Proton resonance elastic scattering of 30Mg for single particle structure of 31Mg N. Imai (KEK) Single particle energies at ‘Island of inversion’ • Energy gap between pf-sd orbits. • Single particle states will be a direct evidence of the shell evolution. T. Otsuka et al, PRL104,012501 Spherical vs. deformed • g.s. of 31Mg is well deformed. m(31Mg g.s.) = -0.88355(15)mn Ip = 1/2+ G. Neyens, PRL94, 022501 • Ip = 7/2- state should be in high Ex in the deformed potential. I. Hamamoto, PRC76, 054319 • Low-lying 7/2- state should be spherical. 7 / 2 Mg(0 ) 7 / 2 30 Mg(2 ) 3 / 2 30 How much is S of 7/2-? Isobaric Analog Resonances of bound states of 31Mg p n Parent state p n IAS fcorefn fn = fp fcorefp Resonance shape = angular momentum (l) Resonance width = total width (Gtot) Resonance height = proton width (Gp) ~ Spp Thick target inverse kinematics(T2IK) proton resonance elastic scattering with RIBs Excitation function of ds/dW(qlab.~0) cf.) V.Z. Goldberg, ENAM98 1. One fixed energy 2. Large cross section ~ several 10 mb/sr 3. High-energy recoil proton ~ 4x Ereso 30Mg 3MeV/u Easy identification of resonances Recoil proton Thick hydrogen Target (CH2) Example: p(34Si,p) for 35Si@RIKEN 34Si: 4-6 MeV/u 7x104 pps 1 days accumulation CH2 C S of f(7/2-) in 35Si was successfully determined. N. Imai et al., in preparation. Expected excitation function of p(30Mg, p) # Ex (keV) Jp Ecm (MeV) Gp (keV) 1 0. 1/2+ 2.307 57. 2 50. (3/2+) 2.357 11. 3 221. (3/2-) 2.528 50. 4 461. (7/2-) 2.768 6. 5 673. (3/2+) 2.980 27. 6 945. (5/2+) 3.252 27. S=0.3 was assumed. 30Mg7+ @2.83MeV/u beams (Ecm < 2.76 MeV) Experimental setup Vacuum chamber for IS512 •Target: 60 mm (~ 6mg/cm2) thick CH2 target 6 mg/cm2 C target •Detector: dE-E annular (0.3+ 0.5 + 0.5 mm) or square type (0.3+ 1.0 mm) cf.) Highest Ep is 12 MeV 1 mm thick SSDs •Absolute s: off-resonance cross sections dEp < 80 keV for qlab< 5.5 deg Contamination in beam Ex. 30Mg7+: 82%, 30Al7+ :18% O.T. Niedermaier, PhD thesis. Assuming 30Mg7+ (A/q=4.2857): 80% 30Al7+ :20% Red line: inclusive measurement 20% 30Al + 80% 30Mg (p,p) Black line: 100% 30Mg(p,p) Blue line: 20% 30Al(p,p) Even with the inclusive measurement, shape does not change so much. Some times, laser-off measurement will be needed for contribution of 30Al beam. Yield Estimation • • • • ds/dW ~ 80 mb/srlab. (off-resonance) d = 160 mg/cm2 (20 keV/u-loss of 30Mg in CH2) I = 4x104 pps DS = 29 msr ( qlab < 5.5 deg) 100 counts/day/20keVcm-bin Beam time request Beam transports 3 shifts IAR measurements w/ stable 26Mg beams including circuit tuning 2 shifts IAR measurements w/CH2 w/30Mg 3 shifts BG runs w/C target w/30Mg 2 shifts total 10 shifts Collaboration • KEK : N.I., Y. Hirayama, H. Ishiyama, S.C. Jeong, H. Miyatake, Y.X. Watanabe • Lund: J. Cederkall • Kyusyu-U: T. Teranishi • CNS, Univ. o Tokyo: H. Yamaguchi, S. Kubono • Fin (d,p) vs Isobaric Analog Resonance • (d,p) reaction Direct measurement wide angular distribution of ds/dW ds/dW @ forward angle dElab. ~ 1/3 dEc.m. g-ray : suffer from decay scheme • (p,p) resonance scattering Indirect measurement excitation function of ds/dW ds/dW @ backward angle~180 degc.m. dElab. ~ 4 dEc.m. Lower isospin excitation sometimes problem 30Mg(d,p)31Mg* (460 keV) DWUCK4 DL=3, S=1 DL=2, S=0.4 Effect of T< excitation 26Mg(p,p) for IARs of 27Mg 0.4 keV resolution 6 resonances C.R. Westerfeldt et al, NPA303(‘78)111 20 keV resolution Fit with 2 resonances (l=1, and 0) # Gp (keV) E(keV) Jp Gpfit Gtfit Efit(keV) 1 40.9 2022.2 3/2- 50.2(43) 57.1(23) 2015(2) 2 0.130 2047.9 3/2+ - - - 3 70.4 2049.2 1/2+ 66.4(33) 66.4(162) 2051(3) 4 0.075 2049.3 7/2- - - - 5 1.1 2140.4 3/2+ - - - 6 5.6 2141.8 1/2- - - - Estimation of Gp • R-matrix theory S pp Pl e 2d 2u n2 (r ) Gp ( N Z 1) mr r ac 2008/2/19 3rd RIBF-PAC • 30Mg(2+): Ex. 1482 keV
© Copyright 2026 Paperzz