๐‘ฆ2 ), the joint distribution of ๐‘Œ1 and ๐‘Œ2 . This may be given in the problem. If
Y1 and Y2 are independent, then ๐‘“๐‘Œ1 ,๐‘Œ2 (๐‘ฆ1 , ๐‘ฆ2 ) = ๐‘“๐‘Œ1 (๐‘ฆ1 )๐‘“๐‘Œ2 (๐‘ฆ2 ).
2. Find ๐‘…๐‘ˆ1 ,๐‘ˆ2 , the domain of ๐‘ผ = (๐‘ˆ1 , ๐‘ˆ2 ).
3. Find the inverse transformations ๐‘ฆ1 = ๐‘”1 โˆ’1 (๐‘ข1 , ๐‘ข2 ) and ๐‘ฆ2 = ๐‘”2 โˆ’1 (๐‘ข1 , ๐‘ข2 ).
7
4. Find the Jacobian, J, of the inverse transformation.
5. Use the formula above to find ๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ), the joint distribution of ๐‘ˆ1 and ๐‘ˆ2 .
NOTE: If desired, marginal distributions ๐‘“๐‘ˆ1 (๐‘ข1 ) and ๐‘“๐‘ˆ2 (๐‘ข2 ). can be found by integrating
the joint distribution ๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ).
Example 6. Suppose that ๐‘Œ1 ~ gamma(ฮฑ, 1), ๐‘Œ2 ~ gamma(ฮฒ, 1), and that๐‘Œ1 and ๐‘Œ2 are
independent. Define the transformation
๐‘ˆ1 = ๐‘”1 (๐‘Œ1 , ๐‘Œ2 ) = ๐‘Œ1 + ๐‘Œ2
๐‘Œ1
๐‘ˆ2 = ๐‘”2 (๐‘Œ1 , ๐‘Œ2 ) =
.
๐‘Œ1 + ๐‘Œ2
Find each of the following distributions:
(a) ๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ), the joint distribution of ๐‘ˆ1 and ๐‘ˆ2 ,
(b) ๐‘“๐‘ˆ1 (๐‘ข1 ), the marginal distribution of ๐‘ˆ1 , and
(c) ๐‘“๐‘ˆ2 (๐‘ข2 ), the marginal distribution of ๐‘ˆ2 .
Solutions. (a) Since ๐‘Œ1 and ๐‘Œ2 are independent, the joint distribution of ๐‘Œ1 and ๐‘Œ2 is
๐‘“๐‘Œ1 ,๐‘Œ2 (๐‘ฆ1 , ๐‘ฆ2 ) = ๐‘“๐‘Œ1 (๐‘ฆ1 )๐‘“๐‘Œ2 (๐‘ฆ2 )
1
1
๐›ฝโˆ’1
=
๐‘ฆ1๐›ผโˆ’1 ๐‘’ โˆ’๐‘ฆ1 ×
๐‘ฆ2 ๐‘’ โˆ’๐‘ฆ2
ฮ“(๐›ผ)
ฮ“(๐›ฝ)
1
๐›ฝโˆ’1
=
๐‘ฆ ๐›ผโˆ’1 ๐‘ฆ2 ๐‘’ โˆ’(๐‘ฆ1 +๐‘ฆ2 ) ,
ฮ“(๐›ผ)ฮ“(๐›ฝ) 1
for ๐‘ฆ1 > 0, ๐‘ฆ2 > 0, and 0, otherwise. Here, ๐‘…๐‘Œ1 ,๐‘Œ2 = {(๐‘ฆ1 , ๐‘ฆ2 ): ๐‘ฆ1 > 0, ๐‘ฆ2 > 0}. By inspection,
๐‘ฆ
we see that ๐‘ข1 = ๐‘ฆ1 + ๐‘ฆ2 > 0, and ๐‘ข2 = ๐‘ฆ +1๐‘ฆ must fall between 0 and 1.
