5.4 Binomial Coefficients • Theorem 1: The binomial theorem Let x and y be variables, and let n be a nonnegative integer. Then n n j j ( x y ) x y j 0 j n n n n 1 n n2 2 n n n n 1 x y y x x y x y 0 1 2 n 1 n n n • Example 3: What is the coefficient of x12y13 in the expansion of (x + y)25? 1 The Binomial Theorem • Corollary 1: Let n be a nonnegative integer. Then n n 2 k k 0 n • Corollary 2: Let n be a positive integer. Then n (1) 0 k 0 k n k • Corollary 3: Let n be a nonnegative integer. Then n n ( 2 ) 3 k k 0 n k 2 Pascal’s Identity and Triangle • Theorem 2: Pascal’s Identity Let n and k be positive integers with n k . Then n 1 n n k k 1 k 3 Pascal’s Identity and Triangle FIGURE 1 Pascal’s Triangle. 4 Some Other Identities of the Binomial Coefficients • Theorem 3: Vandermonde’s Identity Let m, n, and r be nonnegative integers with r not exceeding either m or n. Then m n r m n r k 0 r k k • Corollary 4: If n is nonnegative integer, then 2n n n k 0 k n 2 • Theorem 4: Let n and r be nonnegative integers with r n. Then n n 1 j r 1 j r r 5
© Copyright 2026 Paperzz