1. Let X 1 , X 2 ,, X n be a random sample from the Gamma( , ) distribution
f (x | , )
(a)
(b)
(c)
(d)
1
( )
x
x 1e , x 0 , 0 , 0 .
( 8 %) Find the method of moment estimates of and .
( 7 %) Find the MLE of , assuming is known.
( 7 %) Giving 0 , find the Cramer-Rao lower bound of estimates of .
( 8 %) Giving 0 , find the UMVUE of .
2. Suppose that X 1 , X 2 ,, X n are iid ~ B ( 2, p ) , p (0,1) .
Let ( p) 2 p(1 p) .
n
(a) ( 5 %) Show that T X i is a sufficient statistic for p .
i 1
1, if X 1 1
(b) ( 5 %) Let Y
. Show that Y is an unbiased estimate of ( p ) .
0
,
if
X
1
1
(c) (10%) Find the UMVUE W of ( p ) .
3. Let X 1 , X 2 , , X n be a random sample from a Poisson ( ) , 0 , distribution.
Consider testing H 0 : 1 vs H1 : 3 .
(a) (10%) Find a UMP level test, 0 1.
(b) ( 7 %) For n 3 , the test rejects H 0 , if X 1 X 2 X 3 5 .
Find the power function ( ) of the test.
(c) ( 8 %) For n 3 , the test rejects H 0 , if X 1 X 2 X 3 5 .
Evaluate the size and the power of the test.
4. (10%) Let X 1 , X 2 , , X n be iid Poisson ( ) distribution, and let the prior
distribution of be a Gamma( , ) distribution, 0 , 0 .
posterior distribution of .
Find the
5. Let X 1 , X 2 , , X n be a random sample from an exponential distribution with mean
, 0 .
n
(a) ( 5 %) Show that T X i is a sufficient statistic n for .
i 1
(b) ( 5 %) Show that the Poisson family has a monotone likelihood ratio, MLR.
(c) ( 5 %) Find a UMP level test of H 0 : 0 1 vs H1 : 1 by the
Karlin-Rubin Theorem shown below.
[Definition] A family of pdfs or pmfs {g (t | ) | } has a monotone likelihood ratio,
g (t | 2 )
MLR, if for every 2 1 ,
is a monotone function of t .
g (t | 1 )
[Karlin-Rubin Theorem] Suppose that T is a sufficient statistic for and the pdfs or
pmfs {g (t | ) | } has a non-decreasing monotone likelihood ratio.
Consider testing H 0 : 0 vs H1 : 0 . A UMP level test rejects
H 0 if and only if T t 0 , where P 0 (T t0 ) .
1
數理統計期末考試試題答案
x
( 1) 1
x
e
dx
and
( )
(
)
0
1. (a) Since E ( X )
1
x
( 2) 2
1
x
e
dx
( 1) 2 ,
( )
( )
0
E( X 2 )
1
Let m1 and m2 ( 1) 2
~
m2
m12
1
m1 m2 m12
, ~
.
m1
m2 m12
m12
~
Furthermore, m1 X , m2 m12
The MME of .and are ~
1 n 2
1 n
(n 1) 2
X i X 2 ( X i2 X ) 2
S ,
n i 1
n i 1
n
~ (n 1) S 2
,
nX
(n 1) S 2
nX 2
n
n
x) [
(b) L( | , ~
1
i 1 ( )
1
xi
xi
x
i
e ]
n
1
1
( xi
[( ) ]n i 1
i 1
)e
n
n
x1
i 1
ln L( | , ~
x ) n ln ( ) n ln ( 1) ln xi i 1
Let
n
n
1 n
x
ˆ 1
ln L( | , ~
x)
x
0
xi .
i
2 i 1
n i 1
Furthermore,
n
2 n
n 2nx
ln L( | , ~
x)
ln xi
2
2 3 i 1
2 3
2
n 2nx nx 2nx n
ln L( ˆ | , ~
x)
0,
2
ˆ 2 ˆ 3
x3
x2
X
So, ˆ
is the MLE of .
2
(c) E [
n
2 n
n 2n n
ln L( | , ~
x )] E (
Xi )
2
2 3 i 1
2
3
2
2
1
CRLB =
E [
2
2
ln L( | , ~
x )]
2
n
X
is an unbiased estimate of , and
, ˆ
X
1 2 2
X
is the UMVUE of .
Var ( )
CRLB, ˆ
2
n
n
(d) Since E (
X
)
2
[Or] f ( x | , )
1
I (0, ) ( x) x
1
x
e
1
1
I (0, ) ( x) x 1 exp[ x( )]
( )
( )
Given , { f ( x | )} is an exponential family in .
n
T X i is a sufficient statistic for .
i 1
X
T
Since ˆ
is an unbiased estimate of and a function of sufficient
n
X
statistics T , by Rao-Blackwell Theorem, ˆ
is the UMVUE of .
n
n 2
2. (a) f ( x1 , x 2 , , x n | p) f ( xi | p ) [ I{0,1,2} ( xi ) p xi (1 p) 2 xi ]
x
i 1
i 1 i
n
n 2
xi
2
p xi
p i
[ I{0,1,2} ( xi )(
) (1 p) 2 ] [ I{0,1,2} ( xi )](
) 1 (1 p) 2n
x
x
1 p
1 p
i 1 i
i 1 i
n
n 2
p T ( ~x )
Let g (T ( ~
x ), p) (
)
(1 p) 2n and h( x) I{0,1,2} ( xi ) . By
x
1 p
i 1 i
n
factorization theorem, T X i is a sufficient statistic for p .