1
2
Thus, the domain of ๐‘ผ = (๐‘ˆ1 , ๐‘ˆ2 ) is given by
๐‘…๐‘ˆ1 ,๐‘ˆ2 = {(๐‘ข1 , ๐‘ข2 ): ๐‘ข1 > 0, 0 < ๐‘ข2 < 1}.
The next step is to derive the inverse transformation. It follows that
๐‘ข1 = ๐‘ฆ1 + ๐‘ฆ2
๐‘ฆ1 = ๐‘”1 โˆ’1 (๐‘ข1 , ๐‘ข2 ) = ๐‘ข1 ๐‘ข2
๐‘ฆ1
โ‡’
โˆ’1
๐‘ข2 =
๐‘ฆ1 + ๐‘ฆ2 ๐‘ฆ2 = ๐‘”2 (๐‘ข1 , ๐‘ข2 ) = ๐‘ข1 โˆ’ ๐‘ข1 ๐‘ข2
The Jacobian is given by
๐œ•๐‘”1 โˆ’1 (๐‘ข1 , ๐‘ข2 ) ๐œ•๐‘”1 โˆ’1 (๐‘ข1 , ๐‘ข2 )
๐‘ข1
๐œ•๐‘ข1
๐œ•๐‘ข2
| = det | ๐‘ข2
๐ฝ = det ||
| = โˆ’๐‘ข1 ๐‘ข2 โˆ’ ๐‘ข1 (1 โˆ’ ๐‘ข2 ) = โˆ’๐‘ข1 .
|
โˆ’1 (๐‘ข
โˆ’1
1
โˆ’
๐‘ข
โˆ’๐‘ข
2
1
๐œ•๐‘”2
1 , ๐‘ข2 ) ๐œ•๐‘”2 (๐‘ข1 , ๐‘ข2 )
๐œ•๐‘ข1
๐œ•๐‘ข2
We now write the joint distribution for ๐‘ผ = (๐‘ˆ1 , ๐‘ˆ2 ). For ๐‘ข1 > 0 and 0 < ๐‘ข2 < 1, we have
that
๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ) = ๐‘“๐‘Œ1 ,๐‘Œ2 [๐‘”1 โˆ’1 (๐‘ข1 , ๐‘ข2 ), ๐‘”2 โˆ’1 (๐‘ข1 , ๐‘ข2 )]|๐ฝ|
1
=
(๐‘ข ๐‘ข )๐›ผโˆ’1 (๐‘ข1 โˆ’ ๐‘ข1 ๐‘ข2 )๐›ฝโˆ’1 ๐‘’ โˆ’[(๐‘ข1 ๐‘ข2 )+(๐‘ข1 โˆ’๐‘ข1 ๐‘ข2 )] × | โˆ’ ๐‘ข1 |
ฮ“(๐›ผ)ฮ“(๐›ฝ) 1 2
Note: We see that ๐‘ˆ1 and ๐‘ˆ2 are independent since the domain ๐‘…๐‘ˆ1 ,๐‘ˆ2 = {(๐‘ข1 , ๐‘ข2 ): ๐‘ข1 >
0, 0 < ๐‘ข2 < 1} does not constrain ๐‘ข1 by ๐‘ข2 or vice versa and since the nonzero part
of ๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ) can be factored into the two expressions โ„Ž1 (๐‘ข1 ) and โ„Ž2 (๐‘ข2 ), where
8
โ„Ž1 (๐‘ข1 ) = ๐‘ข1 ๐›ผ+๐›ฝโˆ’1 ๐‘’ โˆ’๐‘ข1
and
๐‘ข2 ๐›ผโˆ’1 (1 โˆ’ ๐‘ข2 )๐›ฝโˆ’1
.
