Applied Mathematics, 2015, 6, 274-294 Published Online February 2015 in SciRes. http://www.scirp.org/journal/am http://dx.doi.org/10.4236/am.2015.62026 Complete Semigroups of Binary Relations Defined by Semilattices of the Class Σ1 ( X ,10 ) Shota Makharadze1, Neşet Aydın2, Ali Erdoğan3 1 Shota Rustavelli University, Batum, Georgia Çanakkale Onsekiz Mart University, Çanakkale, Turkey 3 Hacettepe University, Ankara, Turkey Email: [email protected], [email protected], [email protected] 2 Received 10 January 2015; accepted 28 January 2015; published 4 February 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract In this paper we give a full description of idempotent elements of the semigroup BX (D), which are defined by semilattices of the class Σ1 (X, 10). For the case where X is a finite set we derive formulas by means of which we can calculate the numbers of idempotent elements of the respective semigroup. Keywords Semilattice, Semigroup, Binary Relation 1. Introduction Let X be an arbitrary nonempty set, D be an X-semilattice of unions, i.e. such a nonempty set of subsets of the set X that is closed with respect to the set-theoretic operations of unification of elements from D, f be an arbitrary mapping of the set X in the set D. To each such a mapping f we put into correspondence a binary relation α f on the set X that satisfies the condition = αf ({ x} × f ( x ) ) x∈ X The set of all such α f ( f : X → D ) is denoted by BX ( D ) . It is easy to prove that BX ( D ) is a semigroup with respect to the operation of multiplication of binary relations, which is called a complete semigroup of binary relations defined by an X-semilattice of unions D. How to cite this paper: Makharadze, S., Aydın, N. and Erdoğan, A. (2015) Complete Semigroups of Binary Relations Defined by Semilattices of the Class Σ1 ( X ,10 ) . Applied Mathematics, 6, 274-294. http://dx.doi.org/10.4236/am.2015.62026 S. Makharadze et al. Recall that we denote by ∅ an empty binary relation or empty subset of the set X. The condition will be written in the form xαy. Further let x, y ∈ X , Y ⊆ X , α ∈ BX ( D ) , T ∈ D , ∅ ≠ D ′ ⊆ D , D = ∪ D and t ∈ D . Then by symbols we denoted the following sets: (x, y ) ∈ α 2 X \ {∅} , yα = { x ∈ X yα x} , Yα = {Y Y ⊆ X } , X ∗ = y∈Y yα , 2 X = V ( D, α ) = {Yα Y ∈ D} , DT′ ={T ′ ∈ D′ T ⊆ T ′} , DT′ ={T ′ ∈ D′ T ′ ⊆ T } , Dt′ =∈ ∪ ( D′ \ DT′ ) . {Z ′ D′ t ∈ Z ′} , l ( D′, T ) = By symbol Λ ( D, D ′ ) is denoted an exact lower bound of the set D' in the semilattice D. Definition 1. We say that the complete X-semilattice of unions D is an XI-semilattice of unions if it satisfies the following two conditions: a) Λ ( D, Dt ) ∈ D for any t ∈ D ; b)= Z t∈Z Λ ( D, Dt ) for any nonempty element Z of the semilattice D. Definition 2. We say that a nonempty element T is a nonlimiting element of the set D' if T \ l ( D ′, T ) ≠ ∅ and a nonempty element T is a limiting element of the set D' if T \ l ( D ′, T ) = ∅ . T } . A representation of a binary relation Definition 3. Let α ∈ BX ( D ) , T ∈ V X ∗ , α , YTα =∈ { y X yα = α α of= the form α T ∈V X ∗ ,α YT × T is called quasinormal. )( ( Note that, if α T ∈V X ∗ ,α = ( lowing conditions are true: 1) X = T ∈V X ∗ ,α YTα ; ( ) ) (Y × T ) α T ) ( ( ) is a quasinormal representation of the binary relation α , then the fol- ) 2) YT ∩ YT ′ = ∅ for T , T ′ ∈ V X ∗ , α and T ≠ T ′ . Let ∑ n ( X , m ) denote the class of all complete X-semilattices of unions where every element is isomorphic to a fixed semilattice D. The following Theorems are well know (see [1] and [3]). Theorem 4. Let X be a finite set; δ and q be respectively the number of basic sources and the number of all s , then automorphisms of the semilattice D. If X = n ≥ δ and Σ n ( X , m ) = α α s= where C kj = j! ( k !) ⋅ ( j − k )! p + i +1 ⋅ Cmp−−δδ ⋅ C δp ⋅ (δ !) ⋅ ( ( p − δ ) !) ⋅ i n 1 m p +1 ( −1) ⋅ ∑ ∑ i 1 q=p δ= ( i − 1)! ⋅ ( p − i + 1)! (see Theorem 11.5.1 [1]). Theorem 5. Let D be a complete X-semilattice of unions. The semigroup BX ( D ) possesses right unit iff D is an XI-semilattice of unions (see Theorem 6.1.3 [1]). Theorem 6. Let X be a finite set and D (α ) be the set of all those elements T of the semilattice . A binary relation α having a quasinormal = Q V ( D, α ) \ {∅} which are nonlimiting elements of the set Q T representation = α T ∈V ( D ,α ) (YTα × T ) is an idempotent element of this semigroup iff a) V ( D, α ) is complete XI-semilattice of unions; b) T ′∈D (α ) YTα′ ⊇ T for any T ∈ D (α ) ; T (α ) (see Theorem 6.3.9 [1]). c) YTα ∩ T ≠ ∅ for any nonlimiting element of the set D T r Theorem 7. Let D, Σ ( D ) , E X( ) ( D′ ) and I denote respectively the complete X-semilattice of unions, the set of all XI-subsemilatices of the semilattice D, the set of all right units of the semigroup BX ( D′ ) and the set of r all idempotents of the semigroup BX ( D ) . Then for the sets E X( ) ( D′ ) and I the following statements are true: 1) if ∅ ∈ D and Σ∅ ( D= ) D′ ∈ Σ ( D ) ∅ ∈ D′ then r r ∅ for any elements D′ and D′′ of the set Σ∅ ( D ) that satisfy the condition a) E X( ) ( D ′ ) ∩ E X( ) ( D ′′ ) = D ′ ≠ D ′′ ; b) I = D′∈Σ ( D )E X( r ) ( D ′ ) { } ∅ c) the equality I = ∑ D′∈Σ ∅ ( D) r E X( ) ( D ′ ) is fulfilled for the finite set X. 275 S. Makharadze et al. 2) if ∅ ∉ D , then r r ∅ for any elements D′ and D ′′ of the set Σ ( D ) that satisfy the condition a) E X( ) ( D ′ ) ∩ E X( ) ( D ′′ ) = D ′ ≠ D ′′ ; b) I = D′∈Σ( D ) E X( r ) ( D ′ ) c) the equality I = ∑ D′∈Σ( D ) E X( r ) ( D ′ ) is fulfilled for the finite set X (see Theorem 6.2.3 [1]). { } Corollary 1. Let Y = { y1 , y2 , , yk } and D j = T1 , T2 , , T j be some sets, where k ≥ 1 and j ≥ 1 . Then the number s ( k , j ) of all possible mappings of the set Y into any such subset D ′j of the set D j that T j ∈ D ′j k can be calculated by the formula s ( k , j ) = j k − ( j − 1) (see Corollary 1.18.1 [1]). 