Non-Cooperative Multi-Radio Channel Allocation in Wireless Networks Márk Félegyházi*, Mario Čagalj†, Shirin Saeedi Bidokhti*, Jean-Pierre Hubaux* * Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland † University of Split, Croatia Infocom 2007 Problem d2 d1 ► ► multi-radio devices set of available channels d5 d4 d3 d6 How to assign radios to available channels? Infocom 2007 Márk Félegyházi (EPFL) 2 System model (1/3) ► ► ► ► ► ► C – set of orthogonal channels (|C| = C) N – set of communicating pairs of devices (|N| = N) sender controls the communication (sender and receiver are synchronized) single collision domain if they use the same channel devices have multiple radios k radios at each device, k ≤ C Infocom 2007 p1 d2 d1 d5 d4 d3 Márk Félegyházi (EPFL) p2 p3 d6 3 System model (2/3) ► ► ► N communicating pairs of devices C orthogonal channels k radios at each device ki , x→ number of radios by sender i on channel x ki ki , x xC k x ki , x example: Intuition: ki , x 1 iN kc2 3 Use multiple radios on one channel ? k p 4 3 k p3 ,c2 2 Infocom 2007 Márk Félegyházi (EPFL) 4 System model (3/3) ► ► ► Infocom 2007 channels with the same properties τ t(kx) – total throughput on any channel x τ(kx) – throughput per radio Márk Félegyházi (EPFL) 5 Multi-radio channel allocation (MRCA) game ► ► selfish users (communicating pairs) non-cooperative game GMRCA – players → senders – strategy → channel allocation – payoff → total throughput si ki ,1 ,..., ki ,C ► strategy: ► strategy matrix: ► payoff: s1 S s N ui i ki , x (k x ) xC Infocom 2007 Márk Félegyházi (EPFL) 6 Game-Theoretic Concepts Best response: Best strategy of player i given the strategies of others. bri ( si ) si S : ui ( si , si ) ui ( si' , si ), si' S Nash equilibrium: No player has an incentive to unilaterally deviate. ui ( si* , s* i ) ui ( si , s* i ), si S Pareto-optimality: The strategy profile spo is Pareto-optimal if: s ' : ui ( s ' ) ui ( s po ), i with strict inequality for at least one player i Price of anarchy: The ratio between the total payoff of players playing a socially-optimal (max. Pareto-optimal) strategy and a worst Nash equilibrium. POA so u i i w NE u i i Infocom 2007 Márk Félegyházi (EPFL) 7 Use of all radios Lemma: If S* is a NE in GMRCA, then ki k , i. Each player should use all of his radios. Intuition: Player i is always better off deploying unused radios. p4 p4 Lemma all channel allocations Infocom 2007 Márk Félegyházi (EPFL) 8 Load-balancing channel allocation ► ► Consider two arbitrary channels x and y in C, where kx ≥ ky distance: dx,y = kx – ky Proposition: If S* is a NE in GMRCA, then dy,x ≤ 1, for any channel x and y. Proposition Lemma all channel allocations Infocom 2007 Márk Félegyházi (EPFL) 9 Nash equilibria (1/2) ► ► Consider two arbitrary channels x and y in C, where kx ≥ ky distance: dx,y = kx – ky Theorem 1: A channel allocation S* is a Nash equilibrium in GMRCA if for all i: ► dx,y ≤ 1 and ► ki,x ≤ 1. Nash Equilibrium: Use one radiop4per channel. p2 Proposition Lemma all channel allocations NE type 1 Infocom 2007 Márk Félegyházi (EPFL) 10 Nash equilibria (2/2) ► ► ► Consider two arbitrary channels x and y in C, where kx ≥ ky distance: dx,y = kx – ky loaded and less loaded channels: C+ and C– Theorem 2: A channel allocation S* is a Nash equilibrium in GMRCA if: ► dx,y ≤ 1, (k x 1) (k x 1) ► for any player i who has ki,x ≥ 2, x in C, ki , x (k x 1) (k x ) + ► for any player i who has ki,x ≥ 2 and x in C , ki,y ≥ ki,x – 1, for all y in C– Nash Equilibrium: Proposition Lemma all channel allocations Use