ฮ“(๐›ผ)ฮ“(๐›ฝ)
(b) To obtain the marginal distribution of ๐‘ˆ1 , we integrate the joint pdf๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 )
over ๐‘ข2 . That is, for ๐‘ข1 > 0,
โ„Ž2 (๐‘ข2 ) =
1
๐‘“๐‘ˆ1 (๐‘ข1 ) = โˆซ
๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ) ๐‘‘๐‘ข2
๐‘ข2 =0
1
๐‘ข2 ๐›ผโˆ’1 (1 โˆ’ ๐‘ข2 )๐›ฝโˆ’1 ๐›ผ+๐›ฝโˆ’1 โˆ’๐‘ข
=โˆซ
๐‘ข1
๐‘’ 1 ๐‘‘๐‘ข2
ฮ“(๐›ผ)ฮ“(๐›ฝ)
๐‘ข2 =0
1
1
=
๐‘ข1 ๐›ผ+๐›ฝโˆ’1 ๐‘’ โˆ’๐‘ข1 โˆซ ๐‘ข2 ๐›ผโˆ’1 (1 โˆ’ ๐‘ข2 )๐›ฝโˆ’1 ๐‘‘๐‘ข2
ฮ“(๐›ผ)ฮ“(๐›ฝ)
๐‘ข2 =0
๐›ผโˆ’1
๐›ฝโˆ’1
(1โˆ’๐‘ข2 )
(๐‘ข2
is beta(๐›ผ,๐›ฝ) kernel)
1
ฮ“(๐›ผ)ฮ“(๐›ฝ)
โ‡”
๐‘ข1 ๐›ผ+๐›ฝโˆ’1 ๐‘’ โˆ’๐‘ข1 ×
ฮ“(๐›ผ)ฮ“(๐›ฝ)
ฮ“(๐›ผ + ๐›ฝ)
1
=
๐‘ข ๐›ผ+๐›ฝโˆ’1 ๐‘’ โˆ’๐‘ข1
ฮ“(๐›ผ + ๐›ฝ) 1
Summarizing,
1
๐‘ข ๐›ผ+๐›ฝโˆ’1 ๐‘’ โˆ’๐‘ข1 , ๐‘ข1 > 0
๐‘“๐‘ˆ1 (๐‘ข1 ) = {ฮ“(๐›ผ + ๐›ฝ) 1
0,
otherwise.
We recognize this as a gamma(๐›ผ + ๐›ฝ, 1) pdf; thus, marginally, ๐‘ˆ1 ~gamma(๐›ผ + ๐›ฝ, 1).
(c) To obtain the marginal distribution of ๐‘ˆ2 , we integrate the joint pdf ๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ) over
๐‘ข2 . That is, for 0 < ๐‘ข2 < 1,
โˆž
๐‘“๐‘ˆ2 (๐‘ข2 ) = โˆซ
๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ) ๐‘‘๐‘ข1
๐‘ข1 =0
โˆž
๐‘ข2 ๐›ผโˆ’1 (1 โˆ’ ๐‘ข2 )๐›ฝโˆ’1 ๐›ผ+๐›ฝโˆ’1 โˆ’๐‘ข
๐‘ข1
๐‘’ 1 ๐‘‘๐‘ข1
ฮ“(๐›ผ)ฮ“(๐›ฝ)
๐‘ข1 =0
๐‘ข2 ๐›ผโˆ’1 (1 โˆ’ ๐‘ข2 )๐›ฝโˆ’1 โˆž
=
โˆซ ๐‘ข1 ๐›ผ+๐›ฝโˆ’1 ๐‘’ โˆ’๐‘ข1 ๐‘‘๐‘ข1
ฮ“(๐›ผ)ฮ“(๐›ฝ)
๐‘ข1 =0
ฮ“(๐›ผ + ๐›ฝ) ๐›ผโˆ’1
(1 โˆ’ ๐‘ข2 )๐›ฝโˆ’1 .
