Transformations
Dear students,
Since we have covered the mgf technique extensively already, here we only review the cdf
and the pdf techniques, first for univariate (one-to-one and more-to-one) and then for
bivariate (one-to-one and more-to-one) transformations.
1. The cumulative distribution function (cdf) technique
Suppose Y is a continuous random variable with cumulative distribution function (cdf)
๐น๐ (๐ฆ) โก ๐(๐ โค ๐ฆ). Let ๐ = ๐(๐) be a function of Y, and our goal is to find the distribution
of U. The cdf technique is especially convenient when the cdf ๐น๐ (๐ฆ) has closed form
analytical expression. This method can be used for both univariate and bivariate
transformations.
Steps of the cdf technique:
1. Identify the domain of Y and U.
2. Write๐น๐ (๐ข) = ๐(๐ โค ๐ข), the cdf of U, in terms of ๐น๐ (๐ฆ), the cdf of Y .
3. Differentiate ๐น๐ (๐ข) to obtain the pdf of U, ๐๐ (๐ข).
Example 1. Suppose that ๐ ~ ๐(0,1). Find the distribution of ๐ = ๐(๐) = โ ln ๐.
Solution. The cdf of ๐ ~ ๐(0,1) is given by
0,
๐ฆโค0
๐น๐ (๐ฆ) = {๐ฆ, 0 < ๐ฆ โค 1
1,
๐ฆโฅ1
The domain (*domain is the region where the pdf is non-zero) for ๐ ~ ๐(0,1) is ๐
๐ =
{๐ฆ: 0 < ๐ฆ < 1}; thus, because ๐ข = โ ln ๐ฆ > 0, it follows that the domain for U is ๐
๐ =
{๐ข: ๐ข > 0}.
The cdf of U is:
๐น๐ (๐ข) = ๐(๐ โค ๐ข) = ๐(โ ln ๐ โค ๐ข)
= ๐(ln ๐ > โ๐ข)
= ๐(๐ > ๐ โ๐ข ) = 1 โ ๐(๐ โค ๐ โ๐ข ) = 1 โ ๐น๐ (๐ โ๐ข )
Because ๐น๐ (๐ฆ) = ๐ฆ for 0 < y < 1; i.e., for u > 0, we have
๐น๐ (๐ข) = 1 โ ๐น๐ (๐ โ๐ข ) = 1 โ ๐ โ๐ข
Taking derivatives, we get, for u > 0,
๐๐ (๐ข) =
๐
๐
(1 โ ๐ โ๐ข ) = ๐ โ๐ข
๐น๐ (๐ข) =
๐๐ข
๐๐ข
1
Summarizing,
๐๐ (๐ข) = {
๐ โ๐ข ,
0,
๐ข>0
otherwise
1
This is an exponential pdf with mean ฮป = 1; that is, U ~ exponential(ฮป = 1). โก
Example 2. Suppose that ๐ ~ ๐ (โ ๐โ2 , ๐โ2) . Find the distribution of the random variable
defined by U = g(Y ) = tan(Y ).
Solution. The cdf of ๐ ~ ๐ (โ ๐โ2 , ๐โ2) is given by
0,
๐ฆ + ๐โ2
๐น๐ (๐ฆ) =
,
๐
{
1,
๐ฆ โค โ ๐โ2
โ ๐โ2 < ๐ฆ โค ๐โ2
๐ฆ โฅ ๐โ2
The domain for Y is ๐
๐ = {๐ฆ: โ ๐โ2 < ๐ฆ < ๐โ2}. Sketching a graph of the tangent function
from โ ๐โ2 to ๐โ2, we see that โโ < ๐ข < โ .
Thus, ๐
๐ = { ๐ข: โ โ < ๐ข < โ} โก ๐
, the set of all reals. The cdf of U is:
๐น๐ (๐ข) = ๐(๐ โค ๐ข) = ๐[tan(๐) โค ๐ข]
= ๐[๐ โค tanโ1(๐ข)] = ๐น๐ [tanโ1(๐ข)]
Because ๐น๐ (๐ฆ) =
๐ฆ+๐โ2
for โ ๐โ2 < ๐ฆ < ๐โ2 ; i. e. , for ๐ข โ โ , we have
tanโ1(๐ข) + ๐โ2
๐น๐ (๐ข) = ๐น๐ [tanโ1 (๐ข)] =
๐
The pdf of U, for ๐ข โ โ, is given by
๐
๐ tanโ1(๐ข) + ๐โ2
1
๐๐ (๐ข) =
๐น๐ (๐ข) =
[
]=
.
๐๐ข
๐๐ข
๐
๐(1 + ๐ข2 )
Summarizing,
๐
1
, โโ<๐ข <โ
๐๐ (๐ข) = {๐(1 + ๐ข2 )
0,
otherwise.
A random variable with this pdf is said to have a (standard) Cauchy distribution. One
interesting fact about a Cauchy random variable is that none of its moments are finite. Thus,
if U has a Cauchy distribution, E(U), and all higher order moments, do not exist.
Exercise: If U is standard Cauchy, show that๐ธ(|๐|) = +โ. โก
2. The probability density function (pdf) technique, univariate
Suppose that Y is a continuous random variable with cdf ๐น๐ (๐ฆ) and domain ๐
๐ , and let ๐ =
๐(๐), where ๐: ๐
๐ โ โ is a continuous, one-to-one function defined over ๐
๐ . Examples of
such functions include continuous (strictly) increasing/decreasing functions. Recall from
2
calculus that if ๐ is one-to-one, it has an unique inverse ๐โ1 . Also recall that if ๐ is
increasing (decreasing), then so is ๐โ1 .
