Strategies for Problem Solving. Last

Strategies for Problem Solving
To solve a word problem in algebra, you need to understand the situation and get the facts. A
word problem usually tells a brief story involving numbers about people, places, things, or
situations. Both the words and the numbers give meaning to the problem. Sometimes,
whoever wrote the problem will throw in irrelevant data to throw you off. This is a test to
make sure you comprehend the given concept. To understand the situation stated in the
problem, follow the strategies given in the list below.
General Strategies:















Read the problem at least three times before you begin to solve it.
Underline the key words and patterns.
Write the meaning of the problem in your own words.
Identify given numerical information and denominate numbers.
Identify the question(s)
Convert if necessary to numerical information
Identify extra information
Use correct (if asked) answer choices, eliminating the obvious wrong answers.
Sometimes it is helpful to make a diagram or sketch to visualize what the problem is
really asking for.
Set the problem using the translation with specific terms.
Solve the equation or inequality for the given variable.
Substitute the values for the variable and reject which doesn’t belong to the
requested value.
Write additional information (formulas, pneumonic devices, charts, etc.) learned
previously.
Working backwards is a way to help to find the answer to word problems.
Check the answer in the original. Use accuracy. The answer needs to be reasonable.
Special Strategies:
 Identify the type of word problem (problems involving: age, number, ticket, money.
problems using: areas, perimeters, and volumes. problems with: investments,
mixtures or solutions, work problems).
 Identify the relationship between parameters, direct or inverse variation.
 Recognize the equation types (linear, quadratic, rational, fractional).
 Translate correctly the mathematical term (consecutive odd integer, twice the sum,
at least, decrease, increase, the square, the reciprocal, etc).
 Organize the information through charts.
 Balance the unit of measures in both sides of the equation
Buzz Words:
Addition
Subtraction
Multiplication
Division
Equals
increased by, more
than, combined
together, total of
sum, added to
decreased by,
minus, less than,
difference
between,
less/fewer than
of, times, multiplied
by, product of,
increased/decreased
by
per, a out of
ratio of, quotient
of, percent (divide
by 100)
is, are, was, were,
will be
gives, yields, sold
for
By Molly Harris