=
๐‘ข
ฮ“(๐›ผ)ฮ“(๐›ฝ) 2
=โˆซ
Summarizing,
ฮ“(๐›ผ + ๐›ฝ) ๐›ผโˆ’1
(1 โˆ’ ๐‘ข2 )๐›ฝโˆ’1 , 0 < ๐‘ข2 < 1
๐‘ข
๐‘“๐‘ˆ2 (๐‘ข2 ) = {ฮ“(๐›ผ)ฮ“(๐›ฝ) 2
0,
otherwise.
Thus, marginally, U2 ~ beta(๐›ผ, ๐›ฝ). โ–ก
REMARK: Suppose that ๐’€ = (๐‘Œ1 , ๐‘Œ2 ) is a continuous random vector with joint pdf
๐‘“๐‘Œ1 ,๐‘Œ2 (๐‘ฆ1 , ๐‘ฆ2 ), and suppose that we would like to find the distribution of a single random
variable
๐‘ˆ1 = ๐‘”1 (๐‘Œ1 , ๐‘Œ2 )
9
Even though there is no ๐‘ˆ2 present here, the bivariate transformation technique can still be
useful. In this case, we can devise an โ€œextra variableโ€ ๐‘ˆ2 = ๐‘”2 (๐‘Œ1 , ๐‘Œ2 ), perform the bivariate
transformation to obtain ๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ), and then find the marginal distribution of ๐‘ˆ1 by
integrating ๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ) out over the dummy variable ๐‘ข2 . While the choice of ๐‘ˆ2 is
arbitrary, there are certainly bad choices. Stick with something easy; usually ๐‘ˆ2 =
๐‘”2 (๐‘Œ1 , ๐‘Œ2 ) = ๐‘Œ2 does the trick.
Exercise: (Homework 2, Question 1) Suppose that ๐‘Œ1 and ๐‘Œ2 are random variables with
joint pdf
8๐‘ฆ ๐‘ฆ , 0 < ๐‘ฆ1 < ๐‘ฆ2 < 1
๐‘“๐‘Œ1 ,๐‘Œ2 (๐‘ฆ1 , ๐‘ฆ2 ) = { 1 2
0,
otherwise.
Find the pdf of ๐‘ˆ1 = ๐‘Œ1 /๐‘Œ2 .
More-to-one transformation: What happens if the transformation of Y to U is not a one-toone transformation? In this case, similar to the univariate transformation, we can still use
the pdf technique, but we have to โ€œbreak up" the transformation ๐’ˆ: ๐‘…๐’€ โ†’ ๐‘…๐‘ผ into disjoint
regions where g is one-to-one.
RESULT: Suppose that Y is a continuous bivariate random variable with pdf๐‘“๐‘Œ1 ,๐‘Œ2 (๐‘ฆ1 , ๐‘ฆ2 ) and
that ๐‘ˆ1 = ๐‘”1 (๐‘Œ1 , ๐‘Œ2 ), ๐‘ˆ2 = ๐‘”2 (๐‘Œ1 , ๐‘Œ2 ), where ๐‘ผ = (๐‘ˆ1 , ๐‘ˆ2 ) is not necessarily a one-to-one
(but continuous) function of y over RY = ๐‘…๐‘Œ1 ,๐‘Œ2 . Furthermore, suppose that we can partition
๐‘…๐’€ into a finite collection of sets, say, A0, A1, A2, โ€ฆ , Ak, where ๐‘ƒ(๐’€ โˆˆ ๐ด0 ) = 0, ๐‘Ž๐‘›๐‘‘ ๐‘ƒ(๐’€ โˆˆ
๐ด๐‘– ) > 0 for all i โ‰  0, and ๐‘“๐‘Œ1 ,๐‘Œ2 (๐‘ฆ1 , ๐‘ฆ2 ) is continuous on each Ai , i โ‰  0. Furthermore, suppose
that the transformation is 1-to-1 from Ai (i = 1, 2, โ€ฆ, k,) to B, where B is the domain of ๐‘ผ =
โˆ’1
โˆ’1
(โˆ™), ๐‘”2๐‘–
(โˆ™)) is a 1-to-1 inverse mapping of Y
(๐‘ˆ1 = ๐‘”1 (๐‘Œ1 , ๐‘Œ2 ), ๐‘ˆ2 = ๐‘”1 (๐‘Œ1 , ๐‘Œ2 )) such that (๐‘”1๐‘–
to U from B to Ai.
