Linearized and Quadratic Necessary Optimality Conditions in one 2-D Discrete Optimal Control Problem Involving Functional Constraints of Inequality Type Мehriban Nasiyati Cybernetics Institute of ANAS, Baku, Azerbaijan [email protected] Abstract— The paper is devoted to derivation of linearized and quadratic necessary optimality conditions in one 2-D discrete two-parametric stepwise control problem. Key words— 2-D discrete systems; functional constraints; admissible process; two-parameter systems I. Assume that an admissible process is described by the following discrete two-parametric system of equations z i t 1, x 1 the given n- dimensional functions continuous in totality of variables together with partial derivatives with respect to zi , ai , bi , ui , 1 x , i t , discrete i 1, 3 to second order inclusively, i 1, 3 are the given n -dimensional vector-functions, ui t , x , i 1, 3 are r - dimensional vector-functions of control actions with values from the given non-empty, bounded and convex sets t, x Di , i 1, 3 . (3) ut , x u1 t , x , u2 t , x , u3 t , x ui t , x U i R r , The triple (2) problem (1)-(2) an admissible state of the process. Therewith the pair u t , x , z t , x is called an admissible process. On the solutions of boundary value problem (1)-(2) generated by all possible admissible controls determine the functionals z1 t , x0 1 t , t t0 , t 0 1, ... , t1 , z 2 t1 , x z1 t1 , x , x x0 , x0 1, ... , X , 1 x0 1 t0 , z1 t1 , x0 2 t1 , z 2 t 2 , x0 3 t 2 . are given, zt , x z1 t , x , z2 t , x , z3 t , x of boundary value z1 t0 , x 1 x , x x0 , x0 1, ... , X , z3 t , x0 3 t , t t 2 , t 2 1, ... , t3 , i 1, 3 are (1) with boundary conditions z3 t 2 , x z 2 t 2 , x , x x0 , x0 1, ... , X , x0 , X , ti , i 1, 3 where with the above - mentioned properties will be called an admissible control, its appropriate solution f i t , x, z i t , x , z i t 1, x , z i t , x 1, u i t , x , z 2 t , x0 2 t , t t1 , t1 1, ... , t 2 , t i 1; x x0 , x0 1, ... , X 1, i 1, 3, U i R r , i 1, 3 , i.e. STATEMENT OF PROBLEM t, x Di , i 1,3 , Di t , x : t t i 1 , t i 1 1, ... , f i t , x, zi , ai , bi , ui , INTRODUCTION A step wise problem of optimal control of discrete two-parameter systems is considered. Under the assumption of openness of the control domain, necessary optimality conditions are obtained. Note that different necessary and sufficient optimality conditions for discrete 2-D control systems were obtained in the papers 1-6 and others. II. Here 3 S j u i j z i t i , X , j 1, p . i 1 Here i j z i , i 1, 3 , j 1, p are the given twice continuously differentiable scalar functions. The problem consists of minimization of the functional 2 j t 2 1, x 1 3 j t 2 1, x 1 3 S 0 u i0 z i t i , X , (4) i 1 under the constraints S j u 0 , j 1, p . (5) ψ 2 j t 1, X 1 The accessible process satisfying the constraints (5) is called an admissible process. III. H 2 j t 2 1, x H 3 j t 2 1, x , a 2 a3 3 j t 3 1, X 1 NECESSARY OPTIMALITY CONDITIONS ψ 3 j t 3 1, x 1 The admissible process u t , x , z t , x being solution of problem (1)-(4) is called an optimal process. Let u t , x , z t , x be a fixed admissible process. Further we’ll use the following denotation: ψ 3 j t 1, X 1 H i j t , x, z i , ai , bi , u i , i i j f i t , x, z i , ai , bi , u i , H i t , x zi2 j j Theorem vector-functions of conjugated variables being the solutions of the problem i j t 1, x 1 H i j t , x H i j t 1, x z i ai H i j t , x 1 , i 1, 3, bi (5) 1 t1 1, x 1 2 t1 1, x 1 j j H 1 t1 1, x H 2 t1 1, x , a1 a 2 j j 2 j t 2 1, X 1 3 j t 2 1, X 1 2 j z 2 t 2 , X , z 2 Along the optimal process H i j t , x vi t , x ui t , x 0 min jJ u u i t ti 1 x x0 for all vi t , x U i , t , x Di , i 1, 3 . (7) Relation (7), being a necessary optimality condition of first order, is an analogy of the linearized maximum condition for problem (1)-(2). Definition 1. The admissible control vt , x v1 t , x , v2 t , x , v3 t , x is called critical with the ut , x u1 t , x , u2 t , x , u3 t , x , if respect to extremum H i j t , x vi t , x u i t , x 0 , min jJ u u i t ti 1 x x0 ti 1 X 1 1 j z1 t1 , X , z1 H 1 j t 1, X 1 , ψ1 t 1, X 1 b1 1. ti 1 X 1 1 j t1 1, X 1 2 j t1 1, X 1 j (6) J u 0 I u . ut, x, zt, x ψ i j t , x , i 1, 3 are n - dimensional H 3 j t , X 1 . b3 j where ψ i H 3 j t 3 1, x , a3 I u j ; S j u 0, j 1, p , H i t , x, zi t , x , zi t 1, x , zi t , x 1, ui t , x , i t , x , zi2 2 3 j z 3 t 3 , X , z 3 Let by definition f i t , x f i t , x, z i t , x , z i t 1, x , z i t , x 1, ui t , x , ui ui 2 H 2 j t , X 1 , b2 i 1, 3 . (8) The extremum ut , x is said to be quasi-singular in problem (1)-(5) if there exists the appropriate critical admissible control v t , x u t , x . Now, by from J1 u denote a maximal subset of indices J u such that ti 1 X 1 H i j t , x u 0 , t ti 1 x x0 i for all admissible controls ut , x . j J1 u , i 1, 3 vt , x critical with respect to Assume that in system (2.1) f i t , x, zi , ai , bi , ui Bi t , x bi F t , x, zi , ai , ui . REFERENCES (9) Further, the necessary optimality condition of quasi-singular controls is proved in problem (1)-(5), (9). [1] [2] IV. CONCLUSION [3] [4] Linearized and quadratic necessary optimality conditions are established for a stepwise problem of optimal control of discrete two-parameter systems involving functional constraints. [5] [6] I.V. Qayshun. Multiparametricer control systems. Мn.: Nauka i technika, 1996, 200 p. (in Russian) M.P. Dymkov Extremal problems in multi parameter control systems. Mn. BQEU. 2005. 363 p. I.V. Qayshun Difference-differential two-parametric control systems // Diff. Uravn. 1994, № 6, p. 931-938. K.B. Mansimov. Discrete systems. Baku. BQU, 2002 г., 114 p. (in Azerbaijan) O.V. Vasil’yev, F.M. Kirillova On optimal processes in twoparameter discrete systems // Dokl. AN SSSR. 1967, vol. 175, № 1, p. 17-19. (in Russian) K.B. Mansimov Sufficient optimality conditions of Krotov type conditions for discrete two-parameter systems // Avtomatika i telemexanika. 1985, № 8, p. 15-20.
© Copyright 2026 Paperzz