23 2.2. Multivariate Probability Distributions (I) Bivariate Probability Distribution Joint Probability Distribution (Density) Function: Let X 1 and X 2 be discrete random variables. The joint probability distribution function is f x1 , x2 P X 1 x1 , X 2 x2 , where x1 and x 2 are possible values of X 1 and X 2 , respectively. f satisfies the following conditions: 1. f x1 , x2 0 for all x1 , x2 ; 2. f x , x 1 . 1 x2 2 x1 Let X 1 and X 2 be continuous random variables. The joint probability density function satisfies the following conditions: 1. f x1 , x2 0 for x1 , x2 ; 2. f x , x dx d x 1 2 1 2 1. Cumulative Distribution Function: For any random variables X 1 and X 2 , the joint (cumulative) distribution function is given by F x1 , x2 P X 1 x1 , X 2 x2 . As X 1 and X 2 are discrete, Pa X 1 b, c X 2 d f x , x . c x2 d a x1 b 1 2 As X 1 and X 2 are continuous, d b Pa X 1 b, c X 2 d f x1 , x2 dx1dx2 . c a For any random variables X 1 and X 2 with joint cumulative distribution function F x1 , x2 , 1. F , F , x2 F x1 , 0; 2. F , 1 ; 23 24 3. if b a, d c , then Pa X1 b, c X 2 d F b, d F b, c F a, d F a, c . Example 1: Form a collection of 3 white balls, 2 black balls, and 1 red ball, 2 balls is to be randomly selected. Let X 1 denote the number of white balls and X 2 the number of black balls. (a) Find the joint probability distribution table of X 1 and X 2 . (b) F 1,1 and F 2,0 . [solution:] (a) 3 2 1 i j 2i P X 1 i, X 2 j f i, j 6 2 j ,0 i, j 2; i j 1 or 2; For example, 3 2 1 1 1 0 3 2 6 P X 1 1, X 2 1 f 1,1 . 15 15 6 2 The joint probability distribution table is x1 x2 0 1 2 0 0 3 15 3 15 1 2 15 2 1 15 Total 3 15 6 6 15 8 15 0 1 15 3 15 1 (b) F 1,1 P X 1 1, X 2 1 f 0,0 f 0,1 f 1,0 f 1,1 F 2,0 P X 1 2, X 2 0 f 0,0 f 1,0 f 2,0 24 15 0 15 0 9 Total 0 2 3 6 11 . 15 15 033 6 15 15 25 Example 2: Let f x1 , x2 2x1 ,0 x1 k;0 x2 1; and f x1 , x2 0, otherwise. (a) Find k . (b) Find F 0.7,0.5 , F 2,0 and F 0.2,3 . [solution:] (a) 1 k 1 0 0 0 f x1 , x2 dx1dx2 2 x1dx1dx2 x12 0 dx2 k 2 dx2 k 2 1 k 1 . 1 k 0 k 1. (b) F 0.7,0.5 P X 1 0.7, X 2 0.5 0.5 0.7 f x , x dx dx 1 2 1 0.50.7 2 x 0.5 2 0.7 1 0 2 x dx dx 1 1 0 0 0.5 dx2 0 0.49dx 2 0.49 0.5 0.245 0 F 2,0 P X 1 2, X 2 0 0 2 f x , x dx dx 1 2 1 0 0 1 2 2 x1dx1dx2 0 0 0 x12 0 dx2 1dx2 1 0 0 1 0 0 F 0.2,3 P X 1 0.2, X 2 3 3 0.2 f x1 , x2 dx1dx2 x 1 2 0.2 1 0 1 0.2 2 x dx dx 1 0 1 0 1 dx2 0 0.04dx 2 0.04 0 Marginal Probability Distribution (Density) Function: Let X 1 and X 2 be discrete random variables. The marginal probability distribution function for X 1 and X 2 are f1 x1 P X 1 x1 f x1 , x2 , x2 and f 2 x2 P X 2 x2 f x1 , x2 , x1 respectively. Let X 1 and X 2 be continuous random variables. The marginal 25 2 2 26 probability density function for X 1 and X 2 are f 1 x1 f x , x dx 1 2 2 , and f 2 x2 f x , x dx , 1 2 1 respectively. Conditional Probability Distribution (Density) Function: Let X 1 and X2 be discrete random variables. The conditional probability distribution function X 1 given X 2 is f1 x1 | x2 P X 1 x1 | X 2 x2 P X 1 x1 , X 2 x2 f x1 , x2 , P X 2 x 2 f 2 x2 provided that f 2 x2 0 . Similarly, the conditional probability distribution function X 2 given X 1 is f 2 x2 | x1 P X 2 x2 | X 1 x1 provided that f1 x1 0 . P X 1 x1 , X 2 x2 f x1 , x2 , P X 1 x1 f1 x1 Let X 1 and X 2 be continuous random variables. The conditional probability density function X 1 given X 2 is f x1 , x2 , f 2 x2 0 f1 x1 | x2 f 2 x2 otherwise. 0, Similarly, the conditional probability density function X 2 given X 1 is f x1 , x2 , f1 x1 0 f 2 x2 | x1 f1 x1 otherwise. 