Derivation of the pdf technique formula using the cdf method:
Suppose that ๐(๐ฆ) is a strictly increasing function of y defined over ๐
๐ . Then, it follows
that ๐ข = ๐(๐ฆ) โ ๐โ1 (๐ข) = ๐ฆ and
๐น๐ (๐ข) = ๐(๐ โค ๐ข) = ๐[๐(๐) โค ๐ข] = ๐[๐ โค ๐โ1 (๐ข)] = ๐น๐ [๐โ1 (๐ข)]
Differentiating ๐น๐ (๐ข) with respect to u, we get
๐๐ (๐ข) =
๐
๐
๐ โ1
๐น๐ (๐ข) =
๐น๐ [๐โ1 (๐ข)] = ๐๐ [๐โ1 (๐ข)]
๐ (๐ข) (by chain rule)
๐๐ข
๐๐ข
๐๐ข
๐
Now as ๐ is increasing, so is ๐โ1 ; thus, ๐๐ข ๐โ1 (๐ข) > 0. If ๐(๐ฆ) is strictly decreasing, then
๐
๐น๐ (๐ข) = 1 โ ๐น๐ [๐โ1 (๐ข)] and ๐๐ข ๐โ1 (๐ข) < 0, which gives
๐๐ (๐ข) =
๐
๐
๐ โ1
๐น๐ (๐ข) =
{1 โ ๐น๐ [๐โ1 (๐ข)]} = โ๐๐ [๐โ1 (๐ข)]
๐ (๐ข)
๐๐ข
๐๐ข
๐๐ข
Combining both cases, we have shown that the pdf of U, where nonzero, is given by
๐
๐๐ (๐ข) = ๐๐ [๐โ1 (๐ข)] | ๐โ1 (๐ข) |.
๐๐ข
It is again important to keep track of the domain for U. If ๐
๐ denotes the domain of Y, then
๐
๐ , the domain for U, is given by ๐
๐ = {๐ข: ๐ข = ๐(๐ฆ); ๐ฆ โ ๐
๐ }.
Steps of the pdf technique:
1. Verify that the transformation u = g(y) is continuous and one-to-one over ๐
๐ .
2. Find the domains of Y and U.
3. Find the inverse transformation ๐ฆ = ๐โ1 (๐ข) and its derivative (with respect to u).
4. Use the formula above for ๐๐ (๐ข).
Example 3. Suppose that Y ~ exponential(ฮฒ); i.e., the pdf of Y is
1 โ๐ฆ/๐ฝ
๐
,
๐ฆ>0
๐๐ (๐ฆ) = { ๐ฝ
0,
otherwise.
Let ๐ = ๐(๐) = โ๐, . Use the method of transformations to find the pdf of U.
Solution. First, we note that the transformation ๐(๐) = โ๐ is a continuous strictly
increasing function of y over ๐
๐ = {๐ฆ: ๐ฆ > 0}, and, thus, ๐(๐) is one-to-one. Next, we need
to find the domain of U. This is easy since y > 0 implies ๐ข = โ๐ฆ > 0 as well.
3
Thus, ๐
๐ = {๐ข: ๐ข > 0}. Now, we find the inverse transformation:
๐(๐ฆ) = ๐ข = โ๐ฆ โ ๐ฆ = ๐โ1 (๐ข) = ๐ข2 (by inverse transformation)
and its derivative:
๐ โ1
๐
(๐ข2 ) = 2๐ข.
๐ (๐ข) =
๐๐ข
๐๐ข
Thus, for u > 0,
๐๐ (๐ข) = ๐๐ [๐โ1 (๐ข)] |
2
๐ โ1
๐ (๐ข) |
๐๐ข
2
1 โ๐ข
2๐ข โ๐ข๐ฝ
= ๐ ๐ฝ × |2๐ข| =
๐ .
๐ฝ
๐ฝ
Summarizing,
2
2๐ข โ๐ข๐ฝ
๐ข>0
๐๐ (๐ข) = { ๐ฝ ๐ ,
0,
otherwise.
This is a Weibull distribution. The Weibull family of distributions is common in life
science (survival analysis), engineering and actuarial science applications. โก
Example 4. Suppose that Y ~ beta(ฮฑ = 6; ฮฒ = 2); i.e., the pdf of Y is given by
42๐ฆ 5 (1 โ ๐ฆ),
๐๐ (๐ฆ) = {
0,
0<๐ฆ<1
otherwise.
What is the distribution of U = g(Y ) = 1 โY ?
Solution. First, we note that the transformation g(y) = 1 โY is a continuous decreasing
function of y over ๐
๐ = {๐ฆ: 0 < ๐ฆ < 1}, and, thus, g(y) is one-to-one. Next, we need
to find the domain of U. This is easy since 0 < y < 1 clearly implies 0 < u < 1. Thus,
๐
๐ = {๐ฆ: 0 < ๐ข < 1}. Now, we find the inverse transformation:
๐(๐ฆ) = ๐ข = 1 โ ๐ฆ โ ๐ฆ = ๐โ1 (๐ข) = 1 โ ๐ข (by inverse transformation)
and its derivative:
๐ โ1
๐
(1 โ ๐ข) = โ1.