i 1
2
2
p
[Or] f ( x | p) I{0,1,2} ( x) p x (1 p) 2 x I{0,1,2} ( x)(1 p) 2 exp[ x ln(
)]
1 p
x
x
n
{ f ( x | p)} is an exponential family T X i is a sufficient statistic.
i 1
2
(b) E (Y ) 1 P( X 1 1) 0 P( X 1 1) p1 (1 p) 2 1 2 p(1 p) , so Y is an
1
unbiased estimate of ( p ) .
n
(c) If X 1 , X 2 ,, X n , n N , are iid ~ B ( 2, p ) , then T X i ~ B (2n, p ) .
i 1
n
E (Y | T t )
P(Y 1 & T t ) P( X 1 1 & T t )
P(T t )
P(T t )
P( X 1 1 & X i t 1)
i2
P(T t )
n
2n 2 t 1
p (1 p ) 2n t 1
2 p (1 p )
t
1
i2
P(T t )
2n t
p (1 p ) 2n t
t
2(2n 2)!
t!(2n t )! t (2n t )
, t 0,1,2,,2n .
(t 1)!(2n t 1)! (2n)!
n(2n 1)
T (n T )
By Rao-Blackwell Theorem, W E (Y | T )
is the UMVUE of ( ) e .
2(2n 1)
P( X 1 1) P( X i t 1)
3. (a) By Neyman-Pearson Lemma, a UMP level test rejects H 0 if and only if
3
f ( x1 , x2 ,, xn | 3) kf ( x1 , x2 ,, xn | 1) .
n
n 1x i
3 xi 3
e ] k [
e 1 ] 3 xi ke2n ( xi ) ln 3 2n ln k
i 1 ( xi )!
i 1 ( xi )!
i 1
n
2 ln k
c
xi
ln
3
i 1
n
[
n
Since
X i ~ Poisson (n ) , a UMP level
test rejects H 0 if and only if
i 1
n
X i c , where c is the smallest integer satisfying
i 1
ni n
i! e .
i c 1
n
[Or] T X i is sufficient for and T ~ Poisson (n ) .
i 1
By the corollary of Neyman-Pearson Lemma, a UMP level test rejects H 0
if and only if g (t | 3) kg(t | 1) .
n
3t 3
1t
e k e 1 3t ke2 ( x1 ) ln 3 2 ln k
t!
t!
i 1
(b) ( ) P ( X 1 X 2 X 3 5) 1 P ( X 1 X 2 X 3 4)
(3 ) 0 (3 )1 (3 ) 2 (3 ) 3 (3 ) 4 3
, 0
]e
0!
1!
2!
3!
4!
30 31 32 33 34 3
(c) The size of this test is (1) 1 [
]e
0.1847
0!
1!
2!
3!
4!
9 0 91 9 2 93 9 4 9
The power of this test is (3) 1 [
]e 0.9450
0! 1! 2! 3! 4!
1[
n
4. Since T X i is sufficient for and T ~ Poisson (n ) .
i 1
1
(n ) t n
1
e
; and f ( )
fT | (t | )
e
t!
( )
1
( n )
(n ) t n
1
nt
,
e
1e
t 1e
f (t , )
0
t!
( )
t!( )
f T (t )
nt
t 1
t!( )
1
( n )
e
d
0
nt
f (t , )
t!( )
f | t ( | t )
f T (t )
nt
t 1
e
nt
t!( )
(n
1
(t )(
t
)
n 1
)
t 1
e
(n
1
)
t (t )( ) t
(t )(
)
n 1
n 1
t!( )
The posterior distribution of is Gamma(t ,
).
n 1
4
, 0
1
i
1
1 n
5. (a) f ( x1 , x2 , , xn | ) f ( xi | ) ( e
I (0, ) ( xi ))
e
I (0, ) ( xi )
n
x
n
i 1
T (~
x)
1
x ), )
e and
Let g (T ( ~
n
x
i 1
n
i 1
n
h( ~
x ) I (0, ) ( xi ) . By factorization theorem,
i 1
n
T X i is a sufficient statistic for .
i 1
x
1
1
1
[Or] f ( x | ) e I (0, ) ( x) I (0, ) ( x) exp[ x( )]
n
{ f ( x | )} is an exponential family. T X i is a sufficient statistic.
i 1
X
T
Since ˆ
is an unbiased estimate of and a function of sufficient
n
X
statistics T , by Rao-Blackwell Theorem, ˆ
is the UMVUE of .
n
(b) T X i ~ Poisson ( n ) g (t | )
i 1
(n ) t n
, t 0,1,2,
e
t!
(n2 ) t n 2
t
e
2 n( 2 1 )
g (t | 2 )
t
!
e
g (t | 1 )
(n1 ) t n1 1
e
t!
g ( t | 2 )
If 2 1 2 1
is an increasing function of t ,
1
g (t | 1 )
Hence {g (t | ) | 0} of T has MLR.
n
1
i 1
(n) n
(c) T X i ~ Gamma(n, ) g (t | )
1
g (t | 2 )
g (t | 1 )
(n) 2n
1
(n)1n
If 2 1 (
1
2
t
n 1
t
e , t 0
t
t n 1e 2
1
1
( )t
1 e 2 1 , t 0
t
2
n
t n 1e 1
1
1
) 2 1 0
1 2
Hence {g (t | ) | 0} of T has an MLR.
g (t | 2 )
is increasing in t .
g (t | 1 )
n
By Karlin-Rubin Theorem, the UMP size test rejecting H 0 if T X i c , where c
i 1
n
satisfies that P{ X i c | 1} ; i.e.,
i 1
c
5
1
( n) x
n 1 x
e
dx .
© Copyright 2026 Paperzz