2. Idempotent Elements of the Semigroups B X ( D ) Defined by Semilattices of the Class Σ1 ( X ,10 ) Let X and Σ1 ( X ,10 ) be respectively an arbitrary nonempty set and a class X-semilattices of unions, where each element is isomorphic to some X-semilattice of unions D = Z 9 , Z8 , Z 7 , Z 6 , Z 5 , Z 4 , Z 3 , Z 2 , Z1 , D that satisfies the conditions: Z 9 ⊂ Z 4 ⊂ Z1 ⊂ D, Z 9 ⊂ Z 5 ⊂ Z1 ⊂ D, Z 9 ⊂ Z 6 ⊂ Z1 ⊂ D, Z 9 ⊂ Z 6 ⊂ Z 2 ⊂ D, Z 9 ⊂ Z 6 ⊂ Z 3 ⊂ D, Z 9 ⊂ Z 7 ⊂ Z 3 ⊂ D, Z 9 ⊂ Z8 ⊂ Z 3 ⊂ D, Z1 \ Z 2 ≠ ∅, Z 2 \ Z1 ≠ ∅, { Z1 \ Z 3 ≠ ∅, Z 3 \ Z1 ≠ ∅, Z 2 \ Z 3 ≠ ∅, Z 3 \ Z 2 ≠ ∅, Z 4 \ Z 5 ≠ ∅, Z 5 \ Z 4 ≠ ∅, Z 4 \ Z 6 ≠ ∅, Z 6 \ Z 4 ≠ ∅, Z 4 \ Z 7 ≠ ∅, Z 7 \ Z 4 ≠ ∅ , Z 4 \ Z 8 ≠ ∅ , Z 8 \ Z 4 ≠ ∅, Z 5 \ Z 6 ≠ ∅ , Z 6 \ Z 5 ≠ ∅ , Z 5 \ Z 7 ≠ ∅, Z 7 \ Z 5 ≠ ∅, Z 5 \ Z 8 ≠ ∅, Z 8 \ Z 5 ≠ ∅, Z 6 \ Z 7 ≠ ∅, Z 7 \ Z 6 ≠ ∅, Z 6 \ Z 8 ≠ ∅, Z 8 \ Z 6 ≠ ∅, Z 7 \ Z 8 ≠ ∅, Z 8 \ Z 7 ≠ ∅, Z1 ∪ Z 2 = Z1 ∪ Z 3 = Z 2 ∪ Z 3 = Z 4 ∪ Z 2 = Z 4 ∪ Z 3 = Z 4 ∪ Z 7 = Z 4 ∪ Z8 = Z 5 ∪ Z 2 = Z 5 ∪ Z 3 = Z 5 ∪ Z 7 = Z 5 ∪ Z8 = Z 7 ∪ Z1 = Z 7 ∪ Z 2 = Z8 ∪ Z1 = Z8 ∪ Z 2 = D, Z 4 ∪ Z 5 = Z 4 ∪ Z 6 = Z 5 ∪ Z 6 = Z1 , Z 6 ∪ Z 7 = Z 6 ∪ Z8 = Z 7 ∪ Z8 = Z 3 . } (1) An X-semilattice that satisfies conditions (1) is shown in Figure 1. Let C ( D ) = { P0 , P1 , P2 , P3 , P4 , P5 , P6 , P7 , P8 , P9 } be a family of sets, where P0, P1, P2, P3, P4, P5, P6, P7, P8, P9 Figure 1. Diagram of D. 276 S. Makharadze et al. D are pairwise disjoint subsets of the set X and ϕ = P0 Z1 Z 2 P1 P2 Z3 P3 Z4 P4 Z5 P5 Z6 P6 Z7 P7 Z9 be a mapP9 Z8 P8 ping of the semilattice D onto the family sets C ( D ) . Then for the formal equalities of the semilattice D we have a form: D = P0 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 , Z1 = P0 ∪ P2 ∪ P3 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 , Z 2 = P0 ∪ P1 ∪ P3 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 , Z 3 = P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 , Z 4 = P0 ∪ P2 ∪ P3 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 , (2) Z 5 = P0 ∪ P2 ∪ P3 ∪ P4 ∪ P6 ∪ P7 ∪ P8 ∪ P9 , Z 6 = P0 ∪ P4 ∪ P5 ∪ P7 ∪ P8 ∪ P9 , Z 7 = P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P8 ∪ P9 , Z8 = P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P9 , Z 9 = P0 . Here the elements P1, P2, P3, P4, P5, P6, P7, P8 are basis sources, the elements P0, P6, P9 are sources of completeness of the semilattice D. Therefore X ≥ 7 and δ = 7 (see [2]). s and X ≥ δ ≥ 7 . If X is a finite set, then Lemma 1. Let D ∈ Σ1 ( X ,10 ) , Σ1 ( X ,10 ) = s= ( ) 1 ( −1) × 4n + 7 × 5n − 21× 6n + 35 × 7n − 35 × 8n + 21× 9n + 11n . 8 Proof. In this case we have: m = 10, δ = 7. Notice that an X-semilattice given in Figure 1 has eight automorphims. By Theorem 1.1 it follows that p + i +1 ⋅ C3p − 7 ⋅ C p7 ⋅ ( 7!) ⋅ ( ( p − 7 )!) ⋅ i n 1 10 p +1 ( −1) ⋅ ∑ ∑ i 1 8=p 7= ( i − 1)! ⋅ ( p − i + 1)! s= where C kj = , j! and that k ! ⋅ ( j − k )! s= ) ( 1 ( −1) × 4n + 7 × 5n − 21× 6n + 35 × 7n − 35 × 8n + 21× 9n + 11n . 8 Example 8. Let n = 7, 8, 9, 10 Then: BX ( D ) = 107 , 108 , 109 , 1010 . Lemma 2. Let D ∈ Σ1 ( X ,10 ) . Then the following sets are all proper subsemilattices of the semilattice D = Z 9 , Z8 , Z 7 , Z 6 , Z 5 , Z 4 , Z 3 , Z 2 , Z1 , D : 1) {Z 9 } , {Z8 } , {Z 7 } , {Z 6 } , {Z 5 } , {Z 4 } , {Z 3 } , {Z 2 } , {Z1} , D { } { } (see diagram 1 of the Figure 2); 2) {Z9 , Z8 } , {Z9 , Z7 } , {Z9 , Z6 } , {Z9 , Z5 } , {Z9 , Z 4 } , {Z9 , Z3} , {Z9 , Z 2 } , {Z9 , Z1} , {Z9 , D} , {Z8 , Z3} , {Z8 , D} , {Z7 , Z3} , {Z7 , D} , {Z6 , Z3} , {Z6 , Z 2 } , {Z6 , Z1} , {Z6 , D} , {Z5 , Z1} , {Z5 , D} , {Z 4 , Z1} , {Z , D} , {Z , D} , {Z , D} , {Z , D} 4 3 2 1 (see diagram 2 of the Figure 2); 3) {Z 9 , Z8 , Z 3 } , Z 9 , Z8 , D , {Z 9 , Z 7 , Z 3 } , Z 9 , Z 7 , D , {Z 9 , Z 6 , Z 3 } , {Z 9 , Z 6 , Z 2 } , {Z 9 , Z 6 , Z1} , Z 9 , Z 6 , D , {Z 9 , Z 5 , Z1} , Z 9 , Z 5 , D , {Z 9 , Z 4 , Z1} , Z 9 , Z 4 , D , Z 9 , Z 3 , D , Z 9 , Z 2 , D , { } { } { } { } 277 { } { } { } S. Makharadze et al. {Z , Z , D} , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} 9 1 8 3 7 3 6 3 6 2 6 1 5 1 4 1 (see diagram 3 of the Figure 2); 4) Z 9 , Z 4 , Z1 , D , Z 9 , Z 5 , Z1 , D , Z 9 , Z 6 , Z1 , D , Z 9 , Z 6 , Z 2 , D , Z 9 , Z 6 , Z 3 , D , Z 9 , Z 7 , Z 3 , D , Z 9 , Z8 , Z 3 , D { { } { } { } { } } { } { } (see diagram 4 of the Figure 2); 5) {Z9 , Z5 , Z 4 , Z1} , {Z9 , Z 6 , Z 4 , Z1} , {Z9 , Z 6 , Z5 , Z1} , {Z9 , Z 7 , Z 6 , Z3} , {Z9 , Z8 , Z 6 , Z3} , {Z9 , Z8 , Z 7 , Z3} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} ; 9 8 4 9 8 5 9 7 2 9 7 4 9 7 5 9 8 1 9 8 2 9 4 2 9 4 3 9 5 2 9 5 3 9 7 1 9 2 1 9 3 1 9 6 2 1 3 2 6 3 1 6 3 2 (see diagram 5 of the Figure 2); 6) Z 9 , Z 5 , Z 4 , Z1 , D , Z 9 , Z 6 , Z 4 , Z1 , D , Z 9 , Z 6 , Z 5 , Z1 , D , Z 9 , Z 7 , Z 6 , Z 3 , D , Z 9 , Z8 , Z 6 , Z 3 , D , Z 9 , Z8 , Z 7 , Z 3 , D { { } { } { } { } } { } (see diagram 6 of the Figure 2); 7) Z 9 , Z 6 , Z 2 , Z1 , D , Z 9 , Z 6 , Z 3 , Z1 , D , Z 9 , Z 6 , Z 3 , Z 2 , D { } { } { } (see diagram 7 of the Figure 2); 8) Z 9 , Z8 , Z 6 , Z 3 , Z 2 , D , Z 9 , Z8 , Z 6 , Z 3 , Z1 , D , Z 9 , Z 7 , Z 6 , Z 3 , Z 2 , D , Z 9 , Z 7 , Z 6 , Z 3 , Z1 , D , Z9 , Z 6 , Z5 , Z3 , Z1 , D , Z9 , Z 6 , Z5 , Z 2 , Z1 , D , Z9 , Z 6 , Z 4 , Z3 , Z1 , D , Z9 , Z 6 , Z 4 , Z 2 , Z1 , D { { } { } { } { } { (see diagram 8 of the Figure 2); 9) } { } { } } {Z , Z , D} , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} , {Z , Z , Z } , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} , {Z , Z , Z } , {Z , Z , Z } , {Z , Z , Z } , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} {Z 8 , Z 7 , Z 3 } , {Z 8 , Z 6 , Z 3 } , 8 6 8 5 8 4 7 5 7 4 7 2 7 1 6 5 5 2 4 3 4 2 3 2 3 1 8 1 2 6 4 2 1 8 1 5 4 1 7 6 5 3 1 (see diagram 9 of the Figure 2); 10) Z8 , Z 6 , Z 3 , D , Z8 , Z 7 , Z 3 , D , Z 7 , Z 6 , Z 3 , D , Z 5 , Z 4 , Z1 , D , Z 6 , Z 4 , Z1 , D , Z 6 , Z 5 , Z1 , D { } { } { } { } { } { } (see diagram 10 of the Figure 3); 11) Z 6 , Z 5 , Z 3 , Z1 , D , Z 6 , Z 5 , Z 2 , Z1 , D , Z 6 , Z 4 , Z 3 , Z1 , D , Z 6 , Z 4 , Z 2 , Z1 , D , Z 7 , Z 6 , Z 3 , Z 2 , D , Z 7 , Z 6 , Z 3 , Z1 , D , Z8 , Z 6 , Z 3 , Z 2 , D , Z8 , Z 6 , Z 3 , Z1 , D { { } { } { } { } { } { } { (see diagram 11 of the Figure 2); 12) } } {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} {Z 6 , Z5 , Z 4 , Z1} , {Z8 , Z 7 , Z6 , Z3} , 7 2 1 7 4 2 8 7 2 5 1 3 2 2 8 4 1 4 2 3 8 5 2 5 3 2 2 (see diagram 12 of the Figure 2); 13) Z 7 , Z 5 , Z 3 , D , Z 4 , Z 2 , Z1 , D , Z8 , Z 3 , Z1 , D , Z8 , Z 3 , Z 2 , D , Z8 , Z 4 , Z1 , D , Z 4 , Z 3 , Z1 , D , Z 5 , Z 2 , Z1 , D , Z 5 , Z 3 , Z1 , D , Z 7 , Z 3 , Z1 , D , Z 7 , Z 3 , Z 2 , D , Z 7 , Z 4 , Z1 , D , Z 7 , Z 4 , Z 3 , D , Z 7 , Z 5 , Z1 , D , Z8 , Z 4 , Z 3 , D , Z8 , Z 5 , Z1 , D , Z8 , Z 5 , Z 3 , D { { { } { } { } { } { } { } { } { } { } } { } { } { (see diagram 13 of the Figure 2); 14) {Z9 , Z6 , Z5 , Z 4 , Z1} , {Z9 , Z8 , Z 7 , Z6 , Z3} , } { } { } } {Z , Z , Z , Z , D} , {Z , Z , Z , Z , D} , {Z , Z , Z , Z , D} , 6 3 278 2 1 9 3 2 1 9 4 3 2 3 S. Makharadze et al. {Z , Z , Z , Z , D} , {Z , Z , Z , Z , D} , {Z , Z , Z , Z , D} , {Z , Z , Z , Z , D} , {Z , Z , Z , Z , D} , {Z , Z , Z , Z , D} , {Z , Z , Z , Z , D} , {Z , Z , Z , Z , D} 9 5 3 2 9 7 2 1 9 7 4 2 9 8 2 1 9 8 4 2 9 8 5 2 9 7 4 3 9 7 5 2 (see diagram 14 of the Figure 2); 