Let Ji denotes the Jacobina computed from the ith inverse, i = 1, 2, โ€ฆ, k. Then, the pdf of U is
given by
๐‘˜
๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ) = {
โˆ‘ ๐‘“๐‘Œ1 ,๐‘Œ2 [๐‘”1๐‘– โˆ’1 (๐‘ข, ๐‘ฃ), ๐‘”2๐‘– โˆ’1 (๐‘ข, ๐‘ฃ)]|๐ฝ๐‘– | ,
๐‘ข โˆˆ ๐ต = ๐‘…๐‘ˆ
๐‘–=1
0,
otherwise.
Example 7. Suppose that ๐‘Œ1 ~ N(0, 1), ๐‘Œ2 ~ N(0, 1), and that ๐‘Œ1 and ๐‘Œ2 are independent.
Define the transformation
๐‘Œ1
๐‘ˆ1 = ๐‘”1 (๐‘Œ1 , ๐‘Œ2 ) =
๐‘Œ2
๐‘ˆ2 = ๐‘”2 (๐‘Œ1 , ๐‘Œ2 ) = |๐‘Œ2 |.
Find each of the following distributions:
(a) ๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ), the joint distribution of ๐‘ˆ1 and ๐‘ˆ2 ,
(b) ๐‘“๐‘ˆ1 (๐‘ข1 ), the marginal distribution of ๐‘ˆ1 .
Solutions. (a) Since ๐‘Œ1 and ๐‘Œ2 are independent, the joint distribution of ๐‘Œ1 and ๐‘Œ2 is
๐‘“๐‘Œ1 ,๐‘Œ2 (๐‘ฆ1 , ๐‘ฆ2 ) = ๐‘“๐‘Œ1 (๐‘ฆ1 )๐‘“๐‘Œ2 (๐‘ฆ2 )
10
1 โˆ’๐‘ฆ 2/2 โˆ’๐‘ฆ2 /2
๐‘’ 1 ๐‘’ 2
2ฯ€
= {(๐‘ฆ1 , ๐‘ฆ2 ): โˆ’โˆž < ๐‘ฆ1 < โˆž, โˆ’โˆž < ๐‘ฆ2 < โˆž}.
=
Here, ๐‘…๐‘Œ1 ,๐‘Œ2
The transformation of Y to U is not one-to-one because the points (๐‘ฆ1 , ๐‘ฆ2 ) and (โˆ’๐‘ฆ1 , โˆ’๐‘ฆ2 )
are both mapped to the same (๐‘ข1 , ๐‘ข2 ) point. But if we restrict considerations to either
positive or negative values of ๐‘ฆ2 , then the transformation is one-to-one. We note that the
three sets below form a partition of ๐ด = ๐‘…๐‘Œ1 ,๐‘Œ2 as defined above with ๐ด1 = {(๐‘ฆ1 , ๐‘ฆ2 ): ๐‘ฆ2 > 0},
๐ด2 = {(๐‘ฆ1 , ๐‘ฆ2 ): ๐‘ฆ2 < 0} , and ๐ด0 = {(๐‘ฆ1 , ๐‘ฆ2 ): ๐‘ฆ2 = 0}.