๐ (๐ข) =
๐๐ข
๐๐ข
Thus, for 0 < u < 1,
4
๐๐ (๐ข) = ๐๐ [๐โ1 (๐ข)] |
๐ โ1
๐ (๐ข) |
๐๐ข
= 42(1 โ ๐ข)5 [1 โ (1 โ ๐ข)] × |โ1| = 42๐ข(1 โ ๐ข)5 .
Summarizing,
๐๐ (๐ข) = {
42๐ข(1 โ ๐ข)5 ,
0,
0<๐ข<1
otherwise.
We recognize this is a beta distribution with parameters ฮฑ = 2 and ฮฒ = 6. โก
More-to-one transformation: What happens if u = g(y) is not a one-to-one transformation?
In this case, we can still use the method of transformations, but we have โbreak up" the
transformation ๐: ๐
๐ โ ๐
๐ into disjoint regions where g is one-to-one.
RESULT: Suppose that Y is a continuous random variable with pdf๐๐ (๐ฆ) and that U = g(Y ),
not necessarily a one-to-one (but continuous) function of y over RY . However, suppose that
we can partition ๐
๐ into a finite collection of sets, say, A0, A1, A2, โฆ , Ak, where ๐(๐ โ ๐ด0 ) =
0, ๐๐๐ ๐(๐ โ ๐ด๐ ) > 0 for all i โ 0, and ๐๐ (๐ฆ) is continuous on each Ai , i โ 0. Furthermore,
suppose that the transformation is 1-to-1 from Ai (i = 1, 2, โฆ, k,) to B, where B is the domain
of U = g(Y ) such that ๐๐โ1 (โ) is a 1-to-1 inverse mapping of Y to U = g(Y ) from B to Ai.
Then, the pdf of U is given by
๐
๐
[๐๐ โ1 (๐ข)] | ๐๐ โ1 (๐ข) | ,
โ
๐
๐
๐๐ (๐ข) = {
๐๐ข
๐ข โ ๐
๐
๐=1
0,
otherwise.
๐
That is, writing the pdf of U can be done by adding up the terms ๐๐ [๐๐ โ1 (๐ข)] |๐๐ข ๐๐ โ1 (๐ข) |
corresponding to each disjoint set Ai, i = 1, 2,โฆ,k.
Example 5. Suppose that Y ~ N(0, 1); that is, Y has a standard normal distribution; i.e.,
1
๐๐ (๐ฆ) = {โ2๐
0,
๐ โ๐ฆ
2 /2
, โโ < ๐ฆ < โ
otherwise.
Consider the transformation: ๐ = ๐(๐) = ๐ 2 .
Solution 1 (the pdf technique):
This transformation is not one-to-one on ๐
๐ = โ = {๐ฆ: โโ < ๐ฆ < โ} , but it is one-to-one
on A1 = (โโ, 0) and A2 = (0, โ) (separately) since ๐(๐ฆ) = ๐ฆ 2 is decreasing on A1 and
5
increasing on A2, and A0 = {0} where ๐(๐ โ ๐ด0 ) = ๐(๐ = 0) = 0. Furthermore, note that A0,
A1 and A2 partitions ๐
๐ . Summarizing,
Partition
A1 = (โโ, 0)
A2 = (0, โ)
Transformation
๐(๐ฆ) = ๐ฆ 2 = ๐ข
๐(๐ฆ) = ๐ฆ 2 = ๐ข
Inverse transformation
๐1 โ1 (๐ข) = โโ๐ข = ๐ฆ
๐2 โ1 (๐ข) = โ๐ข = ๐ฆ
And, on both sets A1 and A2,
๐
1
| ๐๐ โ1 (๐ข) | =
.
๐๐ข
2 โ๐ข
Clearly, ๐ข = ๐ฆ 2 > 0; thus, ๐
๐ = {๐ข: ๐ข > 0}, and the pdf of U is given by
2
2
1 โ(โโ๐ข)
1
1 โ(โ๐ข)
1
2
(
)+
๐ 2 (
), ๐ข > 0
๐๐ (๐ข) = { โ2๐ ๐
2โ๐ข
2 โ๐ข
โ2๐
0,
otherwise.
1
Thus, for u > 0, and recalling that ฮ (2) = โ๐, ๐(๐ข) collapses to
2 โ๐ข 1
๐๐ (๐ข) =
๐ 2(
)
2 โ๐ข
โ2๐
1
๐ข
1 1โ1 โ๐ข
1
โ1 โ
2 ๐ 2.
=
๐ข2 ๐ 2 =
๐ข
1 1
โ2๐
ฮ (2) 22
Summarizing, the pdf of U is
1
๐ข
1
โ1 โ
2 ๐ 2, ๐ข > 0
๐ข
1
๐๐ (๐ข) = { ฮ (1) 22
2
0,
otherwise.