15) Z 9 , Z 4 , Z 2 , Z1 , D , Z 9 , Z 4 , Z 3 , Z1 , D , Z 9 , Z 5 , Z 2 , Z1 , D , Z 9 , Z 5 , Z 3 , Z1 , D , Z 9 , Z 7 , Z 3 , Z1 , D , Z 9 , Z 7 , Z 3 , Z 2 , D , Z 9 , Z 7 , Z 4 , Z1 , D , Z 9 , Z 7 , Z5 , Z1 , D , Z9 , Z 7 , Z5 , Z3 , D , Z9 , Z8 , Z3 , Z1 , D , Z 9 , Z8 , Z 3 , Z 2 , D , Z 9 , Z8 , Z 4 , Z1 , D , Z 9 , Z8 , Z 4 , Z 3 , D , Z 9 , Z8 , Z 5 , Z1 , D , Z 9 , Z8 , Z 5 , Z 3 , D { { { } { } { } { } { } { } { } { } { } { } { } { } { } } } (see diagram 15 of the Figure 2); 16) Z 5 , Z 4 , Z 3 , Z1 , D , Z 5 , Z 4 , Z 2 , Z1 , D , Z 7 , Z 5 , Z 4 , Z1 , D , Z8 , Z 5 , Z 4 , Z1 , D , Z8 , Z 7 , Z3 , Z 2 , D , Z8 , Z 7 , Z 3 , Z1 , D , Z8 , Z 7 , Z 5 , Z 3 , D , Z8 , Z 7 , Z 4 , Z 3 , D { { } { } { } { } { } { } } { } (see diagram 16 of the Figure 2); 17) Z 5 , Z 3 , Z 2 , Z1 , D , Z 4 , Z 3 , Z 2 , Z1 , D , Z 7 , Z 4 , Z 2 , Z1 , D , Z 7 , Z 3 , Z 2 , Z1 , D , Z 7 , Z 5 , Z 3 , Z 2 , D , Z 7 , Z 5 , Z 2 , Z1 , D , Z 7 , Z 4 , Z3 , Z 2 , D , Z8 , Z 3 , Z 2 , Z1 , D , Z8 , Z5 , Z3 , Z 2 , D , Z8 , Z 5 , Z 2 , Z1 , D , Z8 , Z 4 , Z 3 , Z 2 , D , Z8 , Z 4 , Z 2 , Z1 , D { { { } { } { } { } { } { } } { } { } { } { } } (see diagram 17 of the Figure 2); 18) Z 7 , Z 4 , Z 3 , Z1 , D , Z 7 , Z 5 , Z 3 , Z1 , D , Z8 , Z 5 , Z 3 , Z1 , D , Z8 , Z 4 , Z 3 , Z1 , D { } { } { } { } (see diagram 18 of the Figure 2); 19) Z 6 , Z 5 , Z 4 , Z1 , D , Z8 , Z 7 , Z 6 , Z 3 , D . { } { } (see diagram 19 of the Figure 2); 20) Z8 , Z 7 , Z 5 , Z 3 , Z 2 , D , Z8 , Z 7 , Z 4 , Z 3 , Z 2 , D , Z8 , Z 5 , Z 4 , Z 2 , Z1 , D , Z 7 , Z 5 , Z 4 , Z 2 , Z1 , D , Z8 , Z 7 , Z 3 , Z 2 , Z1 , D , Z 5 , Z 4 , Z 3 , Z 2 , Z1 , D { { } { } { } { } } { } (see diagram 20 of the Figure 2); 21) Z 6 , Z 5 , Z 4 , Z 2 , Z1 , D , Z8 , Z 7 , Z 6 , Z 3 , Z 2 , D , Z8 , Z 7 , Z 6 , Z 3 , Z1 , D , Z 6 , Z 5 , Z 4 , Z 3 , Z1 , D { } { } { } { } (see diagram 21 of the Figure 2); 22) Z 9 , Z 5 , Z 4 , Z 2 , Z1 , D , Z 9 , Z8 , Z 7 , Z 4 , Z 3 , D , Z 9 , Z8 , Z 7 , Z 3 , Z1 , D , Z 9 , Z8 , Z 5 , Z 4 , Z1 , D , Z 9 , Z 7 , Z 5 , Z 4 , Z1 , D , Z9 , Z5 , Z 4 , Z3 , Z1 , D , Z9 , Z8 , Z 7 , Z3 , Z 2 , D , Z9 , Z8 , Z 7 , Z5 , Z3 , D { { } { } { } { } { } { } { } } (see diagram 22 of the Figure 2); 23) Z 9 , Z8 , Z 7 , Z 6 , Z 3 , D , Z 9 , Z 6 , Z 5 , Z 4 , Z1 , D { } { } (see diagram 23 of the Figure 2); 24) Z 9 , Z8 , Z 5 , Z 3 , Z 2 , D , Z 9 , Z8 , Z 5 , Z 2 , Z1 , D , Z 9 , Z8 , Z 4 , Z 3 , Z 2 , D , Z 9 , Z8 , Z 4 , Z 2 , Z1 , D , Z 9 , Z8 , Z 3 , Z 2 , Z1 , D , Z 9 , Z 7 , Z 5 , Z 3 , Z 2 , D , Z 9 , Z 7 , Z 5 , Z 2 , Z1 , D , Z 9 , Z 7 , Z 4 , Z 3 , Z 2 , D , Z 9 , Z 7 , Z 4 , Z 2 , Z1 , D , Z9 , Z 7 , Z3 , Z 2 , Z1 , D , Z9 , Z 5 , Z 3 , Z 2 , Z1 , D , Z 9 , Z 4 , Z 3 , Z 2 , Z1 , D { { { } { } { } { } { } { } { } { } { } { } } } (see diagram 24 of the Figure 2); 25) Z 9 , Z8 , Z 5 , Z 3 , Z1 , D , Z 9 , Z8 , Z 4 , Z 3 , Z1 , D , Z 9 , Z 7 , Z 5 , Z 3 , Z1 , D , Z 9 , Z 7 , Z 4 , Z 3 , Z1 , D { } { } { (see diagram 25 of the Figure 2); 26) Z 9 , Z 6 , Z 3 , Z 2 , Z1 , D { } (see diagram 26 of the Figure 2); 279 } { } S. Makharadze et al. 27) {Z , Z , Z , Z , Z , D} , {Z , Z , Z , Z , Z , D} , {Z , Z , Z , Z , Z , D} , {Z , Z , Z , Z , Z , D} 8 7 5 3 1 8 7 4 3 1 8 5 4 3 1 7 5 4 3 1 (see diagram 27 of the Figure 2); 28) Z8 , Z 6 , Z 5 , Z 3 , Z1 , D , Z8 , Z 6 , Z 4 , Z 3 , Z1 , D , Z8 , Z 5 , Z 3 , Z 2 , Z1 , D , Z 7 , Z 6 , Z 5 , Z 3 , Z1 , D , Z 7 , Z 6 , Z 4 , Z 3 , Z1 , D { { } { } } { } { } (see diagram 28 of the Figure 2); 29) Z8 , Z 6 , Z 3 , Z 2 , Z1 , D , Z 7 , Z 6 , Z 3 , Z 2 , Z1 , D , Z 6 , Z 5 , Z 3 , Z 2 , Z1 , D , Z 6 , Z 4 , Z 3 , Z 2 , Z1 , D { } { } { } { } (see diagram 29 of the Figure 2); 30) Z8 , Z 4 , Z 3 , Z 2 , Z1 , D , Z 7 , Z 5 , Z 3 , Z 2 , Z1 , D , Z 7 , Z 4 , Z 3 , Z 2 , Z1 , D { } { } { } (see diagram 30 of the Figure 2); 31) Z8 , Z 7 , Z 5 , Z 4 , Z 3 , Z1 , D { } (see diagram 31 of the Figure 2); 32) Z 6 , Z 5 , Z 4 , Z 3 , Z 2 , Z1 , D , Z8 , Z 7 , Z 6 , Z 3 , Z 2 , Z1 , D { } { } (see diagram 32 of the Figure 2); 33) Z 7 , Z 5 , Z 4 , Z 3 , Z 2 , Z1 , D , Z8 , Z 5 , Z 4 , Z 3 , Z 2 , Z1 , D , Z8 , Z 7 , Z 4 , Z 3 , Z 2 , Z1 , D , Z8 , Z 7 , Z 5 , Z 3 , Z 2 , Z1 , D { { } { } } { } (see diagram 33 of the Figure 2); 34) Z 7 , Z 6 , Z 5 , Z 4 , Z 3 , Z1 , D , Z8 , Z 6 , Z 5 , Z 4 , Z 3 , Z1 , D , Z8 , Z 7 , Z 6 , Z 4 , Z 3 , Z1 , D , Z8 , Z 7 , Z 6 , Z 5 , Z 3 , Z1 , D { { } { } } { } (see diagram 34 of the Figure 2); 35) Z 9 , Z 6 , Z 4 , Z 3 , Z 2 , Z1 , D , Z 9 , Z 6 , Z 5 , Z 3 , Z 2 , Z1 , D , Z 9 , Z 7 , Z 6 , Z 3 , Z 2 , Z1 , D , Z9 , Z8 , Z 6 , Z 3 , Z 2 , Z1 , D , Z 9 , Z8 , Z 6 , Z 3 , Z 2 , Z1 , D { { } { } { } { } } (see diagram 35 of the Figure 2); 36) Z 9 , Z 6 , Z 5 , Z 4 , Z 3 , Z1 , D , Z 9 , Z8 , Z 7 , Z 6 , Z 3 , Z1 , D , Z 9 , Z8 , Z 7 , Z 6 , Z 3 , Z1 , D { } { } { } (see diagram 36 of the Figure 2); 37) Z 9 , Z 7 , Z 4 , Z 3 , Z 2 , Z1 , D , Z 9 , Z 7 , Z 5 , Z 3 , Z 2 , Z1 , D , Z 9 , Z8 , Z 4 , Z 3 , Z 2 , Z1 , D , Z 9 , Z8 , Z 5 , Z 3 , Z 2 , Z1 , D { { } { } } { } (see diagram 37 of the Figure 2); 38) Z 9 , Z 7 , Z 5 , Z 4 , Z 3 , Z1 , D , Z 9 , Z8 , Z 5 , Z 4 , Z 3 , Z1 , D , Z 9 , Z8 , Z 7 , Z 4 , Z 3 , Z1 , D { } { } { } (see diagram 38 of the Figure 2); 39) Z 9 , Z 7 , Z 6 , Z 5 , Z 3 , Z1 , D { } (see diagram 39 of the Figure 2); 40) Z 9 , Z 7 , Z 5 , Z 4 , Z 2 , Z1 , D , Z 9 , Z8 , Z 5 , Z 4 , Z 2 , Z1 , D , Z 9 , Z8 , Z 7 , Z 4 , Z3 , Z 2 , D , Z 9 , Z8 , Z 7 , Z 5 , Z 3 , Z 2 , D , Z 9 , Z 5 , Z 4 , Z 3 , Z 2 , Z1 , D { { } { } { } { } (see diagram 40 of the Figure 2); 41) Z 9 , Z 6 , Z 5 , Z 4 , Z 2 , Z1 , D , Z 9 , Z8 , Z 7 , Z 6 , Z 3 , Z 2 , D { } { } (see diagram 41 of the Figure 2); 280 } 42) S. Makharadze et al. {Z , Z , Z , Z , Z , Z , Z , D} 7 6 5 4 3 2 1 (see diagram 42 of the Figure 2); 43) Z8 , Z 6 , Z 5 , Z 4 , Z 3 , Z 2 , Z1 , D , Z8 , Z 7 , Z 6 , Z 4 , Z 3 , Z 2 , Z1 , D , Z8 , Z 7 , Z 6 , Z 5 , Z 3 , Z 2 , Z1 , D { } { } { } (see diagram 43 of the Figure 2); 44) Z8 , Z 7 , Z 5 , Z 4 , Z 3 , Z 2 , Z1 , D { } (see diagram 44 of the Figure 2); 45) Z 9 , Z8 , Z 7 , Z 5 , Z 4 , Z 3 , Z1 , D { } (see diagram 45 of the Figure 2); 46) Z 9 , Z 6 , Z 5 , Z 4 , Z 3 , Z 2 , Z1 , D , Z 9 , Z8 , Z 7 , Z 6 , Z 3 , Z 2 , Z1 , D { } { } (see diagram 46 of the Figure 2); 47) Z 9 , Z 7 , Z 5 , Z 4 , Z 3 , Z 2 , Z1 , D , Z 9 , Z8 , Z 7 , Z 5 , Z 3 , Z 2 , Z1 , D , Z 9 , Z 7 , Z 5 , Z 4 , Z 3 , Z 2 , Z1 , D , Z 9 , Z8 , Z 7 , Z 4 , Z 3 , Z 2 , Z1 , D { { } { } } { } (see diagram 47 of the Figure 2); 48) Z 9 , Z 7 , Z 6 , Z 5 , Z 4 , Z 3 , Z1 , D , Z 9 , Z8 , Z 6 , Z 5 , Z 4 , Z 3 , Z1 , D , Z 9 , Z8 , Z 7 , Z 6 , Z 4 , Z 3 , Z1 , D , Z 9 , Z8 , Z 7 , Z 6 , Z 5 , Z 3 , Z1 , D { { } { } } { (see diagram 48 of the Figure 2); Figure 2. Diagram of all subsemilattices of D. 281 } S. Makharadze et al. {Z , Z , Z , Z , Z , Z , Z , Z , D} 49) 8 7 6 5 4 3 2 1 (see diagram 49 of the Figure 2); 50) Z 9 , Z 7 , Z 6 , Z 5 , Z 4 , Z 3 , Z 2 , Z1 , D , Z 9 , Z8 , Z 6 , Z 5 , Z 4 , Z 3 , Z 2 , Z1 , D , Z 9 , Z8 , Z 7 , Z 6 , Z 4 , Z 3 , Z 2 , Z1 , D , Z 9 , Z8 , Z 7 , Z 6 , Z 5 , Z 3 , Z 2 , Z1 , D { { } { } } { } (see diagram 50 of the Figure 2); 51) Z 9 , Z8 , Z 7 , Z 5 , Z 4 , Z 3 , Z 2 , Z1 , D { } (see diagram 51 of the Figure 2); 52) Z 9 , Z8 , Z 7 , Z 6 , Z 5 , Z 4 , Z 3 , Z1 , D { } (see diagram 52 of the Figure 2); Diagrams of subsemilattices of the semilattice D. Lemma 3. Let D ∈ Σ1 ( X ,10 ) . Then the following sets are all XI-subsemi-lattices of the given semilattice D: 1) {Z 9 } , {Z8 } , {Z 7 } , {Z 6 } , {Z 5 } , {Z 4 } , {Z 3 } , {Z 2 } , {Z1} , D { } (see diagram 1 of the Figure 2); 2) Z 9 , D , {Z 9 , Z8 } , {Z 9 , Z 7 } , {Z 9 , Z 6 } , {Z 9 , Z 5 } , {Z 9 , Z 4 } , {Z 9 , Z 3 } , {Z 9 , Z 2 } , {Z 9 , Z1} , {Z8 , Z 3 } , Z8 , D , {Z 7 , Z 3 } , Z 7 , D , {Z 6 , Z 3 } , {Z 6 , Z 2 } , {Z 6 , Z1} , Z 6 , D , {Z 5 , Z1} , Z 5 , D , {Z 4 , Z1} , Z 4 , D , Z 3 , D , Z 2 , D , Z1 , D { { { } } } { { } { } } { { } } { } (see diagram 2 of the Figure 2); 3) Z 9 , Z8 , D , Z 9 , Z 7 , D , Z 9 , Z 6 , D , Z 9 , Z 5 , D , Z 9 , Z 4 , D , Z 9 , Z 3 , D , Z 9 , Z 2 , D , Z 9 , Z1 , D , { } { } { } { } { } { } { } { {Z9 , Z8 , Z3} , {Z9 , Z 7 , Z3} , {Z9 , Z 6 , Z3} , {Z9 , Z 6 , Z 2 } , {Z9 , Z 6 , Z1} , {Z9 , Z5 , Z1} , {Z9 , Z 4 , Z1} , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} , {Z , Z , D} 8 3 7 3 6 3 6 2 6 1 5 1 4 (see diagram 3 of the Figure 2); 4) Z 9 , Z 4 , Z1 , D , Z 9 , Z 5 , Z1 , D , Z 9 , Z 6 , Z1 , D , Z 9 , Z 6 , Z 2 , D , Z 9 , Z 6 , Z 3 , D , Z 9 , Z 7 , Z 3 , D , Z 9 , Z8 , Z 3 , D { { } { } { } { } } { } { } (see diagram 4 of the Figure 2); 5) {Z9 , Z5 , Z 4 , Z1} , {Z9 , Z 6 , Z 4 , Z1} , {Z9 , Z 6 , Z5 , Z1} , {Z9 , Z 7 , Z 6 , Z3} , {Z9 , Z8 , Z 6 , Z3} , {Z9 , Z8 , Z7 , Z3} , {Z9 , Z8 , Z 4 , D} , {Z9 , Z8 , Z5 , D} , {Z9 , Z7 , Z 2 , D} , {Z9 , Z7 , Z 4 , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} , {Z , Z , Z , D} 9 7 5 9 8 1 9 8 2 9 4 2 9 4 9 5 2 9 5 3 9 7 1 9 2 1 9 3 9 3 2 6 2 1 6 3 1 6 3 2 3 1 (see diagram 5 of the Figure 2); 6) Z 9 , Z 5 , Z 4 , Z1 , D , Z 9 , Z 6 , Z 4 , Z1 , D , Z 9 , Z 6 , Z 5 , Z1 , D , Z 9 , Z 7 , Z 6 , Z 3 , D , Z 9 , Z8 , Z 6 , Z 3 , D , Z 9 , Z8 , Z 7 , Z 3 , D { { } { } { } { } } { (see diagram 6 of the Figure 2); 7) Z 9 , Z 6 , Z 2 , Z1 , D , Z 9 , Z 6 , Z 3 , Z1 , D , Z 9 , Z 6 , Z 3 , Z 2 , D { } { } { } (see diagram 7 of the Figure 2); 282 } 1 } 8) S. Makharadze et al. {Z , Z , Z , Z , Z , D} , {Z , Z , Z , Z , Z , D} , {Z , Z , Z , Z , Z , D} , {Z , Z , Z , Z , Z , D} , {Z , Z , Z , Z , Z , D} , {Z , Z , Z , Z , Z , D} , {Z , Z , Z , Z , Z , D} , {Z , Z , Z , Z , Z , D} 9 8 6 3 2 9 8 6 3 1 9 7 6 9 6 5 3 1 9 6 5 2 1 9 6 4 3 3 2 9 1 9 7 6 6 3 4 2 1 1 (see diagram 8 of the Figure 2); Proof. It is well know (see [1]), that the semilattices 1 to 8, which are given by lemma 2 are always XI-semilattices. The semilattices 9 and 10 which are given by Lemma 2 {Z 8 , Z 7 , Z 3 } , {Z 8 , Z 6 , Z 3 } , Z 8 , Z 6 , D , Z 8 , Z 5 , D , Z 8 , Z 4 , D , Z8 , Z 2 , D , Z8 , Z1 , D , {Z 7 , Z 6 , Z 3 } , Z 7 , Z 5 , D , Z 7 , Z 4 , D , Z 7 , Z 2 , D , Z 7 , Z1 , D , {Z 6 , Z 5 , Z1} , {Z 6 , Z 4 , Z1} , {Z 5 , Z 4 , Z1} , Z5 , Z3 , D , Z5 , Z 2 , D , Z 4 , Z3 , D , Z 4 , Z 2 , D , Z3 , Z 2 , D , Z 3 , Z1 , D , Z 2 , Z1 , D . { { { { } } } } { { { { } } } { } { } { { } { } { } } } { } { } (see diagram 9 of the Figure 2); Z8 , Z 6 , Z 3 , D , Z8 , Z 7 , Z 3 , D , Z 7 , Z 6 , Z 3 , D , Z 5 , Z 4 , Z1 , D , Z 6 , Z 4 , Z1 , D , Z 6 , Z 5 , Z1 , D { } { } { } { } { } { } (see diagram 10 of the Figure 2); are XI-semilattices iff the intersection of minimal elements of the given semilattices is empty set. From the formal equalities (1) of the given semilattice D we have Z8 ∩ Z 7 = ( P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P9 ) ∪ ( P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P8 ∪ P9 ) ≠ ∅ Z8 ∩ Z 6 = ( P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P9 ) ∪ ( P0 ∪ P4 ∪ P5 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ Z8 ∩ Z 5 = ( P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P9 ) ∪ ( P0 ∪ P2 ∪ P3 ∪ P4 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ Z8 ∩ Z 4 = ( P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P9 ) ∪ ( P0 ∪ P2 ∪ P3 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ Z8 ∩ Z 2 = ( P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P9 ) ∪ ( P0 ∪ P1 ∪ P3 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ Z8 ∩ Z1 = ( P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P9 ) ∪ ( P0 ∪ P2 ∪ P3 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ Z7 ∩ Z6 = ( P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P8 ∪ P9 ) ∪ ( P0 ∪ P4 ∪ P5 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ Z7 ∩ Z5 = ( P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P8 ∪ P9 ) ∪ ( P0 ∪ P2 ∪ P3 ∪ P4 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ Z7 ∩ Z4 = ( P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P8 ∪ P9 ) ∪ ( P0 ∪ P2 ∪ P3 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ Z7 ∩ Z2 = ( P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P8 ∪ P9 ) ∪ ( P0 ∪ P1 ∪ P3 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ Z 7 ∩ Z1 = ( P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P8 ∪ P9 ) ∪ ( P0 ∪ P2 ∪ P3 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ Z6 ∩ Z5 = ( P0 ∪ P4 ∪ P5 ∪ P7 ∪ P8 ∪ P9 ) ∪ ( P0 ∪ P2 ∪ P3 ∪ P4 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ Z6 ∩ Z4 = ( P0 ∪ P4 ∪ P5 ∪ P7 ∪ P8 ∪ P9 ) ∪ ( P0 ∪ P2 ∪ P3 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ Z5 ∩ Z 4 = ( P0 ∪ P2 ∪ P3 ∪ P4 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ∪ ( P0 ∪ P2 ∪ P3 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ Z5 ∩ Z3 = ( P0 ∪ P2 ∪ P3 ∪ P4 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ∪ ( P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ Z5 ∩ Z 2 = ( P0 ∪ P2 ∪ P3 ∪ P4 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ∪ ( P0 ∪ P1 ∪ P3 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ Z 4 ∩ Z3 = ( P0 ∪ P2 ∪ P3 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ∪ ( P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ 283 S. Makharadze et al. Z4 ∩ Z2 = ( P0 ∪ P2 ∪ P3 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ∪ ( P0 ∪ P1 ∪ P3 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ Z3 ∩ Z 2 = ( P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ∪ ( P0 ∪ P1 ∪ P3 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ Z 3 ∩ Z1 = ( P0 ∪ P1 ∪ P2 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ∪ ( P0 ∪ P2 ∪ P3 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ Z 2 ∩ Z1 = ( P0 ∪ P1 ∪ P3 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ∪ ( P0 ∪ P2 ∪ P3 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 ∪ P9 ) ≠ ∅ From the equalities given above it follows that the semilattices 9 and 10 are not XI-semilattices. The semilattices 11 {Z6 , Z5 , Z3 , Z1 , D} , {Z6 , Z5 , Z 2 , Z1 , D} , {Z6 , Z 4 , Z3 , Z1 , D} , {Z6 , Z 4 , Z 2 , Z1 , D} , {Z7 , Z6 , Z3 , Z 2 , D} , {Z7 , Z6 , Z3 , Z1 , D} , {Z8 , Z6 , Z3 , Z 2 , D} , {Z8 , Z6 , Z3 , Z1 , D}. (see diagram 1-8 of the Figure 3); are not XI-semilattice since we have the following inequalities Z 5 ∩ Z 3 ≠ ∅, Z 5 ∩ Z 2 ≠ ∅, Z 4 ∩ Z 3 ≠ ∅, Z 4 ∩ Z 2 ≠ ∅, Z 7 ∩ Z 2 ≠ ∅, Z 7 ∩ Z1 ≠ ∅, Z8 ∩ Z 2 ≠ ∅, Z8 ∩ Z1 ≠ ∅. The semilattices 12 to 52 are never XI-semilattices. We prove that the semilattice, diagram 52 of the Figure 2, is not an XI-semilattice (see Figure 4). Indeed, let Q = {T0 , T1 , T2 , T3 , T4 , T5 , T6 , T7 , T8 } and C ( Q ) = { P0′, P1′, P2′, P3′, P4′, P5′, P6′, P7′, P8′} be a family of sets, where P0′, P1′, P2′, P3′, P4′, P5′, P6′, P7′, P8′ are pairwise disjoint subsets of the set X. Let T0 T1 T2 T3 T4 T5 T6 T7 T8 P0′ P1′ P2′ P3′ P4′ P5′ P6′ P7′ P8′ ϕ = be a mapping of the semilattice Q onto the family of sets C ( Q ) . Then for the formal equalities of the semilattice Q we have a form: Figure 3. Diagram of all subsemilattices which are isomorphic to 11 in Figure 2. Figure 4. Diagram of subsemilattice 52 in Figure 2. 284 T0 = P0′ ∪ P1′∪ P2′ ∪ P3′ ∪ P4′ ∪ P5′ ∪ P6′ ∪ P7′ ∪ P8′, T1 = P0′ ∪ P2′ ∪ P3′ ∪ P4′ ∪ P5′ ∪ P6′ ∪ P7′ ∪ P8′, T2 = P0′ ∪ P1′∪ P3′ ∪ P4′ ∪ P5′ ∪ P6′ ∪ P7′ ∪ P8′, T3 = P0′ ∪ P2′ ∪ P4′ ∪ P5′ ∪ P6′ ∪ P7′ ∪ P8′, S. Makharadze et al. T4 = P0′ ∪ P2′ ∪ P3′ ∪ P5′ ∪ P6′ ∪ P7′ ∪ P8′, T5 = P0′ ∪ P3′ ∪ P4′ ∪ P6′ ∪ P7′ ∪ P8′, T6 = P0′ ∪ P1′∪ P3′ ∪ P4′ ∪ P5′ ∪ P7′ ∪ P8′, T7 = P0′ ∪ P1′∪ P3′ ∪ P4′ ∪ P5′ ∪ P6′ ∪ P8' , (3) T8 = P0′. Here the elements P1′ , P2′ , P3′ , P4′ , P6′ , P7′ are basis sources, the elements P0′ , P5′ , P8′ are sources of completeness of the semilattice D. Therefore X ≥ 6 and δ = 7 (see [2]). Then of the formal equalities we have: Q, T ,T ,T ,T , { 7 6 2 0 } {T4 , T3 , T1 , T0 } , {T7 , T6 , T5 , T4 , T2 , T1 , T0 } , Qt = {T7 , T6 , T5 , T3 , T2 , T1 , T0 } , {T , T , T , T , T , T , T } , 7 6 4 3 2 1 0 {T7 , T5 , T4 , T3 , T2 , T1 , T0 } , T ,T ,T ,T ,T ,T ,T , { 6 5 4 3 2 1 0 } {T8 , T7 , T6 , T5 , T4 , T3 , T2 , T1 , T0 } , T8 , T8 , T8 , T8 , Λ ( Q, Qt = ) T8 , T , 8 T8 , T8 , T8 , t ∈ P0′, t ∈ P1′, t ∈ P2′, t ∈ P3′, t ∈ P4′, t ∈ P5′, t ∈ P6′, if t ∈ P7′, if t ∈ P8′. if if if if if if if t ∈ P0′, t ∈ P1′, t ∈ P2′, t ∈ P3′, t ∈ P4′, if t ∈ P5′, if t ∈ P6′, if t ∈ P7′, if if if if if if t ∈ P8′. We have, that Q ∧ = {T8 } and Λ ( Q, Qt ) ∈ Q for any t ∈ Q . But elements T7, T6, T5, T4, T3, T2, T1, T0 are not union of some elements of the set Q ∧ . Therefore from the Definition 1 it follows that Q is not an XI-semilattice of unions. Statements 12 to 51 can be proved analogously. We denoted the following semitattices by symbols: a) Q1 = {T } , where T ∈ D (see diagram 1 of the Figure 5); b) Q2 = {T , T ′} , where T , T ′ ∈ D and T ⊂ T ′ (see diagram 2 of the Figure 5); c) Q3 = {T , T ′, T ′′} , where T , T ′, T ′′ ∈ D and T ⊂ T ′ ⊂ T ′′ (see diagram 3 of the Figure 5); d) Q4 = Z 9 , T , T ′, D , where T , T ′ ∈ D and Z 9 ⊂ T ⊂ T ′ ⊂ D (see diagram 4 of the Figure 5); { } e) Q5 {T , T ′, T ′′, T ′ ∪ T ′′} where T , T ′, T ′′ ∈ D , T ⊂ T ′ , T ⊂ T ′′ , T ′ \ T ′′ ≠ ∅ , T ′′ \ T ′ ≠ ∅ , (see dia= gram 5 of the Figure 5); Z 9 , T , T ′, T ∪ T ′, D , where T , T ′ ∈ D , Z 9 ⊂ T , Z 9 ⊂ T ′ , T \ T ′ ≠ ∅ , T ′ \ T ≠ ∅ (see diagram = f) Q6 6 of the Figure 5); g) Q7 = Z 9 , Z 6 , T , T ′, D , where T , T ′ ∈ D , Z 6 ⊂ T , Z 6 ⊂ T ′ , T \ T ′ ≠ ∅ , T ′ \ T ≠ ∅ , T ∪ T ′ = D (see diagram 7 of the Figure 5); { { } } 285 S. Makharadze et al. Figure 5. Diagram of all XI-subsemilattices of D. = Z 9 , T , T ′, T ∪ T ′, Z , D , where Z 9 ⊂ T ′ ⊂ Z , T \ T ′ ≠ ∅ , T ′ \ T ≠ ∅ , (T ∪ T ′ ) \ Z ≠ ∅ , h) Q8 Z \ (T ∪ T ′ ) ≠ ∅ (see diagram 8 of the Figure 5); Note that the semilattices in Figure 5 are all XI-semilattices (see [1] and Lemma 1.2.3). Definition 9. Let us assume that by the symbol Σ′XI ( X , D ) denote a set of all XI-subsemilatices of X-semilatices of unions D that every element of this set contains an empty set if ∅ ∈ D or denotes a set of all XI-subsemilatices of D. Further, let D ′, D ′′ ∈ Σ′XI ( X , D ) and ϑXI ⊆ Σ′XI ( X , D ) × Σ′XI ( X , D ) . It is assumed that D ′ϑXI D ′′ iff there exists some complete isomorphism ϕ between the semilatices D ′ and D ′′ . One can easily verify that the binary relation ϑXI is an equivalence relation on the set Σ′XI ( X , D ) . By the symbol QiϑXI denote the ϑXI -equivalence class of the set Σ′XI ( X , D ) , where every element is isomorphic to the X-semilattice Qi ( i = 1, 2, ,8 ) . Let D' be an XI-subsemilattice of the semilattice D. By I ( D′ ) we denoted the set of all right units of the semigroup BX ( D′ ) , and } { I ∗ ( Qi ) = ∑ D ′∈Qiϑ XI I ( D′ ) where i = 1, 2, ,8 . Lemma 4. If X is a finite set, then the following equalities hold a) I ( Q1 ) = 1 b) I ( Q= 2) c) I ( Q= 3) d) I ( Q= 4) e) I ( Q= 5) f) I ( Q= 6) g) I ( Q7 ) = h) I ( Q8= ) (2 (2 (2 (2 (2 T ′ \T T ′ \T T \ Z9 T ′ \ T ′′ T ′ \ T ′′ ( (2 2 ) − 1) ⋅ ( 3 − 1) ⋅ ( 3 − 1) ⋅ ( 2 − 1) ⋅ ( 2 T ′′ \ T ′ −2 T ′ \T −2 T ′′ \ T ′ T ′′ \ T ′ ) − 1) ⋅ ( 2 Z 6 \ Z9 T \Z X \T ′ −1 ⋅ 2 −1 ⋅ 2 T ′′ \ T ′ X \ T ′′ ) − 1) ⋅ ( 5 −1 ⋅ 4 (T ∩T ′ ) \ Z6 T ′ \T T ′ \T )⋅3 ) ⋅(4 ( )( −3 D \T ′ ) ⋅4 X \D X \ (T ′ ∪T ′′ ) ⋅ 3 −1 ⋅ 3 D \T ′ D \ (T ∪T ′′ ) T \T ′ −2 Z \ (T ∪T ′ ) −4 T \T ′ −2 D \ (T ∪T ′′ ) )( ⋅ 3 T ′ \T Z \ (T ∪T ′ ) )⋅5 −2 )⋅6 X \D T ′ \T ) ⋅5 X \D X \D Proof. This lemma immediately follows from Theorem 13.1.2, 13.3.2, and 13.7.2 of the [1]. Theorem 10. Let D ∈ Σ1 ( X ,10 ) and α ∈ BX ( D ) . Binary relation α is an idempotent relation of the semmigroup BX ( D ) iff binary relation α satisfies only one conditions of the following conditions: a) α= X × T , where T ∈ D ; b) α = YTα × T ∪ YTα′ × T ′ , where T , T ′ ∈ D , T ⊂ T ′ , YTα , YTα′ ∉ {∅} , and satisfies the conditions: YTα ⊇ T, YTα′ ∩ T ′ ≠ ∅ ; c) α = YTα × T ∪ YTα′ × T ′ ∪ YTα′′ × T ′′ , where T , T ′, T ′′ ∈ D , T ⊂ T ′ ⊂ T ′′ , YTα , YTα′ , YTα′′ ∉ {∅} , and sa- ( ) ( ( ) ( ) ) ( ) tisfies the conditions: YT ⊇ T , YT ∪ YT ′ ⊇ T ′ , YTα′ ∩ T ′ ≠ ∅ , YTα′′ ∩ T ′′ ≠ ∅ ; α α α 286 S. Makharadze et al. d) α = Y9α × Z 9 ∪ YTα × T ∪ YTα′ × T ′ ∪ Y0α × D , where T , T ′ ∈ D , Z 9 ⊂ T ⊂ T ′ ⊂ D , Y9α , YTα , YTα′ , ( ) ( ) ( ) ( ) α α α α α α Y0 ∉ {∅} , and satisfies the conditions: Y9 ⊇ Z 9 , Y9 ∪ YT ⊇ T , Y9 ∪ YT ∪ YT ′ ⊇ T ′ , YT ∩ T ≠ ∅ , α α YT ′ ∩ T ′ ≠ ∅ , Y0 ∩ D ≠ ∅ ; e) α = YTα × T ∪ YTα′ × T ′ ∪ YTα′′ × T ′′ ∪ YTα′∪T ′′ × (T ′ ∪ T ′′ ) , where T , T ′ , T ′′ ∈ D , T ⊂ T ′ , T ⊂ T ′′ , α α ( ) ( ) ( ) ( ) ) ( ) ( T ′ \ T ′′ ≠ ∅ , T ′′ \ T ′ ≠ ∅ , YT , YT ′ , YT ′′ ∉ {∅} and satisfies the conditions: YTα ∪ YTα′ ⊇ T ′ , YTα ∪ YTα′′ ⊇ T ′′ , YTα′ ∩ T ′ ≠ ∅ , YTα′′ ∩ T ′′ ≠ ∅ ; f) α = Y9α × Z 9 ∪ YTα × T ∪ YTα′ × T ′ ∪ YTα∪T ′ × (T ∪ T ′ ) ∪ Y0α × D , where Z 9 ⊂ T , Z 9 ⊂ T ′ , α ( ) ( α α ) ( ) T \ T ′ ≠ ∅ , T ′ \ T ≠ ∅ , YT , YT ′ , Y0 ∉ {∅} and satisfies the conditions: Y9α ∪ YTα ⊇ T , Y9α ∪ YTα′ ⊇ T ′ , YTα ∩ T ≠ ∅ , YTα′ ∩ T ′ ≠ ∅ , Y0α ∩ D ≠ ∅ ; g) α = Y9α × Z 9 ∪ Y6α × Z 6 ∪ YTα × T ∪ YTα′ × T ′ ∪ Y0α × D , where T , T ′ ∈ D , Z 6 ⊂ T , Z 6 ⊂ T ′ , T \ T ′ ≠ ∅ , T ′ \ T ≠ ∅ , T ∪T ′ = D , Y6α , YTα , YTα′ ∉ {∅} and satisfies the conditions: Y9α ⊇ Z 9 , Y9α ∪ Y6α ⊇ Z 6 , Y9α ∪ Y6α ∪ YTα ⊇ T , Y9α ∪ Y6α ∪ YTα′ ⊇ T ′ , Y6α ∩ Z 6 ≠ ∅ , YTα ∩ T ≠ ∅ , YTα′ ∩ T ′ ≠ ∅ ; h) α = Y9α × Z 9 ∪ YTα × T ∪ YTα′ × T ′ ∪ YTα∪T ′ × (T ∪ T ′ ) ∪ YZα × Z ∪ Y0α × D , where Z 9 ⊂ T ′ ⊂ Z , α α α ( ) ( ) ( ) ( ( ) ( ) ( ) ( ) ( ) ) ( ) ( ) T \ T ′ ≠ ∅ , T ′ \ T ≠ ∅ , (T ∪ T ′ ) \ Z ≠ ∅ , Z \ (T ∪ T ′ ) ≠ ∅ , YT , YT ′ , YZ ∉ {∅} and satisfies the conditions: Y9α ∪ YTα ⊇ T , Y9α ∪ YTα′ ⊇ T ′ Y9α ∪ YTα′ ∪ YZα ⊇ Z , YTα ∩ T ≠ ∅ , YTα′ ∩ T ′ ≠ ∅ , YZα ∩ Z ≠ ∅ . Proof. By Lemma 3 we know that 1 to 8 are an XI-semilattices. We prove only statement g. Indeed, if α = Y9α × Z 9 ∪ Y6α × Z 6 ∪ YTα × T ∪ YTα′ × T ′ ∪ Y0α × D , α ) ( ( ) ( α α ) ( ) ( ) where Y6 , YT , YT ′ ∉ {∅} , then it is easy to see, that the set D (α ) = {Z 9 , Z 6 , T , T1′} is a generating set of the semilattice Z 9 , Z 6 , T , T ′, D . Then the following equalities hold (α ) (α ) = D Z }, D {= {Z , Z } , α { α α } 9 Z9 (α ) = D T Z6 9 (α ) Z9 , Z6 , T } , D {= T′ 6 {Z9 , Z 6 , T ′} . By statement a of the Theorem 6.2.1 (see [1]) we have: Y9α ⊇ Z 9 , Y9α ∪ Y6α ⊇ Z 6 , Y9α ∪ Y6α ∪ YTα ⊇ T , Y9α ∪ Y6α ∪ YTα′ ⊇ T ′ . Further, one can see, that the equalities are true: ( ) ( ) ( ) (α ) , Z = ∪ D (α ) \ {Z } = Z , Z \ l D (α ) , Z = Z \ Z ≠ ∅, l D 6 6 9 6 6 6 9 Z Z Z 6 6 6 (α ) , T ) = ∪ ( D (α ) \ {T } ) = Z , T \ l ( D (α ) , T ) = T \ Z ≠ ∅, l (D 6 6 T T T (α ) , T ′ ) = ∪ ( D (α ) \ {T ′} ) = Z , T ′ \ l ( D (α ) , T ′ ) = T ′ \ Z ≠ ∅, l (D 6 6 T′ T′ T′ (α ) , D (α ) respectively. (α ) , D We have the elements Z6, T, T' are nonlimiting elements of the sets D Z T T′ 6 By statement b of the Theorem 6.2.1 [1] it follows, that the conditions Y6α ∩ Z 6 ≠ ∅ , YTα ∩ T ≠ ∅ , YTα′ ∩ T ′ ≠ ∅ hold. Therefore, the statement g is proved. Rest of statements can be proved analogously. Lemma 5. Let D ∈ Σ1 ( X ,10 ) and Z 9 ≠ ∅ . If X is a finite set, then the number I ∗ ( Q1 ) may be calculated by the formula I ∗ ( Q1 ) = 10 . Lemma 6. Let D ∈ Σ1 ( X ,10 ) and Z 9 ≠ ∅ . If X is a finite set, then the number I ∗ ( Q2 ) may be calculated by formula 2 Z8 \ Z 9 − 1 ⋅ 2 X \ Z8 + 2 Z 7 \ Z 9 − 1 ⋅ 2 X \ Z 7 + 2 Z 6 \ Z 9 − 1 ⋅ 2 X \ Z 6 + 2 Z 5 \ Z 9 − 1 ⋅ 2 X \ Z 5 I ∗ (Q = 2) + 2 Z 4 \ Z9 Z3 \ Z9 Z 3 \ Z8 Z3 \ Z 7 Z3 \ Z 6 X \Z X \Z − 1 ⋅ 2 4 + 2 +2 +2 +2 − 4 ⋅ 2 3 + 2 Z 2 \ Z9 +2 Z 2 \ Z6 Z1 \ Z9 Z1 \ Z 6 Z1 \ Z5 Z1 \ Z 4 X \Z X \Z − 2 ⋅ 2 2 + 2 +2 +2 +2 − 4 ⋅ 2 1 D \ Z8 D \ Z7 D \ Z6 D \ Z5 D \ Z4 D \ Z3 D \ Z2 D \ Z1 D \ Z9 X \ D +2 +2 +2 +2 +2 +2 +2 +2 +2 − 9⋅ 2 . 287 S. Makharadze et al. Lemma 7. Let D ∈ Σ1 ( X ,10 ) and Z 9 ≠ ∅ . If X is a finite set, then the number I ∗ ( Q3 ) may be calculated by formula 2 Z8 \ Z 9 − 1 ⋅ 3 D \ Z8 − 2 D \ Z8 ⋅ 3 X \ D + 2 Z 7 \ Z 9 − 1 ⋅ 3 D \ Z 7 − 2 D \ Z 7 ⋅ 3 X \ D I (Q = 3) ∗ D \ Z5 X \ D Z5 \ Z9 D \ Z5 +2 − 1 ⋅ 3 −2 ⋅3 D \ Z3 X \ D Z3 \ Z9 D \ Z3 +2 − 1 ⋅ 3 −2 ⋅3 D \ Z1 X \ D Z1 \ Z9 D \ Z1 +2 − 1 ⋅ 3 −2 ⋅3 D \ Z6 D \ Z6 − 1 ⋅ 3 −2 X \ D ⋅3 X \ D ⋅3 + 2 Z 6 \ Z9 + 2 Z 4 \ Z9 + 2 Z 2 \ Z9 + 2 Z8 \ Z 9 Z 3 \ Z8 Z 3 \ Z8 − 1 ⋅ 3 −2 + 2 Z 6 \ Z9 Z3 \ Z 6 Z3 \ Z 6 X \ Z3 + 2 Z 6 \ Z9 − 1 ⋅ 3 Z 2 \ Z 6 − 2 Z 2 \ Z 6 ⋅ 3 X \ Z 2 − 1 ⋅ 3 −2 ⋅3 + 2 Z 6 \ Z9 Z1 \ Z 6 Z1 \ Z 6 − 1 ⋅ 3 −2 + 2 Z 4 \ Z9 + 2 Z3 \ Z 7 + 2 Z 2 \ Z6 D \ Z4 D \ Z4 − 1 ⋅ 3 −2 D \ Z2 D \ Z2 − 1 ⋅ 3 −2 X \ D ⋅3 X \ Z3 + 2 Z 7 \ Z9 − 1 ⋅ 3 Z3 \ Z 7 − 2 Z3 \ Z 7 ⋅3 X \ Z1 + 2 Z5 \ Z9 − 1 ⋅ 3 Z1 \ Z5 − 2 Z1 \ Z5 ⋅3 Z1 \ Z 4 Z1 \ Z 4 ⋅ 3 X \ Z1 + 2 Z3 \ Z8 − 1 ⋅ 3 D \ Z3 − 2 D \ Z3 − 1 ⋅ 3 −2 D \ Z3 X \ D Z3 \ Z6 D \ Z3 +2 − 1 ⋅ 3 −2 ⋅3 D \ Z1 X \ D Z1 \ Z6 D \ Z1 +2 − 1 ⋅ 3 −2 ⋅3 D \ Z3 D \ Z3 − 1 ⋅ 3 −2 D \ Z2 D \ Z2 − 1 ⋅ 3 −2 X \ Z3 ⋅3 X \ Z1 ⋅3 X \ D ⋅3 X \ D ⋅3 X \ D ⋅3 D \ Z1 D \ Z1 Z1 \ Z5 Z1 \ Z 4 D \ Z1 D \ Z1 X \D X \D + 2 − 1 ⋅ 3 −2 + 2 − 1 ⋅ 3 −2 ⋅3 ⋅3 . Lemma 8. Let D ∈ Σ1 ( X ,10 ) and Z 9 ≠ ∅ . If X is a finite set, then the number I ∗ ( Q4 ) may be calculated by formula I ∗ (Q = 4) (2 Z8 \ Z 9 ( + (2 + (2 + (2 + (2 + (2 + 2 )( − 1) ⋅ ( 3 − 1) ⋅ ( 3 − 1) ⋅ ( 3 − 1) ⋅ ( 3 − 1) ⋅ ( 3 − 1) ⋅ ( 3 −1 ⋅ 3 Z 7 \ Z9 Z 6 \ Z9 Z 6 \ Z9 Z 6 \ Z9 Z5 \ Z9 Z 4 \ Z9 Z 3 \ Z8 −2 Z 3 \ Z8 )⋅(4 ) ⋅(4 ) ⋅(4 )⋅(4 )⋅(4 ) ⋅(4 ) ⋅(4 D \ Z3 )⋅4 −3 )⋅4 −3 )⋅4 −3 )⋅4 −3 )⋅4 −3 )⋅4 −3 )⋅4 −3 Z3 \ Z 7 −2 Z3 \ Z 7 D \ Z3 Z3 \ Z 6 −2 Z3 \ Z 6 D \ Z3 Z 2 \ Z6 −2 Z 2 \ Z6 D \ Z2 Z1 \ Z 6 −2 Z1 \ Z 6 D \ Z1 Z1 \ Z5 −2 Z1 \ Z5 D \ Z1 Z1 \ Z 4 −2 Z1 \ Z 4 D \ Z1 D \ Z3 X \D D \ Z3 X \D D \ Z3 X \D D \ Z2 X \D D \ Z1 X \D D \ Z1 X \D D \ Z1 X \D . Lemma 9. Let D ∈ Σ1 ( X ,10 ) and Z 9 ≠ ∅ . If X is a finite set, then the number I ∗ ( Q5 ) may be calculated by formula 288 I ∗ (Q = 5) (2 ) ( − 1) ⋅ 4 + ( 2 − 1) ⋅ ( 2 − 1) ⋅ 4 + (2 − 1) ⋅ ( 2 − 1) ⋅ 4 + (2 − 1) ⋅ ( 2 − 1) ⋅ 4 + (2 − 1) ⋅ ( 2 − 1) ⋅ 4 + (2 − 1) ⋅ ( 2 − 1) ⋅ 4 + (2 − 1) ⋅ ( 2 − 1) ⋅ 4 + (2 − 1) ⋅ ( 2 − 1) ⋅ 4 + (2 − 1) ⋅ ( 2 − 1) ⋅ 4 + (2 − 1) ⋅ ( 2 − 1) ⋅ 4 + (2 − 1) ⋅ ( 2 − 1) ⋅ 4 + (2 − 1) ⋅ ( 2 − 1) ⋅ 4 + (2 − 1) ⋅ ( 2 − 1) ⋅ 4 + (2 − 1) ⋅ ( 2 − 1) ⋅ 4 + (2 − 1) ⋅ ( 2 − 1) ⋅ 4 + (2 − 1) ⋅ ( 2 − 1) ⋅ 4 + (2 − 1) ⋅ ( 2 − 1) ⋅ 4 + (2 − 1) ⋅ ( 2 − 1) ⋅ 4 + 2 ⋅(2 − 1) ⋅ ( 2 − 1) ⋅ 4 + 2 ⋅(2 − 1) ⋅ ( 2 − 1) ⋅ 4 + 2 ⋅(2 − 1) ⋅ ( 2 − 1) ⋅ 4 . −1 ⋅ 2 Z5 \ Z 4 Z 4 \ Z5 Z6 \ Z 4 X \ Z1 Z 4 \ Z6 X \ Z1 Z 6 \ Z5 Z5 \ Z 6 X \ Z1 Z7 \ Z6 Z6 \ Z7 X \ Z3 Z8 \ Z 6 Z 6 \ Z8 X \ Z3 Z8 \ Z 7 Z 7 \ Z8 X \ Z3 Z8 \ Z 4 Z 4 \ Z8 X \D Z8 \ Z 5 Z 5 \ Z8 X \D Z7 \ Z 2 Z 2 \ Z7 X \D Z7 \ Z 4 Z 4 \ Z7 X \D Z 7 \ Z5 Z5 \ Z 7 X \D Z8 \ Z1 Z1 \ Z8 Z8 \ Z 2 Z 2 \ Z8 X \D Z4 \ Z2 Z2 \ Z4 X \D Z 4 \ Z3 Z3 \ Z 4 X \D Z5 \ Z 2 Z 2 \ Z5 X \D Z5 \ Z3 Z3 \ Z5 X \D Z 7 \ Z1 Z1 \ Z 7 Z 2 \ Z1 Z1 \ Z 2 X \D Z3 \ Z 2 Z 2 \ Z3 X \D S. Makharadze et al. Z3 \ Z1 X \D X \D Z1 \ Z3 X \D Lemma 10. Let D ∈ Σ1 ( X ,10 ) and Z 9 ≠ ∅ . If X is a finite set, then the number I ∗ ( Q6 ) may be calculated by formula I ∗ ( Q6 ) = 1 + 3 + 3 + 3 + 3 + 1 = 14 Lemma 11. Let D ∈ Σ1 ( X ,10 ) and Z 9 ≠ ∅ . If X is a finite set, then the number I ∗ ( Q7 ) may be calculated by formula ( I ∗ ( Q7 ) = 2 Z 6 \ Z9 ( + (2 + 2 ) −1 ⋅ 2 Z 6 \ Z9 Z 6 \ Z9 ( ( Z 2 ∩ Z1 ) \ Z6 ) ( ( − 1) ⋅ 2 −1 ⋅ 2 ⋅ 3 Z3 ∩ Z1 ) \ Z 6 Z3 ∩ Z 2 ) \ Z 6 −2 Z 2 \ Z1 ( ⋅ (3 ⋅ 3 Z3 \ Z1 Z3 \ Z 2 Z 2 \ Z1 −2 ) ⋅ (3 ) ⋅ (3 ) ⋅ (3 Z1 \ Z 2 Z3 \ Z1 −2 −2 Z1 \ Z3 Z3 \ Z 2 Z1 \ Z 2 −2 Z 2 \ Z3 )⋅5 )⋅5 )⋅5 X \D X \D Z1 \ Z3 −2 Z 2 \ Z3 X \D . Lemma 12. Let D ∈ Σ1 ( X ,10 ) and Z 9 ≠ ∅ . If X is a finite set, then the number I ∗ ( Q8 ) may be calculated by formula I ∗ (Q = 8) (2 Z8 \ Z 2 ( + (2 + (2 + (2 + 2 )( − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 −1 ⋅ 2 Z8 \ Z1 Z7 \ Z 2 Z 7 \ Z1 Z5 \ Z3 Z 6 \ Z8 )( Z 6 \ Z8 Z6 \ Z7 Z6 \ Z7 ( Z5 \ Z 2 −1 ⋅ 2 + 2 Z 4 \ Z3 −1 ⋅ 2 + 2 ( + (2 Z4 \ Z2 )( − 1) ⋅ ( 2 )( − 1) ⋅ ( 3 − 1) ⋅ ( 3 − 1) ⋅ ( 3 − 1) ⋅ ( 3 − 1) ⋅ ( 3 − 1) ⋅ ( 3 − 1) ⋅ ( 3 −1 ⋅ 3 Z 6 \ Z5 Z 6 \ Z5 Z6 \ Z 4 Z6 \ Z 4 Figure 6 shows all XI-subsemilattices with six elements. 289 Z 2 \ Z3 −2 Z1 \ Z3 Z 2 \ Z3 Z 2 \ Z3 −2 )⋅6 )⋅6 )⋅6 )⋅6 )⋅6 )⋅6 )⋅6 )⋅6 Z1 \ Z3 −2 Z 2 \ Z3 X \D X \D X \D Z1 \ Z3 −2 Z1 \ Z3 X \D Z3 \ Z1 −2 Z3 \ Z1 X \D Z 2 \ Z1 −2 Z 2 \ Z1 X \D Z3 \ Z1 −2 Z3 \ Z1 X \D Z 2 \ Z1 −2 Z 2 \ Z1 X \D . S. Makharadze et al. Figure 6. Diagram of all subsemilattices which are isomorphic. Theorem 11. Let D ∈ Σ1 ( X ,10 ) , Z 9 ≠ ∅ . If X is a finite set and I D is a set of all idempotent elements of the semigroup BX ( D ) . Then I D = ∑ i =1 I ∗ ( Qi ) . 8 Example 12. Let X = {1, 2,3, 4,5, 6, 7,8} , = P0 P5 = 6} , P1 {1= {= } , P2 {2= } , P3 {3= } , P4 {4} , {5} , P7 = {7} , P8 = {8} , P9 = P6 = ∅. Then D = {1, 2,3, 4,5, 6, 7,8} , Z1 = {2,3, 4,5, 6, 7,8} , Z 2 = {1,3, 4,5, 6, 7,8} , Z 3 = {1, 2, 4,5, 6, 7,8} , Z 4 = {2,3,5, 6, 7,8} , Z 5 = {2,3, 4, 6, 7,8} , Z 6 = {4,5, 6, 7,8} , Z 7 = {1, 2, 4,5, 6,8} , Z8 = {1, 2, 4,5, 6, 7} and Z 9 = {6} . D = {{1, 2,3, 4,5, 6, 7,8} , {2,3, 4,5, 6, 7,8} , {1,3, 4,5, 6, 7,8} , {1, 2, 4,5, 6, 7,8} , {2,3,5, 6, 7,8} , {2,3, 4, 6, 7,8} , {4,5, 6, 7,8} , {1, 2, 4,5, 6,8} , {1, 2, 4,5, 6, 7} , {6}} We have Z 9 ≠ ∅ . Where I ∗ ( Q1 ) = 10 , I ∗ ( Q2 ) = 1169 , I ∗ ( Q3 ) = 2154 , I ∗ ( Q4 ) = 349 , I ∗ ( Q5 ) = 122 , I ∗ ( Q6 ) = 14 , I ∗ ( Q7 ) = 90 , I ( Q8 ) = 8 , I D = 3916 . 3. Results Lemma 13. Let D ∈ Σ1 ( X ,10 ) and Z 9 = ∅ . Then the following sets exhaust all subsemilattices of the semilattice D = Z 9 , Z8 , Z 7 , Z 6 , Z 5 , Z 4 , Z 3 , Z 2 , Z1 , D which contains the empty set: { 1) } {∅} (see diagram 1 of the Figure 2); 2) ∅, D , {∅, Z8 } , {∅, Z 7 } , {∅, Z 6 } , {∅, Z 5 } , {∅, Z 4 } , {∅, Z 3 } , {∅, Z 2 } , {∅, Z1} { } (see diagram 2 of the Figure 2); 3) ∅, Z8 , D , ∅, Z 7 , D , ∅, Z 6 , D , ∅, Z 5 , D , ∅, Z 4 , D , ∅, Z 3 , D , ∅, Z 2 , D , ∅, Z1 , D , { } { } { } { } { } { } { } { {∅, Z8 , Z3} , {∅, Z 7 , Z3} , {∅, Z 6 , Z3} , {∅, Z 6 , Z 2 } , {∅, Z 6 , Z1} , {∅, Z5 , Z1} , {∅, Z 4 , Z1} (see diagram 3 of the Figure 2); 290 } 4) S. Makharadze et al. {∅, Z , Z , D} , {∅, Z , Z , D} , {∅, Z , Z , D} , {∅, Z , Z , D} , {∅, Z , Z , D} , {∅, Z , Z , D} , {∅, Z , Z , D} 4 1 5 1 7 3 8 3 6 1 6 2 6 3 (see diagram 4 of the Figure 2); 5) {∅, Z5 , Z 4 , Z1} , {∅, Z 6 , Z 4 , Z1} , {∅, Z 6 , Z5 , Z1} , {∅, Z 7 , Z 6 , Z3} , {∅, Z8 , Z 6 , Z3} , {∅, Z8 , Z 7 , Z3} , {∅, Z , Z , D} , {∅, Z , Z , D} , {∅, Z , Z , D} , {∅, Z , Z , D} , {∅, Z , Z , D} , {∅, Z , Z , D} , {∅, Z , Z , D} , {∅, Z , Z , D} , {∅, Z , Z , D} , {∅, Z , Z , D} , {∅, Z , Z , D} , {∅, Z , Z , D} , {∅, Z , Z , D} , {∅, Z , Z , D} , {∅, Z , Z , D} 8 4 8 5 7 2 7 4 7 5 8 1 8 2 4 2 4 3 5 2 5 3 7 1 2 1 3 1 3 2 (see diagram 5 of the Figure 2); 6) ∅, Z 5 , Z 4 , Z1 , D , ∅, Z 6 , Z 4 , Z1 , D , ∅, Z 6 , Z 5 , Z1 , D , ∅, Z 7 , Z 6 , Z 3 , D , ∅, Z 8 , Z 6 , Z 3 , D , ∅, Z 8 , Z 7 , Z 3 , D { { } { } { } { } } { } (see diagram 6 of the Figure 2); 7) ∅, Z 6 , Z 2 , Z1 , D , ∅, Z 6 , Z 3 , Z1 , D , ∅, Z 6 , Z 3 , Z 2 , D } { { } { } (see diagram 7 of the Figure 2); 8) ∅, Z8 , Z 6 , Z 3 , Z 2 , D , ∅, Z8 , Z 6 , Z 3 , Z1 , D , ∅, Z 7 , Z 6 , Z 3 , Z 2 , D , ∅, Z 7 , Z 6 , Z 3 , Z1 , D , ∅, Z 6 , Z 5 , Z 3 , Z1 , D , ∅, Z 6 , Z 5 , Z 2 , Z1 , D , ∅, Z 6 , Z 4 , Z 3 , Z1 , D , ∅, Z 6 , Z 4 , Z 2 , Z1 , D { { } { } { } { } { } { } { } } (see diagram 8 of the Figure 2); Theorem 13. Let D ∈ Σ1 ( X ,10 ) , Z 9 = ∅ and α ∈ BX ( D ) . Binary relation α is an idempotent relation of the semmigroup BX ( D ) iff binary relation α satisfies only one conditions of the following conditions: a) α = ∅ ; α Y9α × ∅ ∪ YTα × T , where T ∈ D , ∅ ≠ T , YTα ≠ ∅ , and satisfies the conditions: YTα ∩ T ≠ ∅ ; b) = c) ( α = (Y α 9 ) ( × ∅ ) ∪ (Y α T ) × T ) ∪ (Y α T′ ) × T ′ , where T , T ′ ∈ D , ∅ ≠ T ⊂ T ′ , YTα , YTα′ ∉ {∅} , and satisfies the conditions: Y9α ∪ YTα ⊇ T , YTα ∩ T ≠ ∅ , YTα′ ∩ T ′ ≠ ∅ ; d) α = Y9α × ∅ ∪ YTα × T ∪ YTα′ × T ′ ∪ Y0α × D , where T , T ′ ∈ D , ∅ ≠ T ⊂ T ′ ⊂ D , YTα , YTα′ , Y0α ∉ ( ) ( ) ( {∅} , and satisfies the conditions: α ) ( ) Y9 ∪ YT ⊇ T , Y9α ∪ YTα ∪ YTα′ ⊇ T ′ , YTα ∩ T ≠ ∅ , YTα′ ∩ T ′ ≠ ∅ , α α Y0 ∩ D ≠ ∅ ; e) α = Y9α × ∅ ∪ YTα × T ∪ YTα′ × T ′ ∪ YTα∪T ′ × (T ∪ T ′ ) , where T , T ′ ∈ D , T \ T ′ ≠ ∅ , T ′ \ T ≠ ∅ , YTα , ( ) ( ) ( ) ( ) YT ′ ∉ {∅} and satisfies the conditions: Y9 ∪ YT ⊇ T , Y9 ∪ YTα′ ⊇ T ′ , YTα ∩ T ≠ ∅ , YTα′ ∩ T ′ ≠ ∅ ; f) α = Y9α × ∅ ∪ YTα × T ∪ YTα′ × T ′ ∪ YTα∪T ′ × (T ∪ T ′ ) ∪ Y0α × D , where T \ T ′ ≠ ∅ , T ′ \ T ≠ ∅ , YTα , α α ( ) ( ) ( α α ) ( ) ( ) YT ′ , Y0 ∉ {∅} and satisfies the conditions: Y9 ∪ YT ⊇ T , Y9 ∪ YTα′ ⊇ T ′ , YTα ∩ T ≠ ∅ , YTα′ ∩ T ′ ≠ ∅ , Y0α ∩ D ≠ ∅ . g) α = Y9α × ∅ ∪ Y6α × Z 6 ∪ YTα × T ∪ YTα′ × T ′ ∪ Y0α × D , where T , T ′ ∈ D , Z 6 ⊂ T , Z 6 ⊂ T ′ , T \ T ′ ≠ ∅ , T ′ \ T ≠ ∅ , T ∪T ′ = D , Y6α , YTα , YTα′ ∉ {∅} and satisfies the conditions: Y9α ∪ Y6α ⊇ Z 6 , Y9α ∪ Y6α ∪ YTα ⊇ T , Y9α ∪ Y6α ∪ YTα′ ⊇ T ′ , Y6α ∩ Z 6 ≠ ∅ , YTα ∩ T ≠ ∅ , YTα′ ∩ T ′ ≠ ∅ ; h) α = Y9α × ∅ ∪ YTα × T ∪ YTα′ × T ′ ∪ YTα∪T ′ × (T ∪ T ′ ) ∪ YZα × Z ∪ Y0α × D , where T ′ ⊂ Z , α α α ( ) ( ) ( ) ( ( ) ( ) ( ) ( α ) ( α ) ) ( ) ( ) T \ T ′ ≠ ∅ , T ′ \ T ≠ ∅ , (T ∪ T ′ ) \ Z ≠ ∅ , Z \ (T ∪ T ′ ) ≠ ∅ , YT , YT ′ , YZ ∉ {∅} and satisfies the conditions: Y9α ∪ YTα ⊇ T , Y9α ∪ YTα′ ⊇ T ′ , Y9α ∪ YTα′ ∪ YZα ⊇ Z , YTα ∩ T ≠ ∅ , YTα′ ∩ T ′ ≠ ∅ , YZα ∩ Z ≠ ∅ ; α α α Lemma 14. Let D ∈ Σ1 ( X ,10 ) and Z 9 = ∅ . If X is a finite set, then I ∗ ( Q1 ) = 1 . Lemma 15. Let D ∈ Σ1 ( X ,10 ) and Z 9 = ∅ . If X is a finite set, then the number I ∗ ( Q2 ) may be calcu- 291 S. Makharadze et al. lated by formula Z7 Z6 D X \ D Z8 X \Z X \Z X \Z + 2 − 1 ⋅ 2 8 + 2 − 1 ⋅ 2 7 + 2 − 1 ⋅ 2 6 I ( Q2 )= 2 − 1 ⋅ 2 Z5 Z Z 3 4 X \Z X \Z X \Z + 2 − 1 ⋅ 2 5 + 2 − 1 ⋅ 2 4 + 2 − 1 ⋅ 2 3 Z2 Z1 X \Z X \Z + 2 − 1 ⋅ 2 2 + 2 − 1 ⋅ 2 1 . ∗ Lemma 16. Let D ∈ Σ1 ( X ,10 ) and Z 9 = ∅ . If X is a finite set, then the number I ∗ ( Q3 ) may be calculated by formula + 2 Z6 D \ Z7 X \ D Z7 D \ Z7 + 2 − 1 ⋅ 3 −2 ⋅3 D \ Z8 Z8 D \ Z8 I ∗ ( Q3 = ) 2 − 1 ⋅ 3 − 2 X \ D ⋅3 D \ Z5 X \ D Z5 D \ Z5 + 2 − 1 ⋅ 3 −2 ⋅3 D \ Z6 D \ Z6 − 1 ⋅ 3 −2 X \ D ⋅3 D \ Z4 D \ Z3 Z3 Z4 D \ Z4 D \ Z3 X \D X \D + 2 − 1 ⋅ 3 −2 + 2 − 1 ⋅ 3 −2 ⋅3 ⋅3 D \ Z2 D \ Z1 Z2 Z1 D \ Z2 D \ Z1 X \D X \D + 2 − 1 ⋅ 3 −2 + 2 − 1 ⋅ 3 −2 ⋅3 ⋅3 + 2 Z8 Z 3 \ Z8 Z 3 \ Z8 ⋅ 3 X \ Z3 + 2 Z 7 − 1 ⋅ 3 Z3 \ Z 7 − 2 Z3 \ Z 7 ⋅ 3 X \ Z3 − 1 ⋅ 3 −2 + 2 Z6 Z3 \ Z 6 Z3 \ Z 6 − 1 ⋅ 3 −2 + 2 Z6 Z1 \ Z 6 Z1 \ Z 6 ⋅ 3 X \ Z1 + 2 Z5 − 1 ⋅ 3 Z1 \ Z5 − 2 Z1 \ Z5 ⋅ 3 X \ Z1 − 1 ⋅ 3 −2 + 2 Z4 Z1 \ Z 4 Z1 \ Z 4 ⋅ 3 X \ Z1 . − 1 ⋅ 3 −2 ⋅ 3 X \ Z3 + 2 Z 6 − 1 ⋅ 3 Z 2 \ Z 6 − 2 Z 2 \ Z 6 ⋅ 3 X \ Z2 Lemma 17. Let D ∈ Σ1 ( X ,10 ) and Z 9 = ∅ . If X is a finite set, then the number I ∗ ( Q4 ) may be calculated by formula I ∗ ( Q4 = ) (2 Z4 ( + (2 + (2 + (2 + (2 + (2 + 2 )( −1 ⋅ 3 Z5 Z6 Z6 Z6 Z7 Z8 Z1 \ Z 4 )( − 1) ⋅ ( 3 − 1) ⋅ ( 3 − 1) ⋅ ( 3 − 1) ⋅ ( 3 − 1) ⋅ ( 3 −1 ⋅ 3 −2 Z1 \ Z 4 )⋅4 ) ⋅(4 − 3 ) ⋅ 4 ) ⋅(4 − 3 )⋅ 4 )⋅(4 − 3 )⋅ 4 )⋅(4 − 3 )⋅ 4 ) ⋅(4 − 3 ) ⋅ 4 )⋅(4 − 3 )⋅ 4 ) ⋅(4 Z1 \ Z5 −2 Z1 \ Z5 Z1 \ Z 6 −2 Z1 \ Z 6 Z 2 \ Z6 −2 Z 2 \ Z6 Z3 \ Z 6 −2 Z3 \ Z 6 Z3 \ Z 7 −2 Z3 \ Z 7 Z 3 \ Z8 −2 Z 3 \ Z8 D \ Z1 −3 D \ Z1 X \D D \ Z1 D \ Z1 X \D D \ Z1 D \ Z1 X \D D \ Z2 D \ Z2 X \D D \ Z3 D \ Z3 X \D D \ Z3 D \ Z3 X \D D \ Z3 D \ Z3 X \D . Lemma 18. Let D ∈ Σ1 ( X ,10 ) and Z 9 = ∅ . If X is a finite set, then the number I ∗ ( Q5 ) may be calcu- 292 S. Makharadze et al. lated by formula I ∗ (Q = 5) (2 Z5 \ Z 4 ( + (2 + (2 + (2 + (2 + (2 + (2 + (2 + (2 + (2 + 2 )( − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 −1 ⋅ 2 Z 6 \ Z5 Z8 \ Z 6 Z8 \ Z 4 Z7 \ Z 2 Z 7 \ Z5 Z8 \ Z 2 Z 4 \ Z3 Z5 \ Z3 Z 2 \ Z1 Z3 \ Z 2 Z 4 \ Z5 ) −1 ⋅ 4 Z5 \ Z 6 Z 6 \ Z8 Z 4 \ Z8 Z 2 \ Z7 Z5 \ Z 7 Z 2 \ Z8 Z3 \ Z 4 Z3 \ Z5 X \ Z1 ) − 1) ⋅ 4 − 1) ⋅ 4 − 1) ⋅ 4 − 1) ⋅ 4 − 1) ⋅ 4 − 1) ⋅ 4 − 1) ⋅ 4 − 1) ⋅ 4 − 1) ⋅ 4 −1 ⋅ 4 ( + 2 X \ Z1 X \ Z3 X \D Z 2 \ Z3 ( + (2 + (2 + (2 + (2 + (2 + (2 + (2 + (2 + 2 X \D X \D Z7 \ Z6 Z8 \ Z 7 Z7 \ Z 4 Z8 \ Z1 X \D Z4 \ Z2 X \D Z5 \ Z 2 X \D Z 7 \ Z1 Z3 \ Z1 X \D )( − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 −1 ⋅ 2 Z8 \ Z 5 X \D Z1 \ Z 2 Z6 \ Z 4 Z 4 \ Z6 ) −1 ⋅ 4 X \ Z1 ) − 1) ⋅ 4 − 1) ⋅ 4 − 1) ⋅ 4 − 1) ⋅ 4 − 1) ⋅ 4 − 1) ⋅ 4 − 1) ⋅ 4 − 1) ⋅ 4 Z6 \ Z7 −1 ⋅ 4 Z 7 \ Z8 X \ Z3 X \ Z3 X \D Z 5 \ Z8 Z 4 \ Z7 X \D X \D Z1 \ Z8 Z2 \ Z4 Z 2 \ Z5 X \D X \D X \D Z1 \ Z 7 X \D Z1 \ Z3 . Lemma 19. Let D ∈ Σ1 ( X ,10 ) and Z 9 = ∅ . If X is a finite set, then the number I ∗ ( Q6 ) may be calculated by formula I ∗ (Q = 6) (2 Z5 \ Z 4 )( −1 ⋅ 2 Z 4 \ Z5 + 2 ( Z6 \ Z 4 −1 ⋅ 2 + 2 ( Z 6 \ Z5 −1 ⋅ 2 + 2 ( Z7 \ Z6 −1 ⋅ 2 + 2 ( Z8 \ Z 6 −1 ⋅ 2 ( Z8 \ Z 7 −1 ⋅ 2 + 2 )( D \ Z1 −1 ⋅ 5 )( D \ Z1 )( D \ Z1 )( D \ Z3 )( D \ Z3 )( D \ Z3 )( Z 4 \ Z6 −1 ⋅ 5 )( Z5 \ Z 6 −1 ⋅ 5 )( Z6 \ Z7 −1 ⋅ 5 )( Z 6 \ Z8 −1 ⋅ 5 )( Z 7 \ Z8 −1 ⋅ 5 )⋅5 −4 )⋅5 −4 )⋅5 −4 )⋅5 −4 )⋅5 −4 )⋅5 −4 D \ Z1 X \D D \ Z1 X \D D \ Z1 X \D D \ Z3 X \D D \ Z3 X \D D \ Z3 X \D . Lemma 20. Let D ∈ Σ1 ( X ,10 ) and Z 9 = ∅ . If X is a finite set, then the number I ∗ ( Q7 ) may be calculated by formula ( I ∗ ( Q7 ) =2 Z6 ( + (2 + 2 ) −1 ⋅ 2 Z6 Z6 ( Z 2 ∩ Z1 ) \ Z6 ) ( ( − 1) ⋅ 2 −1 ⋅ 2 ( ⋅ 3 Z3 ∩ Z1 ) \ Z 6 Z3 ∩ Z 2 ) \ Z 6 Z 2 \ Z1 ( ⋅ (3 ⋅ 3 −2 Z3 \ Z1 Z3 \ Z 2 Z 2 \ Z1 −2 )( ) ⋅ (3 ) ⋅ (3 ⋅ 3 Z3 \ Z1 −2 Z3 \ Z 2 Z1 \ Z 2 −2 Z1 \ Z3 Z 2 \ Z3 Z1 \ Z 2 −2 ) ⋅5 Z1 \ Z3 −2 X \D )⋅5 )⋅5 Z 2 \ Z3 X \D X \D . Lemma 21. Let D ∈ Σ1 ( X , 7 ) and Z 9 = ∅ . If X is a finite set, then the number I ∗ ( Q8 ) may be calcu- 293 S. Makharadze et al. lated by formula I ∗ (Q = 8) (2 Z8 \ Z 2 ( + (2 + (2 + (2 + (2 + (2 + (2 + 2 )( −1 ⋅ 2 Z8 \ Z1 Z7 \ Z 2 Z 7 \ Z1 Z5 \ Z3 Z5 \ Z 2 Z 4 \ Z3 Z4 \ Z2 Z 6 \ Z8 )( − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 − 1) ⋅ ( 2 −1 ⋅ 2 )( −1 ⋅ 3 Z 6 \ Z8 Z6 \ Z7 Z6 \ Z7 Z 6 \ Z5 Z 6 \ Z5 Z6 \ Z 4 Z6 \ Z 4 Z 2 \ Z3 )( − 1) ⋅ ( 3 − 1) ⋅ ( 3 − 1) ⋅ ( 3 − 1) ⋅ ( 3 − 1) ⋅ ( 3 − 1) ⋅ ( 3 −1 ⋅ 3 −2 Z1 \ Z3 Z 2 \ Z3 Z 2 \ Z3 −2 )⋅6 )⋅6 )⋅6 )⋅6 )⋅6 )⋅6 )⋅6 )⋅6 Z1 \ Z3 −2 Z 2 \ Z3 X \D X \D X \D Z1 \ Z3 −2 Z1 \ Z3 X \D Z3 \ Z1 −2 Z3 \ Z1 X \D Z 2 \ Z1 −2 Z 2 \ Z1 X \D Z3 \ Z1 −2 Z3 \ Z1 X \D Z 2 \ Z1 −2 Z 2 \ Z1 X \D . Theorem 14. Let D ∈ Σ1 ( X ,10 ) , Z 9 = ∅ . If X is a finite set and I D is a set of all idempotent elements of the semigroup BX ( D ) , then I D = ∑ i =1 I ∗ ( Qi ) . 8 Example 15. Let X = {1, 2,3, 4,5, 6, 7} , P1 = {1} , P2 = {2} , P3 = {3} , P4 = {4} , P5 = {5} , P7 = {6} , P8 = {7} , P0 = P6 = P9 = ∅ . Then D = {1, 2,3, 4,5, 6, 7} , Z1 = {2,3, 4,5, 6, 7} , Z 2 = {1,3, 4,5, 6, 7} , Z 3 = {1, 2, 4,5, 6, 7} , Z 4 = {2,3,5, 6, 7} , Z 5 = {2,3, 4, 6, 7} , Z 6 = {4,5, 6, 7} , Z 7 = {1, 2, 4,5, 7} , Z8 = {1, 2, 4,5, 6} and Z 9 = ∅ . D = {{1, 2,3, 4,5, 6, 7} , {2,3, 4,5, 6, 7} , {1,3, 4,5, 6, 7} , {1, 2, 4,5, 6, 7} , {2,3,5, 6, 7} , {2,3, 4, 6, 7} , {4,5, 6, 7} , {1, 2, 4,5, 7} , {1, 2, 4,5, 6} , ∅} We have Z 9 = ∅ . Where I ∗ ( Q1 ) = 1 , I ∗ ( Q2 ) = 1121 , I ∗ ( Q3 ) = 2141 , I ∗ ( Q4 ) = 349 , I ∗ ( Q5 ) = 119 , I ∗ ( Q6 ) = 14 , I ∗ ( Q7 ) = 90 , I ( Q8 ) = 8 , I D = 3843 . It was seen in ([4], Theorem 2) that if α and β are regular elements of BX ( D ) then V ( D, α β ) is an XI-subsemilattice of D. Therefore α β is regular elements of BX ( D ) . That is the set of all regular elements of BX ( D ) is a subsemigroup of BX ( D ) . References [1] Diasamidze, Ya. and Makharadze, Sh. (2013) Complete Semigroups of Binary Relations. Monograph. Kriter, Turkey, 620 p. [2] Diasamidze, Ya. and Makharadze, Sh. (2010) Complete Semigroups of Binary Relations. Monograph. M., Sputnik+, 657 p. (In Russian) [3] Diasamidze, Ya., Makharadze, Sh. and Diasamidze, Il. (2008) Idempotents and Regular Elements of Complete Semigroups of Binary Relations. Journal of Mathematical Sciences, Plenum Publ. Cor., New York, 153, 481-499. [4] Diasamidze, Ya. and Bakuridze, Al. (to appear) On Some Properties of Regular Elements of Complete Semigroups Defined by Semilattices of the Class Σ 4 ( X ,8 ) . 294
© Copyright 2026 Paperzz