The domain of U, ๐ต = {(๐‘ข1 , ๐‘ข2 ): โˆ’โˆž < ๐‘ข1 < โˆž, ๐‘ข2 > 0} is the image of both ๐ด1 and ๐ด2 under
the transformation. The inverse transformation from ๐ต ๐‘ก๐‘œ ๐ด1 and ๐ต ๐‘ก๐‘œ ๐ด2 are given by:
๐‘ฆ1 = ๐‘”11 โˆ’1 (๐‘ข1 , ๐‘ข2 ) = ๐‘ข1 ๐‘ข2
๐‘ฆ2 = ๐‘”21 โˆ’1 (๐‘ข1 , ๐‘ข2 ) = ๐‘ข2
and
๐‘ฆ1 = ๐‘”12 โˆ’1 (๐‘ข1 , ๐‘ข2 ) = โˆ’๐‘ข1 ๐‘ข2
๐‘ฆ2 = ๐‘”22 โˆ’1 (๐‘ข1 , ๐‘ข2 ) = โˆ’๐‘ข2
The Jacobians from the two inverses are ๐ฝ1 = ๐ฝ1 = ๐‘ข2
The pdf of U on its domain B is thus:
2
๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ) = โˆ‘ ๐‘“๐‘Œ1 ,๐‘Œ2 [๐‘”1๐‘– โˆ’1 (๐‘ข, ๐‘ฃ), ๐‘”2๐‘– โˆ’1 (๐‘ข, ๐‘ฃ)]|๐ฝ๐‘– |
๐‘–=1
Plugging in, we have:
๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ) =
Simplifying, we have:
1 โˆ’(๐‘ข ๐‘ข )2 /2 โˆ’๐‘ข2/2
1 โˆ’(โˆ’๐‘ข ๐‘ข )2 /2 โˆ’(โˆ’๐‘ข )2 /2
1 2
2
|๐‘ข2 |
๐‘’ 1 2
๐‘’ 2 |๐‘ข2 | +
๐‘’
๐‘’
2ฯ€
2ฯ€
๐‘ข2 โˆ’(๐‘ข2 +1)๐‘ข2 /2
2 , โˆ’โˆž < ๐‘ข < โˆž, ๐‘ข > 0
๐‘’ 1
1
2
ฯ€
(b) To obtain the marginal distribution of ๐‘ˆ1 , we integrate the joint pdf๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 )
over ๐‘ข2 . That is,
๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ) =
โˆž
๐‘“๐‘ˆ1 (๐‘ข1 ) = โˆซ ๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ) ๐‘‘๐‘ข2
0
1
, โˆ’โˆž < ๐‘ข1 < โˆž
๐œ‹(๐‘ข12 + 1)
Thus, marginally, U1 follows the standard Cauchy distribution. โ–ก
=
REMARK: The transformation method can also be extended to handle n-variate
transformations. Suppose that ๐‘Œ1 , ๐‘Œ2 , โ€ฆ , ๐‘Œ๐‘› are continuous random variables with joint pdf
๐‘“๐’€ (๐‘ฆ) and define
๐‘ˆ1 = ๐‘”1 (๐‘Œ1 , ๐‘Œ2 , โ€ฆ , ๐‘Œ๐‘› )
๐‘ˆ2 = ๐‘”2 (๐‘Œ1 , ๐‘Œ2 , โ€ฆ , ๐‘Œ๐‘› )
โ‹ฎ
11
๐‘ˆ๐‘› = ๐‘”๐‘› (๐‘Œ1 , ๐‘Œ2 , โ€ฆ , ๐‘Œ๐‘› ).
Example 8. Given independent random variables ๐‘‹ and๐‘Œ, each with uniform distributions
on (0, 1), find the joint pdf of U and V defined by U=X+Y, V=X-Y, and the marginal pdf of U.
The joint pdf of ๐‘‹ and ๐‘Œ is๐‘“๐‘‹,๐‘Œ (๐‘ฅ, ๐‘ฆ) = 1, 0 โ‰ค ๐‘ฅ โ‰ค 1, 0 โ‰ค ๐‘ฆ โ‰ค 1.