That is, U ~ gamma(1/2, 2). Recall that the gamma(1/2, 2) distribution is the same as a ๐ 2
distribution with 1 degree of freedom; that is, ๐ ~ ๐ 2 (1). โก
Solution 2 (the cdf technique):
๐น๐ (๐ข) = ๐(๐ โค ๐ข) = ๐(๐ 2 โค ๐ข) = 1 โ ๐(๐ 2 > ๐ข)
= 1 โ ๐(๐ > โ๐ข ๐๐ ๐ < โโ๐ข) = 1 โ ๐(๐ > โ๐ข ) โ ๐( ๐ < โโ๐ข)
= ๐(๐ โค โ๐ข ) โ ๐( ๐ โค โโ๐ข) = ๐น๐ (โ๐ข) โ ๐น๐ (โโ๐ข)
Taking derivative with respect to ๐ข at both sides, we have:
๐๐ (๐ข) = ๐๐ (โ๐ข)
๐ โ๐ข
๐ โ๐ข
+ ๐๐ (โโ๐ข)
๐๐ข
๐๐ข
6
=
1
โ2๐
=
๐
โ
(โโ๐ข)
2
1
โ2๐
1
2
1
1
(
)+
๐
2 โ๐ข
โ2๐
๐ข
๐ข2โ1 ๐ โ 2 =
โ
(โ๐ข)
2
2
(
1
2โ๐ข
)
1
๐ข
1
โ1 โ
2 ๐ 2, ๐ข > 0
๐ข
1 1
ฮ (2) 22
That is, U ~ gamma(1/2, 2). Recall that the gamma(1/2, 2) distribution is the same as a ๐ 2
distribution with 1 degree of freedom; that is, ๐ ~ ๐ 2 (1). โก
3. The probability density function (pdf) technique, bivariate
Here we discuss transformations involving two random variable ๐1 , ๐2 . The bivariate
transformation is
๐1 = ๐1 (๐1 , ๐2 )
๐2 = ๐2 (๐1 , ๐2 )
Assuming that ๐1 and ๐2 are jointly continuous random variables, we will discuss the oneto-one transformation first. Starting with the joint distribution of ๐ = (๐1 , ๐2 ), our goal is to
derive the joint distribution of ๐ผ = (๐1 , ๐2 ).
Suppose that ๐ = (๐1 , ๐2 ) is a continuous random vector with joint pdf๐๐1 ,๐2 (๐ฆ1 , ๐ฆ2 ). Let
๐: โ 2 โ โ 2 be a continuous one-to-one vector-valued mapping from ๐
๐1 ,๐2 to ๐
๐1 ,๐2 , where
๐1 = ๐1 (๐1 , ๐2 ) and ๐2 = ๐2 (๐1 , ๐2 ), and where ๐
๐1 ,๐2 and ๐
๐1 ,๐2 denote the two-dimensional
domain of ๐ = (๐1 , ๐2 ) and ๐ผ = (๐1 , ๐2 ), respectively. If ๐1 โ1 (๐ข1 , ๐ข2 ) and ๐2 โ1 (๐ข1 , ๐ข2 ) have
continuous partial derivatives with respect to both ๐ข1 and ๐ข2 , and the Jacobian, J, where,
with โdetโ denoting โdeterminantโ,
๐๐1 โ1 (๐ข1 , ๐ข2 ) ๐๐1 โ1 (๐ข1 , ๐ข2 )
๐๐ข1
๐๐ข2
| โ 0,
๐ฝ = det ||
|
โ1 (๐ข
โ1 (๐ข
)
๐๐2
๐๐2
1 , ๐ข2
1 , ๐ข2 )
๐๐ข1
๐๐ข2
then
๐ [๐ โ1 (๐ข1 , ๐ข2 ), ๐2 โ1 (๐ข1 , ๐ข2 )]|๐ฝ|, (๐ข1 , ๐ข2 ) โ ๐
๐1 ,๐2
๐๐1 ,๐2 (๐ข1 , ๐ข2 ) = { ๐1 ,๐2 1
0,
otherwise,
where |J| denotes the absolute value of J.
RECALL: The determinant of a 2 × 2 matrix, e.g.,
๐ ๐
det |
| = ๐๐ โ ๐๐.
๐ ๐
Steps of the pdf technique:
1. Find ๐๐1 ,๐2 (๐ฆ1 , ๐ฆ2 ), the joint distribution of ๐1 and ๐2 . This may be given in the problem. If
Y1 and Y2 are independent, then ๐๐1 ,๐2 (๐ฆ1 , ๐ฆ2 ) = ๐๐1 (๐ฆ1 )๐๐2 (๐ฆ2 ).
2. Find ๐
๐1 ,๐2 , the domain of ๐ผ = (๐1 , ๐2 ).
3. Find the inverse transformations ๐ฆ1 = ๐1 โ1 (๐ข1 , ๐ข2 ) and ๐ฆ2 = ๐2 โ1 (๐ข1 , ๐ข2 ).
7
4. Find the Jacobian, J, of the inverse transformation.
5. Use the formula above to find ๐๐1 ,๐2 (๐ข1 , ๐ข2 ), the joint distribution of ๐1 and ๐2 .
NOTE: If desired, marginal distributions ๐๐1 (๐ข1 ) and ๐๐2 (๐ข2 ). can be found by integrating
the joint distribution ๐๐1 ,๐2 (๐ข1 , ๐ข2 ).
Example 6. Suppose that ๐1 ~ gamma(ฮฑ, 1), ๐2 ~ gamma(ฮฒ, 1), and that๐1 and ๐2 are
independent. Define the transformation
๐1 = ๐1 (๐1 , ๐2 ) = ๐1 + ๐2
๐1
๐2 = ๐2 (๐1 , ๐2 ) =
.
๐1 + ๐2
Find each of the following distributions:
(a) ๐๐1 ,๐2 (๐ข1 , ๐ข2 ), the joint distribution of ๐1 and ๐2 ,
(b) ๐๐1 (๐ข1 ), the marginal distribution of ๐1 , and
(c) ๐๐2 (๐ข2 ), the marginal distribution of ๐2 .