multiple radios on certain channels. NE type 1 Infocom 2007 NE type 2 – Félegyházi (EPFL) CMárk C+ 11 Efficiency (1/2) Theorem: In GMRCA , the price of anarchy is: POA t 1 N k t t t k 1 k k 1 k x 1 x x x C N k N k , kx 1 where k x C C Corollary: If τt(kx) is constant (i.e., ideal TDMA), then any Nash equilibrium channel allocation is Pareto-optimal in GMRCA. Infocom 2007 Márk Félegyházi (EPFL) 12 Efficiency (2/2) ► ► In theory, if the total throughput function τt(kx) is constant POA = 1 In practice, there are collisions, but τt(kx) decreases slowly with kx (due to the RTS/CTS method) G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” in IEEE Journal on Selected Areas of Communication (JSAC), 18:3, Mar. 2000 Infocom 2007 Márk Félegyházi (EPFL) 13 Summary ► ► ► ► wireless networks with multi-radio devices users of the devices are selfish players GMRCA – multi-radio channel allocation game results for a Nash equilibrium: – – – – ► ► ► players should use all their radios load-balancing channel allocation two types of Nash equilibria NE are efficient both in theory and practice fairness issues coalition-proof equilibria algorithms to achieve efficient NE: – – centralized algorithm with perfect information distributed algorithm with imperfect information http://people.epfl.ch/mark.felegyhazi Infocom 2007 Márk Félegyházi (EPFL) 14 Future work ► ► ► Infocom 2007 general scenario – conjecture: hard approximation algorithms extend model to mesh networks (multihop communication) Márk Félegyházi (EPFL) 15 Extensions Related work ► Channel allocation – – – ► Multi-radio networks – – ► in cellular networks: fixed and dynamic: [Katzela and Naghshineh 1996, Rappaport 2002] in WLANs [Mishra et al. 2005] in cognitive radio networks [Zheng and Cao 2005] mesh networks [Adya et al. 2004, Alicherry et al. 2005] cognitive radio [So et al. 2005] Competitive medium access – – – – Aloha [MacKenzie and Wicker 2003, Yuen and Marbach 2005] CSMA/CA [Konorski 2002, Čagalj et al. 2005] WLAN channel coloring [Halldórsson et al. 2004] channel allocation in cognitive radio networks [Cao and Zheng 2005, Nie and Comaniciu 2005] Infocom 2007 Márk Félegyházi (EPFL) 17 Fairness Nash equilibria (fair) Nash equilibria (unfair) Theorem: A NE channel allocation S* is max-min fair iff ki, x k j , x , i, j N xCmin xCmin Intuition: This implies equality: ui = uj, i,j N Infocom 2007 Márk Félegyházi (EPFL) 18 Centralized algorithm Assign links to the channels sequentially. p p p p 4 4 p 4 p p p p 2 p p 2 3 p 3 p 3 p 3 1 1 1 1 2 2 p Infocom 2007 4 p Márk Félegyházi (EPFL) 19 Convergence to NE (1/3) Algorithm with imperfect info: ► move links from “crowded” channels to other randomly chosen channels ► desynchronize the changes ► convergence is not ensured p5 p3 p2 p1 p5: c2→c5 c6→c4 p3: c2→c5 c6→c4 c1→c3 p2: c2→c5 p1: c2→c5 c6→c4 Infocom 2007 p1 p4 N = 5, C = 6, k = 3 p 5 p1: c4→c6 c5→c2 p4: idle time Márk Félegyházi (EPFL) p p p 4 5 p 4 p 3 p 3 p 2 p p 5 p 3 1 1 2 2 c6 channels p p 4 p c1 c2 c3 c4 c5 p 1 20 Convergence to NE (2/3) Algorithm with imperfect info: ► move links from “crowded” channels to other randomly chosen channels ► desynchronize the changes ► convergence is not ensured S 7 15 7 3 S 15 3 4 Balance: S k x xC N k C best balance (NE): unbalanced (UB): UB 3 UB 15 Efficiency: S ( SUB ) ( S ) ( SUB ) ( S NE ) 0 S 1 Infocom 2007 Márk Félegyházi (EPFL) 21 Convergence to NE (3/3) N (# of pairs) 10 C (# of channels) 8 k (radios per device) 3 τ(1) (max. throughput) 54 Mbps Infocom 2007 Márk Félegyházi (EPFL) 22
© Copyright 2026 Paperzz