The inverse transformation, written in terms of observed values is
๐‘ข+๐‘ฃ
๐‘ขโˆ’๐‘ฃ
๐‘ฅ=
, ๐‘Ž๐‘›๐‘‘ ๐‘ฆ =
.
2
2
It is clearly one-to-one. The Jacobian is
1/2 1/2
๐œ•(๐‘ฅ,๐‘ฆ)
1
1
๐ฝ = ๐œ•(๐‘ข,๐‘ฃ) = |
| = โˆ’ 2, so |๐ฝ| = 2.
1/2 โˆ’1/2
We will use ๐’œ to denote the range space of (๐‘‹, ๐‘Œ), and โ„ฌ to denote that of (๐‘ˆ, ๐‘‰), and these
are shown in the diagrams below. Firstly, note that there are 4 inequalities specifying
ranges of ๐‘ฅ and๐‘ฆ, and these give 4 inequalities concerning ๐‘ข and๐‘ฃ, from which โ„ฌcan be
determined. That is,
๐‘ฅ โ‰ฅ 0 โ‡’ ๐‘ข + ๐‘ฃ โ‰ฅ 0, that is, ๐‘ฃ โ‰ฅ โˆ’๐‘ข
๐‘ฅ โ‰ค 1 โ‡’ ๐‘ข + ๐‘ฃ โ‰ค 2, that is ๐‘ฃ โ‰ค 2 โˆ’ ๐‘ข
๐‘ฆ โ‰ฅ 0 โ‡’ ๐‘ข โˆ’ ๐‘ฃ โ‰ฅ 0, that is ๐‘ฃ โ‰ค ๐‘ข
๐‘ฆ โ‰ค 1 โ‡’ ๐‘ข โˆ’ ๐‘ฃ โ‰ค 2, that is ๐‘ฃ โ‰ฅ ๐‘ข โˆ’ 2
Drawing the four lines
๐‘ฃ = โˆ’๐‘ข, ๐‘ฃ = 2 โˆ’ ๐‘ข, ๐‘ฃ = ๐‘ข, ๐‘ฃ = ๐‘ข โˆ’ 2
On the graph, enables us to see the region specified by the 4 inequalities.
12
Now, we have
1 1
โˆ’๐‘ข โ‰ค ๐‘ฃ โ‰ค ๐‘ข, 0 โ‰ค ๐‘ข โ‰ค 1
= ,
{
๐‘ข โˆ’ 2 โ‰ค ๐‘ฃ โ‰ค 2 โˆ’ ๐‘ข, 1 โ‰ค ๐‘ข โ‰ค 2
2 2
The importance of having the range space correct is seen when we find marginal pdf of ๐‘ˆ.
โˆž
๐‘“๐‘ˆ (๐‘ข) = โˆซโˆ’โˆž ๐‘“๐‘ˆ,๐‘‰ (๐‘ข, ๐‘ฃ)๐‘‘๐‘ฃ
๐‘“๐‘ˆ,๐‘‰ (๐‘ข, ๐‘ฃ) = 1 โˆ—
๐‘ข 1
โˆซโˆ’๐‘ข 2 ๐‘‘๐‘ฃ,
= { โˆซ2โˆ’๐‘ข 1 ๐‘‘๐‘ฃ,
๐‘ขโˆ’2 2
0,
={
0โ‰ค๐‘ขโ‰ค1
1โ‰ค๐‘ขโ‰ค2
๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
๐‘ข,
0โ‰ค๐‘ขโ‰ค1
2 โˆ’ ๐‘ข, 1 โ‰ค ๐‘ข โ‰ค 2
= ๐‘ข๐ผ[0,1] (๐‘ข) + (2 โˆ’ ๐‘ข)๐ผ(1,2] (๐‘ข), using indicator functions.
Example 9. Given ๐‘‹and ๐‘Œ are independent random variables each with pdf๐‘“๐‘‹ (๐‘ฅ) =
1 โˆ’๐‘ฅ
๐‘’ 2 , ๐‘ฅ โˆˆ [0, โˆž), find the distribution of(๐‘‹ โˆ’ ๐‘Œ)/2.