Solutions. (a) Since ๐1 and ๐2 are independent, the joint distribution of ๐1 and ๐2 is
๐๐1 ,๐2 (๐ฆ1 , ๐ฆ2 ) = ๐๐1 (๐ฆ1 )๐๐2 (๐ฆ2 )
1
1
๐ฝโ1
=
๐ฆ1๐ผโ1 ๐ โ๐ฆ1 ×
๐ฆ2 ๐ โ๐ฆ2
ฮ(๐ผ)
ฮ(๐ฝ)
1
๐ฝโ1
=
๐ฆ ๐ผโ1 ๐ฆ2 ๐ โ(๐ฆ1 +๐ฆ2 ) ,
ฮ(๐ผ)ฮ(๐ฝ) 1
for ๐ฆ1 > 0, ๐ฆ2 > 0, and 0, otherwise. Here, ๐
๐1 ,๐2 = {(๐ฆ1 , ๐ฆ2 ): ๐ฆ1 > 0, ๐ฆ2 > 0}. By inspection,
๐ฆ
we see that ๐ข1 = ๐ฆ1 + ๐ฆ2 > 0, and ๐ข2 = ๐ฆ +1๐ฆ must fall between 0 and 1.
1
2
Thus, the domain of ๐ผ = (๐1 , ๐2 ) is given by
๐
๐1 ,๐2 = {(๐ข1 , ๐ข2 ): ๐ข1 > 0, 0 < ๐ข2 < 1}.
The next step is to derive the inverse transformation. It follows that
๐ข1 = ๐ฆ1 + ๐ฆ2
๐ฆ1 = ๐1 โ1 (๐ข1 , ๐ข2 ) = ๐ข1 ๐ข2
๐ฆ1
โ
โ1
๐ข2 =
๐ฆ1 + ๐ฆ2 ๐ฆ2 = ๐2 (๐ข1 , ๐ข2 ) = ๐ข1 โ ๐ข1 ๐ข2
The Jacobian is given by
๐๐1 โ1 (๐ข1 , ๐ข2 ) ๐๐1 โ1 (๐ข1 , ๐ข2 )
๐ข1
๐๐ข1
๐๐ข2
| = det | ๐ข2
๐ฝ = det ||
| = โ๐ข1 ๐ข2 โ ๐ข1 (1 โ ๐ข2 ) = โ๐ข1 .
|
โ1 (๐ข
โ1
1
โ
๐ข
โ๐ข
2
1
๐๐2
1 , ๐ข2 ) ๐๐2 (๐ข1 , ๐ข2 )
๐๐ข1
๐๐ข2
We now write the joint distribution for ๐ผ = (๐1 , ๐2 ). For ๐ข1 > 0 and 0 < ๐ข2 < 1, we have
that
๐๐1 ,๐2 (๐ข1 , ๐ข2 ) = ๐๐1 ,๐2 [๐1 โ1 (๐ข1 , ๐ข2 ), ๐2 โ1 (๐ข1 , ๐ข2 )]|๐ฝ|
1
=
(๐ข ๐ข )๐ผโ1 (๐ข1 โ ๐ข1 ๐ข2 )๐ฝโ1 ๐ โ[(๐ข1 ๐ข2 )+(๐ข1 โ๐ข1 ๐ข2 )] × | โ ๐ข1 |
ฮ(๐ผ)ฮ(๐ฝ) 1 2
Note: We see that ๐1 and ๐2 are independent since the domain ๐
๐1 ,๐2 = {(๐ข1 , ๐ข2 ): ๐ข1 >
0, 0 < ๐ข2 < 1} does not constrain ๐ข1 by ๐ข2 or vice versa and since the nonzero part
of ๐๐1 ,๐2 (๐ข1 , ๐ข2 ) can be factored into the two expressions โ1 (๐ข1 ) and โ2 (๐ข2 ), where
8
โ1 (๐ข1 ) = ๐ข1 ๐ผ+๐ฝโ1 ๐ โ๐ข1
and
๐ข2 ๐ผโ1 (1 โ ๐ข2 )๐ฝโ1
.
ฮ(๐ผ)ฮ(๐ฝ)
(b) To obtain the marginal distribution of ๐1 , we integrate the joint pdf๐๐1 ,๐2 (๐ข1 , ๐ข2 )
over ๐ข2 . That is, for ๐ข1 > 0,
โ2 (๐ข2 ) =
1
๐๐1 (๐ข1 ) = โซ
๐๐1 ,๐2 (๐ข1 , ๐ข2 ) ๐๐ข2
๐ข2 =0
1
๐ข2 ๐ผโ1 (1 โ ๐ข2 )๐ฝโ1 ๐ผ+๐ฝโ1 โ๐ข
=โซ
๐ข1
๐ 1 ๐๐ข2
ฮ(๐ผ)ฮ(๐ฝ)
๐ข2 =0
1
1
=
๐ข1 ๐ผ+๐ฝโ1 ๐ โ๐ข1 โซ ๐ข2 ๐ผโ1 (1 โ ๐ข2 )๐ฝโ1 ๐๐ข2
ฮ(๐ผ)ฮ(๐ฝ)
๐ข2 =0
๐ผโ1
๐ฝโ1
(1โ๐ข2 )
(๐ข2
is beta(๐ผ,๐ฝ) kernel)
1
ฮ(๐ผ)ฮ(๐ฝ)
โ
๐ข1 ๐ผ+๐ฝโ1 ๐ โ๐ข1 ×
ฮ(๐ผ)ฮ(๐ฝ)
ฮ(๐ผ + ๐ฝ)
1
=
๐ข ๐ผ+๐ฝโ1 ๐ โ๐ข1
ฮ(๐ผ + ๐ฝ) 1
Summarizing,
1
๐ข ๐ผ+๐ฝโ1 ๐ โ๐ข1 , ๐ข1 > 0
๐๐1 (๐ข1 ) = {ฮ(๐ผ + ๐ฝ) 1
0,
otherwise.
