Distributed Storage for Intermittent Energy Sources: Control Design and Performance Limits Yashodhan Kanoria Stanford University Joint work with: Andrea Montanari, David Tse and Baosen Zhang The challenge of renewables • Intermittent • Intrinsically distributed How to manage? The paper Strategy Requirement Spatial averaging Transmission Time averaging Storage Over-provisioning Generation Demand response Signaling, incentives The challenge of renewables • Intermittent • Intrinsically distributed How to manage? This talk Strategy Requirement Spatial averaging Transmission Time averaging Storage Over-provisioning Generation Demand response Signaling, incentives Questions? • Optimal control of grid with transmission and storage? • Infrastructure improvement: – New transmission line? Upgrade in existing line? – New storage facility? – New generation? Which will help more? How to optimally allocate budget? Our contribution • Control design for discrete time model • Analytical insights quantifying benefits of storage, transmission and overprovisioning Model 3 2 1 4 Model 3 2 1 4 = Electric load Model 3 2 1 4 = Renewable sources Model 𝑊ind3 (𝑡) 3 𝑊ind2 (𝑡) 2 1 4 𝑊ind1 (𝑡) − = 𝑊ind 𝑊ind4 (𝑡) − Model 𝑊ind3 (𝑡) 3 𝑊ind2 (𝑡) 2 1 4 𝑊ind1 (𝑡) 𝑊ind4 (𝑡) = 𝑊ind − Model 𝐹ast 2 (𝑡) 𝑊ind3 (𝑡) 𝐹ast 2 (𝑡) 3 𝑊ind2 (𝑡) 2 𝐹ast1 (𝑡) 𝐹ast 2 (𝑡) 1 4 𝑊ind1 (𝑡) = 𝐹ast 𝑊ind4 (𝑡) = 𝑊ind − Model = 𝑊ind = 𝐹ast 𝐹ast 2 (𝑡) 𝑊ind3 (𝑡) 𝐹ast 2 (𝑡) 𝑊ind2 (𝑡) 𝐹23 (𝑡) 2 3 𝐹34 (𝑡) 𝐹ast1 (𝑡) 1 𝐹12 (𝑡) 𝐹ast 2 (𝑡) 𝐹24 (𝑡) 4 𝑊ind1 (𝑡) 𝑊ind4 (𝑡) − Model = 𝑊ind = 𝐹ast 𝐹ast 2 (𝑡) 𝑊ind3 (𝑡) 𝐹ast 2 (𝑡) 𝑊ind2 (𝑡) 2 𝐹ast1 (𝑡) 1 𝐹12 (𝑡) 1 2 𝐹23 (𝑡) 3 3 𝐹34 (𝑡) 2 𝐹ast 2 (𝑡) 𝐹24 (𝑡) 1 4 𝑊ind1 (𝑡) 𝑊ind4 (𝑡) 4 4 − Model = 𝑊ind = 𝐹ast 𝐹ast 2 (𝑡) 𝑊ind3 (𝑡) 𝐹ast 2 (𝑡) 𝑊ind2 (𝑡) 𝑆ave3 (𝑡) 𝐹23 (𝑡) 𝐹34 (𝑡) 𝐹ast1 (𝑡) 𝐹12 (𝑡) 𝑆ave1 (𝑡) 𝑆ave2 (𝑡) 𝐹ast 2 (𝑡) 𝐹24 (𝑡) 𝑊ind1 (𝑡) 𝑆ave4 (𝑡) 𝑊ind4 (𝑡) Energy pushed into = 𝑆ave − Model = 𝑊ind = 𝐹ast 𝐹ast 2 (𝑡) 𝑊ind3 (𝑡) 𝐹ast 2 (𝑡) 𝑊ind2 (𝑡) 𝑆ave3 (𝑡) 𝐹23 (𝑡) 𝐹34 (𝑡) 𝐹ast1 (𝑡) 𝐹12 (𝑡) 𝑆ave1 (𝑡) 𝑆ave2 (𝑡) 𝐹ast 2 (𝑡) 𝐹24 (𝑡) 𝑊ind1 (𝑡) 𝑆ave4 (𝑡) 𝑊ind4 (𝑡) Control inputs: • 𝐹ast 𝑖 (𝑡) • 𝑆ave𝑖 (𝑡) Dependent variables: • Flows 𝐹𝑖𝑗 (𝑡) • Storage buffers 𝐵𝑖 (𝑡) Constraints • Storage capacity constraints Hard constraint • Transmission constraints Soft constraint Cost function • 𝜀𝐹ast = Cost of fast generation (free disposal of energy) 0 Fasti(t) • 𝜀𝐹 = Cost of violating transmission constraints -Ce Ce • Performance criterion: 𝜺 = 𝜺𝑭𝐚𝐬𝐭 + 𝜺𝑭 Fe(t) What’s the issue? • Centralized control problem • 𝐹(𝑡) is linear function of controls • Storage constraints cause thresholding X • Non-quadratic cost function X Idea: Use surrogate cost function Var 𝐹ast + 𝜆 Var 𝐹 + 𝜆 Var 𝐵 (drop storage constraints for now) The surrogate problem • • • • • • ‘State’ consisting of buffer sizes ‘Noise’ 𝑊ind 𝑡 State and noise fully observed Linear state evolution Quadratic cost Assume 𝑊ind 𝑡 is Gaussian We have an LQG problem! • Can be solved numerically yielding control scheme • Can be mapped back to original problem The surrogate LQG problem Is the scheme any good? Any insights into roles of storage and transmission? Specific networks • Transmission network is almost a tree • What happens on an infinite line? • What about a two-dimensional grid? 1-D and 2-D grids Assume: Storage 𝑆 at each node Capacity 𝐶 on each line 𝑊ind𝑖 (𝑡) ~ N(0, 𝜎 2 ) iid 1-D and 2-D grids 𝑆 = Storage 𝐶 = Transmission 𝜎 2 = Var(𝑊ind) We find, for original problem: Analytical expressions for cost of LQG-based schemes Fundamental limits ⇒ LQG is near optimal 𝑆 = Storage 𝐶 = Transmission Results 𝜺 = 𝜺𝑭𝐚𝐬𝐭 + 𝜺𝑭 Only 𝑺 Only 𝑪 𝜎2 𝐶 1-D grid 2-D grid 𝜎 2 = Var(𝑊ind) 𝜎2 𝑆 𝐶 𝜎 exp − 𝜎 𝑪=𝑺 𝜎 exp − 𝐶 𝜎 𝐶2 𝜎 exp − 2 𝜎 𝑆 = Storage 𝐶 = Transmission Results 𝜺 = 𝜺𝑭𝐚𝐬𝐭 + 𝜺𝑭 Only 𝑺 Only 𝑪 𝜎2 𝐶 1-D grid 2-D grid 𝜎 2 = Var(𝑊ind) 𝜎2 𝑆 𝐶 𝜎 exp − 𝜎 𝑪=𝑺 𝜎 exp − 𝐶 𝜎 𝐶2 𝜎 exp − 2 𝜎 𝑆 = Storage 𝐶 = Transmission Results 𝜺 = 𝜺𝑭𝐚𝐬𝐭 + 𝜺𝑭 𝜎 2 = Var(𝑊ind) Only 𝑺 Only 𝑪 1-D grid 𝜎2 𝑆 𝜎2 𝐶 2-D grid 𝜎2 𝑆 𝐶 𝜎 exp − 𝜎 𝑪=𝑺 𝜎 exp − 𝐶 𝜎 𝐶2 𝜎 exp − 2 𝜎 𝑆 = Storage 𝐶 = Transmission Results 𝜺 = 𝜺𝑭𝐚𝐬𝐭 + 𝜺𝑭 𝜎 2 = Var(𝑊ind) Only 𝑺 Only 𝑪 1-D grid 𝜎2 𝑆 𝜎2 𝐶 2-D grid 𝜎2 𝑆 𝐶 𝜎 exp − 𝜎 𝑪=𝑺 𝜎 exp − 𝐶 𝜎 𝐶2 𝜎 exp − 2 𝜎 𝑆 = Storage 𝐶 = Transmission Results 𝜺 = 𝜺𝑭𝐚𝐬𝐭 + 𝜺𝑭 𝜎 2 = Var(𝑊ind) Only 𝑺 Only 𝑪 1-D grid 𝜎2 𝑆 𝜎2 𝐶 2-D grid 𝜎2 𝑆 𝐶 𝜎 exp − 𝜎 𝑪=𝑺 𝜎 exp − 𝐶 𝜎 𝐶2 𝜎 exp − 2 𝜎 𝑆 = Storage 𝐶 = Transmission Results 𝜺 = 𝜺𝑭𝐚𝐬𝐭 + 𝜺𝑭 𝜎 2 = Var(𝑊ind) Only 𝑺 Only 𝑪 1-D grid 𝜎2 𝑆 𝜎2 𝐶 2-D grid 𝜎2 𝑆 𝐶 𝜎 exp − 𝜎 𝑪=𝑺 𝜎 exp − 𝐶 𝜎 𝐶2 𝜎 exp − 2 𝜎 𝑆 = Storage 𝐶 = Transmission Results 𝜺 = 𝜺𝑭𝐚𝐬𝐭 + 𝜺𝑭 𝜎 2 = Var(𝑊ind) Only 𝑺 Only 𝑪 1-D grid 𝜎2 𝑆 𝜎2 𝐶 2-D grid 𝜎2 𝑆 𝐶 𝜎 exp − 𝜎 𝑪=𝑺 𝜎 exp − 𝐶 𝜎 𝐶2 𝜎 exp − 2 𝜎 𝑆 = Storage 𝐶 = Transmission Results 𝜺 = 𝜺𝑭𝐚𝐬𝐭 + 𝜺𝑭 𝜎 2 = Var(𝑊ind) Only 𝑺 Only 𝑪 1-D grid 𝜎2 𝑆 𝜎2 𝐶 2-D grid 𝜎2 𝑆 𝐶 𝜎 exp − 𝜎 𝑪=𝑺 𝜎 exp − 𝐶 𝜎 𝐶2 𝜎 exp − 2 𝜎 𝐶 and 𝑆 together works best! 𝑆 = Storage 𝐶 = Transmission Results 𝜺 = 𝜺𝑭𝐚𝐬𝐭 + 𝜺𝑭 𝜎 2 = Var(𝑊ind) Only 𝑺 Only 𝑪 1-D grid 𝜎2 𝑆 𝜎2 𝐶 2-D grid 𝜎2 𝑆 𝐶 𝜎 exp − 𝜎 𝑪=𝑺 𝜎 exp − 𝐶 𝜎 𝐶2 𝜎 exp − 2 𝜎 𝑆 = Storage 𝐶 = Transmission Results 𝜺 = 𝜺𝑭𝐚𝐬𝐭 + 𝜺𝑭 𝜎 2 = Var(𝑊ind) Only 𝑺 Only 𝑪 1-D grid 𝜎2 𝑆 𝜎2 𝐶 2-D grid 𝜎2 𝑆 𝐶 𝜎 exp − 𝜎 𝑪=𝑺 𝜎 exp − 𝐶 𝜎 𝐶2 𝜎 exp − 2 𝜎 𝑆 = Storage 𝐶 = Transmission Results 𝜺 = 𝜺𝑭𝐚𝐬𝐭 + 𝜺𝑭 𝜎 2 = Var(𝑊ind) Only 𝑺 Only 𝑪 1-D grid 𝜎2 𝑆 𝝈𝟐 𝑪 2-D grid 𝜎2 𝑆 𝑪 𝛔 𝐞𝐱𝐩 − 𝝈 𝑪=𝑺 𝜎 exp − 𝐶 𝜎 𝐶2 𝜎 exp − 2 𝜎 Averaging over 2-D much more effective than 1-D 𝑆 = Storage 𝐶 = Transmission Results 𝜺 = 𝜺𝑭𝐚𝐬𝐭 + 𝜺𝑭 𝜎 2 = Var(𝑊ind) Only 𝑺 Only 𝑪 1-D grid 𝜎2 𝑆 𝜎2 𝐶 2-D grid 𝜎2 𝑆 𝑪 𝛔 𝐞𝐱𝐩 − 𝝈 𝑪=𝑺 𝛔 𝐞𝐱𝐩 − 𝑪 𝝈 𝐶2 𝜎 exp − 2 𝜎 𝑆 seems to provide extra dimension for averaging! Intuition: Time is like extra spatial dimension 𝑆 = Storage 𝐶 = Transmission Results 𝜺 = 𝜺𝑭𝐚𝐬𝐭 + 𝜺𝑭 𝜎 2 = Var(𝑊ind) Only 𝑺 Only 𝑪 1-D grid 𝜎2 𝑆 𝜎2 𝐶 2-D grid 𝜎2 𝑆 𝜎 exp − 𝑪=𝑺 𝜎 exp − 𝐶 𝜎 ?? 𝐶 𝜎 𝑆 = Storage 𝐶 = Transmission Results 𝜺 = 𝜺𝑭𝐚𝐬𝐭 + 𝜺𝑭 𝜎 2 = Var(𝑊ind) Only 𝑺 Only 𝑪 1-D grid 𝜎2 𝑆 𝜎2 𝐶 2-D grid 𝜎2 𝑆 𝐶 𝜎 exp − 𝜎 𝑪=𝑺 𝜎 exp − 𝐶 𝜎 𝐶2 𝜎 exp − 2 𝜎 Spatial averaging is much easier in 2-D 1-D 2-D Segment of length 𝑙 Square of side 𝑙 Conclusions and future work • Gaussian assumption optimistic • But key insights should remain valid: – 2-D averaging much better than 1-D – S facilitates averaging over extra dimension • In the paper: A little overprovisioning can go a long way Thank you!
© Copyright 2026 Paperzz