2
We note that the joint pdf of ๐‘‹ and ๐‘Œ is
1 ๐‘ฅ+๐‘ฆ
๐‘“๐‘‹,๐‘Œ (๐‘ฅ, ๐‘ฆ) = ๐‘’ 2 , 0 โ‰ค ๐‘ฅ < โˆž, 0 โ‰ค ๐‘ฆ < โˆž.
4
Define๐‘ˆ = (๐‘‹ โˆ’ ๐‘Œ)/2. Now we need to introduce a second random variable ๐‘‰ which is a
function of ๐‘‹ and๐‘Œ. We wish to do this in such a way that the resulting bivariate
13
transformation is one-to-one and our actual task of finding the pdf of U is as easy as
possible. Our choice for ๐‘‰ is of course, not unique. Let us define๐‘‰ = ๐‘Œ. Then the
transformation is, (using๐‘ข, ๐‘ฃ, ๐‘ฅ, ๐‘ฆ, since we are really dealing with the range spaces here).
๐‘ฅ = 2๐‘ข + ๐‘ฃ
๐‘ฆ=๐‘ฃ
From it, we find the Jacobian,
2 1
๐ฝ=|
|=2
0 1
To determineโ„ฌ, the range space of ๐‘ˆ and๐‘‰, we note that
๐‘ฅ โ‰ฅ 0 โ‡’ 2๐‘ข + ๐‘ฃ โ‰ฅ 0 , that is ๐‘ฃ โ‰ฅ โˆ’2๐‘ข
๐‘ฅ < โˆž โ‡’ 2๐‘ข + ๐‘ฃ < โˆž
๐‘ฆโ‰ฅ0 โ‡’ ๐‘ฃโ‰ฅ0
๐‘ฆ<โˆž โ‡’ ๐‘ข<โˆž
So โ„ฌ is as indicated in the diagram below.
Now, we have
๐‘“๐‘ˆ,๐‘‰ (๐‘ข, ๐‘ฃ) =
1 โˆ’2๐‘ข+๐‘ฃ+๐‘ฃ
1
2
๐‘’
โˆ— 2 = ๐‘’ โˆ’(๐‘ข+๐‘ฃ) , (๐‘ข, ๐‘ฃ) โˆˆ โ„ฌ.
4
2
The marginal pdf of ๐‘ˆ is obtained by integrating ๐‘“๐‘ˆ,๐‘‰ (๐‘ข, ๐‘ฃ) with respect to๐‘ฃ, giving
โˆž
1 โˆ’(๐‘ข+๐‘ฃ)
โˆซ
๐‘’
๐‘‘๐‘ฃ, ๐‘ข < 0
โˆ’2๐‘ข 2
๐‘“๐‘ˆ (๐‘ข)
=
โˆž
1 โˆ’(๐‘ข+๐‘ฃ)
โˆซ
๐‘’
๐‘‘๐‘ฃ, ๐‘ข > 0
{ 0 2
14
1 ๐‘ข
๐‘’ ,
๐‘ข<0
= {2
1 โˆ’๐‘ข
๐‘’ ,
๐‘ข>0
2
1
= ๐‘’ โˆ’|๐‘ข| , โˆ’ โˆž < ๐‘ข < โˆž
2
[This is sometimes called the ๐‘“๐‘œ๐‘™๐‘‘๐‘’๐‘‘ (๐‘œ๐‘Ÿ ๐‘‘๐‘œ๐‘ข๐‘๐‘™๐‘’)๐‘’๐‘ฅ๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ distribution.]
Homework #2.
Question 1 is the exercise on page 9 of this handout.
Questions 2-8 (from our textbook): 2.3, 2.9, 2.11, 2.13, 2.18, 2.34, 2.38
15