0, Example 1 (continue): (c) Find the marginal probability distribution function of X 1 . (d) Given one of chosen balls being black, what is the distribution for the number of balls being white? [solution:] 26 27 0 2 1 3 , 15 15 (c) f1 (0) f 0,0 f 0,1 f 0,2 f1 (1) f 1,0 f 1,1 f 1,2 3 60 9 , 15 15 f1 (2) f 2,0 f 2,1 f 2,2 (d) f 2 (1) f 0,1 f 1,1 f 2,1 300 3 15 15 260 8 15 15 2 f 0,1 1 f1 0 | 1 P X 1 0 | X 2 1 15 , f 2 1 8 4 15 6 f 1,1 3 f1 1 | 1 P X 1 1 | X 2 1 15 , f 2 1 8 4 15 f1 2 | 1 P X 1 2 | X 2 1 f 2,1 0 0 f 2 1 8 15 Example 2 (continue): (c) Find the marginal probability density function for X 1 and X 2 . (d) Find the conditional probability density function for X 1 given X 2 and the conditional probability density function for X 2 given X 1 [solution:] (c) f1 x1 f 2 x2 1 f x1 , x2 dx2 2 x1dx2 2 x1 ,0 x1 1; . 0 f x , x dx 2 x dx x 1 1 2 1 1 1 2 1 1 0 0 (d) For 0 x1 1,0 x2 1, f x1 , x2 2 x1 f 2 x2 f1 x1 | x2 and f 2 x2 | x1 f x1 , x2 1. f1 x1 27 1,0 x2 1; 28 Independence of Two Random Variables: Let X 1 and X 2 be random variables. If X 1 and X 2 are independent if and only if for all pairs of f x1 , x2 f1 x1 f 2 x2 , x1 , x2 . Note: As f 2 x2 0 and X 1 and X 2 are independent, then Further, as X 1 and X 2 f1 x1 | x2 f1 x1 . are independent, P X 1 x1 , X 2 x 2 f x1 , x2 f1 x1 f 2 x2 P X 1 x1 P X 2 x2 P A B P APB , A X 1 x1 , B X 2 x2 . Example 1 (continue): (e) Are X 1 and X 2 independent? [solutions:] No since f 1,0 3 5 6 9 6 f1 1 f 2 0 . 15 25 25 15 15 Example 2 (continue): (e) Are X 1 and X 2 independent? [solutions:] Yes since f x1 , x2 2 x1 f1 x1 f 2 x2 . Example 3: Let f x1 , x2 6 x1 x22 ,0 x1 k ;0 x2 1; and f x1 , x2 0, otherwise. Are X 1 and X 2 independent? [solution:] f1 x1 f x , x dx 1 f 2 x2 2 1 2 2 x1 ,0 x1 1; 3x22 ,0 x1 1. 6 x1 x22 dx2 2 x1 x23 1 0 0 1 f x1 , x2 dx1 6 x1 x22 dx1 3x12 x22 Thus, Therefore, X 1 and X 2 1 0 0 f x1 , x2 6 x1 x22 f1 x1 f 2 x2 . are independent. 28 29 (II) Multivariate Probability Distribution Joint Probability Distribution (Density) Function: Let X 1 ,, X n be discrete random variables. The joint probability distribution function is f x1 ,, xn P X 1 x1 ,, X n xn , where x1 ,, x n are possible values of X 1 ,, X n , respectively. f satisfies the following conditions: 1. f x1 ,, xn 0 for all x1 ,, x n ; 2. f x ,, x 1 . 1 x2 n xn Let X 1 ,, X n be continuous random variables. The joint probability density function satisfies the following conditions: 1. f x1 ,, xn 0 for x1 ,, xn ; ; 2. f x ,, x dx d x 1 n 1 n 1. Independence of Multiple Random Variables: Let X 1 ,, X n be random variables. If X 1 ,, X n are independent if and only if for all pairs of f x1 ,, xn f1 x1 f n xn , x1 ,, xn , where f j is the marginal probability distribution (or density) function of X j . Likelihood Function: Let x1 ,, x n be sample observations taken on corresponding random variables X 1 ,, X n .whose joint probability distribution or density function depends on the parameters 1 ,, k . The likelihood of sample is l 1 ,, k f x1 ,, xn | 1 ,, k . As X 1 ,, X n are a random sample from a common probability distribution (or density) with the parameters 1 ,, k , i.e., the probability distribution or density function equal to f x | 1 ,, k and X 1 ,, X n being i.i.d. (identically independent distributed), the likelihood is 29 30 n l 1 , , k f xi | 1 , , k f x1 | 1 , , k f xn | 1 , , k . i 1 Example 4: Let X 1 ,, X n are a random sample from a normal distribution N , 2 . Then, l , n 2 i 1 xi 2 e 2 2 2 2 2 2 n n xi 2 i 1 2 e 2 2 Example 5: Let X 1 ,, X n are a random sample from a binomial distribution Bm, p . Then, n n xi m m xi m xi nm xi l p p 1 p p i 1 1 p i 1 i 1 xi i 1 xi n n Example 6: Let X 1 ,, X n are a random sample from a Poisson distribution Poisson . Then, n xi e xi e n i 1 l n xi ! i 1 xi ! n i 1 30
© Copyright 2026 Paperzz