We recognize this as a gamma(๐ผ + ๐ฝ, 1) pdf; thus, marginally, ๐1 ~gamma(๐ผ + ๐ฝ, 1).
(c) To obtain the marginal distribution of ๐2 , we integrate the joint pdf ๐๐1 ,๐2 (๐ข1 , ๐ข2 ) over
๐ข2 . That is, for 0 < ๐ข2 < 1,
โ
๐๐2 (๐ข2 ) = โซ
๐๐1 ,๐2 (๐ข1 , ๐ข2 ) ๐๐ข1
๐ข1 =0
โ
๐ข2 ๐ผโ1 (1 โ ๐ข2 )๐ฝโ1 ๐ผ+๐ฝโ1 โ๐ข
๐ข1
๐ 1 ๐๐ข1
ฮ(๐ผ)ฮ(๐ฝ)
๐ข1 =0
๐ข2 ๐ผโ1 (1 โ ๐ข2 )๐ฝโ1 โ
=
โซ ๐ข1 ๐ผ+๐ฝโ1 ๐ โ๐ข1 ๐๐ข1
ฮ(๐ผ)ฮ(๐ฝ)
๐ข1 =0
ฮ(๐ผ + ๐ฝ) ๐ผโ1
(1 โ ๐ข2 )๐ฝโ1 .
=
๐ข
ฮ(๐ผ)ฮ(๐ฝ) 2
=โซ
Summarizing,
ฮ(๐ผ + ๐ฝ) ๐ผโ1
(1 โ ๐ข2 )๐ฝโ1 , 0 < ๐ข2 < 1
๐ข
๐๐2 (๐ข2 ) = {ฮ(๐ผ)ฮ(๐ฝ) 2
0,
otherwise.
Thus, marginally, U2 ~ beta(๐ผ, ๐ฝ). โก
REMARK: Suppose that ๐ = (๐1 , ๐2 ) is a continuous random vector with joint pdf
๐๐1 ,๐2 (๐ฆ1 , ๐ฆ2 ), and suppose that we would like to find the distribution of a single random
variable
๐1 = ๐1 (๐1 , ๐2 )
9
Even though there is no ๐2 present here, the bivariate transformation technique can still be
useful. In this case, we can devise an โextra variableโ ๐2 = ๐2 (๐1 , ๐2 ), perform the bivariate
transformation to obtain ๐๐1 ,๐2 (๐ข1 , ๐ข2 ), and then find the marginal distribution of ๐1 by
integrating ๐๐1 ,๐2 (๐ข1 , ๐ข2 ) out over the dummy variable ๐ข2 . While the choice of ๐2 is
arbitrary, there are certainly bad choices. Stick with something easy; usually ๐2 =
๐2 (๐1 , ๐2 ) = ๐2 does the trick.
Exercise: (Homework 2, Question 1) Suppose that ๐1 and ๐2 are random variables with
joint pdf
8๐ฆ ๐ฆ , 0 < ๐ฆ1 < ๐ฆ2 < 1
๐๐1 ,๐2 (๐ฆ1 , ๐ฆ2 ) = { 1 2
0,
otherwise.
Find the pdf of ๐1 = ๐1 /๐2 .
More-to-one transformation: What happens if the transformation of Y to U is not a one-toone transformation? In this case, similar to the univariate transformation, we can still use
the pdf technique, but we have to โbreak up" the transformation ๐: ๐
๐ โ ๐
๐ผ into disjoint
regions where g is one-to-one.
RESULT: Suppose that Y is a continuous bivariate random variable with pdf๐๐1 ,๐2 (๐ฆ1 , ๐ฆ2 ) and
that ๐1 = ๐1 (๐1 , ๐2 ), ๐2 = ๐2 (๐1 , ๐2 ), where ๐ผ = (๐1 , ๐2 ) is not necessarily a one-to-one
(but continuous) function of y over RY = ๐
๐1 ,๐2 . Furthermore, suppose that we can partition
๐
๐ into a finite collection of sets, say, A0, A1, A2, โฆ , Ak, where ๐(๐ โ ๐ด0 ) = 0, ๐๐๐ ๐(๐ โ
๐ด๐ ) > 0 for all i โ 0, and ๐๐1 ,๐2 (๐ฆ1 , ๐ฆ2 ) is continuous on each Ai , i โ 0. Furthermore, suppose
that the transformation is 1-to-1 from Ai (i = 1, 2, โฆ, k,) to B, where B is the domain of ๐ผ =
โ1
โ1
(โ), ๐2๐
(โ)) is a 1-to-1 inverse mapping of Y
(๐1 = ๐1 (๐1 , ๐2 ), ๐2 = ๐1 (๐1 , ๐2 )) such that (๐1๐
to U from B to Ai.
Let Ji denotes the Jacobina computed from the ith inverse, i = 1, 2, โฆ, k. Then, the pdf of U is
given by
๐
๐๐1 ,๐2 (๐ข1 , ๐ข2 ) = {
โ ๐๐1 ,๐2 [๐1๐ โ1 (๐ข, ๐ฃ), ๐2๐ โ1 (๐ข, ๐ฃ)]|๐ฝ๐ | ,
๐ข โ ๐ต = ๐
๐
๐=1
0,
otherwise.
