Module name: Modeling biomedical systems Academic year: Faculty of: 2032/2033 MIS-2-308-IH-n ECTS credits: 5 Metals Engineering and Industrial Computer Science Field of study: Study level: Code: Applied Computer Science Specialty: Computer Science in Metallurgical Engineering Second-cycle studies Lecture language: English Form and type of study: Profile of education: Part-time studies Academic (A) Semester: 3 Course homepage: Responsible teacher: prof. dr hab. inż. Rońda Jacek ([email protected]) Academic teachers: prof. dr hab. inż. Rońda Jacek ([email protected]) Description of learning outcomes for module MLO code Student after module completion has the knowledge/ knows how to/is able to Connections with FLO Method of learning outcomes verification (form of completion) Student knows how to prepare computational model for bioengineering and presentations about modeling in bioengineering IS2A_U01, IS2A_U03, IS2A_U11, IS2A_U20 Activity during classes M_W001 Student has knowledge about bioengineering IS2A_U01, IS2A_U03, IS2A_U07, IS2A_U08, IS2A_U09, IS2A_U16 Examination M_W002 Student has knowledge about ontologies, reasoning and logic IS2A_U02 Scientific paper M_W003 Student has knowledge about cognitive biases IS2A_W01, IS2A_W02, IS2A_W03, IS2A_W08, IS2A_W17, IS2A_W23 Examination Skills M_U001 Knowledge FLO matrix in relation to forms of classes 1/5 Module card - Modeling biomedical systems Conversation seminar Seminar classes Practical classes Fieldwork classes - - - - - + - - - - - M_W001 Student has knowledge about bioengineering + - - - - - - - - - - M_W002 Student has knowledge about ontologies, reasoning and logic + - - - - - - - - - - M_W003 Student has knowledge about cognitive biases + - - - - - - - - - - Others E-learning Project classes Student knows how to prepare computational model for bioengineering and presentations about modeling in bioengineering Workshops Laboratory classes Form of classes Auditorium classes Student after module completion has the knowledge/ knows how to/is able to Lectures MLO code Skills M_U001 Knowledge Module content Lectures Introduction Berners-Lee, T., Hendler, J., and Lassila, O. The Semantic,Web. Scientific American, May 2001: http://www.scientificamerican.com/article.cfm?id=the-semantic-web. Clinical Systems -Ash, J.S., Berg, M., and Coiera. Some unintended consequences of information technology in health care: The nature of patient care information system-related errors. J Am Med Inform Assoc. 2004;11:104-112: http://jamia.bmj.com/content/11/2/104.full.pdf+html, -President’s Council of Advisors on Science and Technology. Realizing the Full Potential of Health Information Technology to Improve Healthcare for Americans: The Path Forward. December 2010: http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-health-it-report.pdf Classification Systems -Vanopstal, K., Vander Stichele, R., Laureys, G., and Buysschaert. Vocabularies and retrieval tools in biomedicine: Disentangling the terminological knot. Journal of Medical Systems 35(4):527–543, 2009. http://www.springerlink.com/content/72760286411×43kr/ -Mathews, A.W. Walked Into a lamppost? Hurt while crocheting? Help Is on the way. Wall Street Journal, Sept. 13 2011. http://online.wsj.com/article/ SB10001424053111904103404576560742746021106.htmlNational Library of Medicine. Unified Medical Language System Basics. 2/5 Module card - Modeling biomedical systems http://www.nlm.nih.gov/research/umls/new_users/online_learning/OVR_001.htm Conceptual Modeling - Holland, I.M. and Lieberherr, K.J.Object-oriented design. ACM Computing Surveys 28(1), 1996. http://dl.acm.org/citation.cfm?id=234421 - Ahir, S.S. Understanding the Unified Modeling Language (UML). —http://www.methodsandtools.com/archive/archive.php?id=76 Biomedical Modeling -Smith, B., and Ceusters, W. HL7 RIM: An incoherent standard. Studies in Health Technology and Informatics 124:133–138, 2006. http://ontology.buffalo.edu/HL7/doublestandards.pdf -Schadow, G., Mead, C.N., and Walker, M. The HL7 Reference Information Model under Scrutiny. Studies in Health Technology and Informatics, 2006. http://amisha.pragmaticdata.com/~schadow/Schadow-MIE06-r3.pdf -Dolin, R.H., Alschuler, L., Boyer, S., et al. HL7 Clinical Document Architecture, Release 2. Journal of the American Medical Informatics Association 13:30–39, 2006. http://jamia.bmjjournals.com/content/13/1/30.abstract -Beale, T. Archetypes: constraint-based domain models for future-proof information systems. OOPSLA Workshop on Behavioral Semantics, 2002. http://www.openehr.org/publications/archetypes/archetypes_beale_oopsla_2002.pdf, -Brazma, A., Hingamp, P., Quackenbush, J., et al. Minimum information about a icroarray experiment (MIAME)—towards standards for