Example 7. Suppose that ๐1 ~ N(0, 1), ๐2 ~ N(0, 1), and that ๐1 and ๐2 are independent.
Define the transformation
๐1
๐1 = ๐1 (๐1 , ๐2 ) =
๐2
๐2 = ๐2 (๐1 , ๐2 ) = |๐2 |.
Find each of the following distributions:
(a) ๐๐1 ,๐2 (๐ข1 , ๐ข2 ), the joint distribution of ๐1 and ๐2 ,
(b) ๐๐1 (๐ข1 ), the marginal distribution of ๐1 .
Solutions. (a) Since ๐1 and ๐2 are independent, the joint distribution of ๐1 and ๐2 is
๐๐1 ,๐2 (๐ฆ1 , ๐ฆ2 ) = ๐๐1 (๐ฆ1 )๐๐2 (๐ฆ2 )
10
1 โ๐ฆ 2/2 โ๐ฆ2 /2
๐ 1 ๐ 2
2ฯ
= {(๐ฆ1 , ๐ฆ2 ): โโ < ๐ฆ1 < โ, โโ < ๐ฆ2 < โ}.
=
Here, ๐
๐1 ,๐2
The transformation of Y to U is not one-to-one because the points (๐ฆ1 , ๐ฆ2 ) and (โ๐ฆ1 , โ๐ฆ2 )
are both mapped to the same (๐ข1 , ๐ข2 ) point. But if we restrict considerations to either
positive or negative values of ๐ฆ2 , then the transformation is one-to-one. We note that the
three sets below form a partition of ๐ด = ๐
๐1 ,๐2 as defined above with ๐ด1 = {(๐ฆ1 , ๐ฆ2 ): ๐ฆ2 > 0},
๐ด2 = {(๐ฆ1 , ๐ฆ2 ): ๐ฆ2 < 0} , and ๐ด0 = {(๐ฆ1 , ๐ฆ2 ): ๐ฆ2 = 0}.
The domain of U, ๐ต = {(๐ข1 , ๐ข2 ): โโ < ๐ข1 < โ, ๐ข2 > 0} is the image of both ๐ด1 and ๐ด2 under
the transformation. The inverse transformation from ๐ต ๐ก๐ ๐ด1 and ๐ต ๐ก๐ ๐ด2 are given by:
๐ฆ1 = ๐11 โ1 (๐ข1 , ๐ข2 ) = ๐ข1 ๐ข2
๐ฆ2 = ๐21 โ1 (๐ข1 , ๐ข2 ) = ๐ข2
and
๐ฆ1 = ๐12 โ1 (๐ข1 , ๐ข2 ) = โ๐ข1 ๐ข2
๐ฆ2 = ๐22 โ1 (๐ข1 , ๐ข2 ) = โ๐ข2
The Jacobians from the two inverses are ๐ฝ1 = ๐ฝ1 = ๐ข2
The pdf of U on its domain B is thus:
2
๐๐1 ,๐2 (๐ข1 , ๐ข2 ) = โ ๐๐1 ,๐2 [๐1๐ โ1 (๐ข, ๐ฃ), ๐2๐ โ1 (๐ข, ๐ฃ)]|๐ฝ๐ |
๐=1
Plugging in, we have:
๐๐1 ,๐2 (๐ข1 , ๐ข2 ) =
Simplifying, we have:
1 โ(๐ข ๐ข )2 /2 โ๐ข2/2
1 โ(โ๐ข ๐ข )2 /2 โ(โ๐ข )2 /2
1 2
2
|๐ข2 |
๐ 1 2
๐ 2 |๐ข2 | +
๐
๐
2ฯ
2ฯ
๐ข2 โ(๐ข2 +1)๐ข2 /2
2 , โโ < ๐ข < โ, ๐ข > 0
๐ 1
1
2
ฯ
(b) To obtain the marginal distribution of ๐1 , we integrate the joint pdf๐๐1 ,๐2 (๐ข1 , ๐ข2 )
over ๐ข2 . That is,
๐๐1 ,๐2 (๐ข1 , ๐ข2 ) =
โ
๐๐1 (๐ข1 ) = โซ ๐๐1 ,๐2 (๐ข1 , ๐ข2 ) ๐๐ข2
0
1
, โโ < ๐ข1 < โ
๐(๐ข12 + 1)
Thus, marginally, U1 follows the standard Cauchy distribution. โก
=
REMARK: The transformation method can also be extended to handle n-variate
transformations. Suppose that ๐1 , ๐2 , โฆ , ๐๐ are continuous random variables with joint pdf
๐๐ (๐ฆ) and define
๐1 = ๐1 (๐1 , ๐2 , โฆ , ๐๐ )
๐2 = ๐2 (๐1 , ๐2 , โฆ , ๐๐ )
โฎ
11
๐๐ = ๐๐ (๐1 , ๐2 , โฆ , ๐๐ ).
Example 8. Given independent random variables ๐ and๐, each with uniform distributions
on (0, 1), find the joint pdf of U and V defined by U=X+Y, V=X-Y, and the marginal pdf of U.
The joint pdf of ๐ and ๐ is๐๐,๐ (๐ฅ, ๐ฆ) = 1, 0 โค ๐ฅ โค 1, 0 โค ๐ฆ โค 1.
The inverse transformation, written in terms of observed values is
๐ข+๐ฃ
๐ขโ๐ฃ
๐ฅ=
, ๐๐๐ ๐ฆ =
.