microarray data. Nature Genetics 29(12):365–371, 2001. http://www.nature.com/ng/journal/v29/n4/pdf/ng1201365.pdf Ontologies -Bodenreider , O., and Stevens, R. Bio-ontologies: current trends and future directions. Briefings in Bioinformatics 7(3):256–275. http://bib.oxfordjournals.org/content/7/3/256.short, -Blake, J.A., and Bult, CJ. Beyond the data deluge: Data integration and bio-ontologies. Journal of Biomedical Informatics 39:314–320, 2006. http://www.sciencedirect.com/science/article/pii/S1532046406000190 -Noy, N.F., and McGuinness, D.L., Ontology Development 101: A Guide to Creating Your First Ontology. http://bmir.stanford.edu/file_asset/index.php/108/SMI-2001-0880.pdf Challenges with Ontologies -Rogers, J., and Rector, A. GALEN’s model of parts and wholes: Experience and comparisons. In: Proc. AMIA Ann Symp 2000:714–718. http://www.opengalen.org/download/PartsAndWholes.pdf -Smith, B., Ashburner, M., Rosse, C., et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnology 25 :1251–1255, 2007. http://www.nature.com/nbt/journal/v25/n11/full/nbt1346.html Knowledge Representation -Barski, C. How to tell stuff to a computer. http://www.lisperati.com/tellstuff/index.html -Davis, R. Shrobe, H., and Szolov its, P. What is a knowledge representation? AI Magazine 14(1):17–33, 1993. http://groups.csail.mit.edu/medg/ftp/psz/k-rep.html Rule-based Systems -Clancy, W.J. The epistemology of a rule-based system: A framework for explanation. Artificial Intelligence 29:215–251, 1983. http://cll.stanford.edu/~sborrett/media/Clancey1983_epistemology%20of%20a%20rul e%20based%20expert%20system.pdf 3/5 Module card - Modeling biomedical systems Probabilistic Reasoning -Charniak, E. Bayesian networks without tears. AI Magazine,12(3):50–63, 1991. http://www-psych.stanford.edu/~jbt/224/Charniak_91.pdf Description Logic -Mazzocchi, S. Close World vs. Open World: the First Semantic Web Battle. http://www.betaversion.org/~stefano/linotype/news/91/ -Rector, A.L. Getting the foot out of the pelvis: modeling problems affecting SNOMED CT hierarchies in practical applications. Journal of the American Medical Informatics Association 18:432–440, 2011. http://jamia.bmj.com/content/18/4/432.full.pdf+html?sid=ed9ab9a6-ce53-461e-86d54c7a27b9f2b0 Representing Tasks and Procedures Newell, A. The knowledge level. AI Magazine 2(2), Fall 1981. http://www.aaai.org/ojs/index.php/aimagazine/article/view/99 Developing Systems Stasys, B. How Siri on iPhone 4S works and why it’s a big deal. http://bit.ly/unwiredview_Siri-is-a-Big-Deal Cognitive Biases -Tversky, A., and Kahneman, D. Judgment under uncertainty: Heuristics and biases. Science 185:1124–1131, Sept 27, 1974. http://www.sciencemag.org/content/185/4157/1124.full.pdf Controversies in Informatics -Robbins, P., and Aydede, M. A short primer on situated cognition. In: Robbins, P., and Aydede, M., eds. The Cambridge Handbook of Situated Cognition, 2009. http://sites.google.com/site/philipmovealpha/short_primer.pdf -Compton, P., Peters, L., Edwards, G., and Lavers, T.G. Experience with ripple-down rules. In: Specialist Group on AI Conference, 2005. http://www.sciweavers.org/publications/experience-ripple-down-rules -Merrill, G.H. Realism and reference ontologies: Considerations, reflections, and problems. Applied Ontology 5(3, 4):189–221, 2010. http://iospress.metapress.com/content/21l17015v46687v0/ Seminar classes Modeling biomedical systems Preperation of presentations on the selected lectures, development of practical computer applications. Method of calculating the final grade Final test 50 % + Computational project 35% + Presentation 15% Prerequisites and additional requirements Zgodnie z Regulaminem Studiów AGH podstawowym terminem uzyskania zaliczenia jest ostatni dzień zajęć w danym semestrze. Termin zaliczenia poprawkowego (tryb i warunki ustala prowadzący moduł na zajęciach początkowych) nie może być późniejszy niż ostatni termin egzaminu w sesji poprawkowej (dla przedmiotów kończących się egzaminem) lub ostatni dzień trwania semestru (dla przedmiotów niekończących się egzaminem). Recommended literature and teaching resources 4/5 Module card - Modeling biomedical systems Literature listed in the content of lectures. Scientific publications of module course instructors related to the topic of the module http://www.bpp.agh.edu.pl/ Additional information - Student workload (ECTS credits balance) Student activity form Student workload Examination or Final test 2h Contact hours 14 h Participation in lectures 18 h Participation in seminar classes 18 h Realization of independently performed tasks 50 h Preparation of a report, presentation, written work, etc. 30 h Summary student workload 132 h Module ECTS credits 5 ECTS 5/5
© Copyright 2025 Paperzz