2
2
It is clearly one-to-one. The Jacobian is
1/2 1/2
๐(๐ฅ,๐ฆ)
1
1
๐ฝ = ๐(๐ข,๐ฃ) = |
| = โ 2, so |๐ฝ| = 2.
1/2 โ1/2
We will use ๐ to denote the range space of (๐, ๐), and โฌ to denote that of (๐, ๐), and these
are shown in the diagrams below. Firstly, note that there are 4 inequalities specifying
ranges of ๐ฅ and๐ฆ, and these give 4 inequalities concerning ๐ข and๐ฃ, from which โฌcan be
determined. That is,
๐ฅ โฅ 0 โ ๐ข + ๐ฃ โฅ 0, that is, ๐ฃ โฅ โ๐ข
๐ฅ โค 1 โ ๐ข + ๐ฃ โค 2, that is ๐ฃ โค 2 โ ๐ข
๐ฆ โฅ 0 โ ๐ข โ ๐ฃ โฅ 0, that is ๐ฃ โค ๐ข
๐ฆ โค 1 โ ๐ข โ ๐ฃ โค 2, that is ๐ฃ โฅ ๐ข โ 2
Drawing the four lines
๐ฃ = โ๐ข, ๐ฃ = 2 โ ๐ข, ๐ฃ = ๐ข, ๐ฃ = ๐ข โ 2
On the graph, enables us to see the region specified by the 4 inequalities.
12
Now, we have
1 1
โ๐ข โค ๐ฃ โค ๐ข, 0 โค ๐ข โค 1
= ,
{
๐ข โ 2 โค ๐ฃ โค 2 โ ๐ข, 1 โค ๐ข โค 2
2 2
The importance of having the range space correct is seen when we find marginal pdf of ๐.
โ
๐๐ (๐ข) = โซโโ ๐๐,๐ (๐ข, ๐ฃ)๐๐ฃ
๐๐,๐ (๐ข, ๐ฃ) = 1 โ
๐ข 1
โซโ๐ข 2 ๐๐ฃ,
= { โซ2โ๐ข 1 ๐๐ฃ,
๐ขโ2 2
0,
={
0โค๐ขโค1
1โค๐ขโค2
๐๐กโ๐๐๐ค๐๐ ๐
๐ข,
0โค๐ขโค1
2 โ ๐ข, 1 โค ๐ข โค 2
= ๐ข๐ผ[0,1] (๐ข) + (2 โ ๐ข)๐ผ(1,2] (๐ข), using indicator functions.
Example 9. Given ๐and ๐ are independent random variables each with pdf๐๐ (๐ฅ) =
1 โ๐ฅ
๐ 2 , ๐ฅ โ [0, โ), find the distribution of(๐ โ ๐)/2.
2
We note that the joint pdf of ๐ and ๐ is
1 ๐ฅ+๐ฆ
๐๐,๐ (๐ฅ, ๐ฆ) = ๐ 2 , 0 โค ๐ฅ < โ, 0 โค ๐ฆ < โ.
4
Define๐ = (๐ โ ๐)/2. Now we need to introduce a second random variable ๐ which is a
function of ๐ and๐. We wish to do this in such a way that the resulting bivariate
13
transformation is one-to-one and our actual task of finding the pdf of U is as easy as
possible. Our choice for ๐ is of course, not unique. Let us define๐ = ๐. Then the
transformation is, (using๐ข, ๐ฃ, ๐ฅ, ๐ฆ, since we are really dealing with the range spaces here).
๐ฅ = 2๐ข + ๐ฃ
๐ฆ=๐ฃ
From it, we find the Jacobian,
2 1
๐ฝ=|
|=2
0 1
To determineโฌ, the range space of ๐ and๐, we note that
๐ฅ โฅ 0 โ 2๐ข + ๐ฃ โฅ 0 , that is ๐ฃ โฅ โ2๐ข
๐ฅ < โ โ 2๐ข + ๐ฃ < โ
๐ฆโฅ0 โ ๐ฃโฅ0
๐ฆ<โ โ ๐ข<โ
So โฌ is as indicated in the diagram below.
Now, we have
๐๐,๐ (๐ข, ๐ฃ) =
1 โ2๐ข+๐ฃ+๐ฃ
1
2
๐
โ 2 = ๐ โ(๐ข+๐ฃ) , (๐ข, ๐ฃ) โ โฌ.
4
2
The marginal pdf of ๐ is obtained by integrating ๐๐,๐ (๐ข, ๐ฃ) with respect to๐ฃ, giving
โ
1 โ(๐ข+๐ฃ)
โซ
๐
๐๐ฃ, ๐ข < 0
โ2๐ข 2
๐๐ (๐ข)
=
โ
1 โ(๐ข+๐ฃ)
โซ
๐
๐๐ฃ, ๐ข > 0
{ 0 2
14
1 ๐ข
๐ ,
๐ข<0
= {2
1 โ๐ข
๐ ,
๐ข>0
2
1
= ๐ โ|๐ข| , โ โ < ๐ข < โ
2
[This is sometimes called the ๐๐๐๐๐๐ (๐๐ ๐๐๐ข๐๐๐)๐๐ฅ๐๐๐๐๐๐ก๐๐๐ distribution.]
Homework #2.
Question 1 is the exercise on page 9 of this handout.
Questions 2-8 (from our textbook): 2.3, 2.9, 2.11, 2.13, 2.18, 2.34, 2.38
15
© Copyright 2026 Paperzz