University of Groningen Generative AI Zant, Colin Martijn van der IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2010 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Zant, C. M. V. D. (2010). Generative AI: a neo-cybernetic analysis Groningen: s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 12-07-2017 Bibliography Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., Yoshikawa, Y., Ogino, M., and Yoshida, C. (2009). Cognitive developmental robotics: a survey. IEEE Transactions on Autonomous Mental Development, 1(1):12–34. 2, 21 Asada, M., MacDorman, K. F., Ishiguro, H., and Kuniyoshi, Y. (2001.). Cognitive developmental robotics as a new paradigm for the design of humanoid robots. Robotics and Autonomous System, Vol. 37:185–193. 2, 21 Balakirsky, S. (2006). Usarsim: Providing a framework for multi-robot performance evaluation. In Proceedings of the Performance Metrics for Intelligent Systems Workshop (PerMIS’06), pages 98–102. 120 Balch, T. and Yanco, H. A. (2002). Ten years of the aaai mobile robot competition and exhibition: looking back and to the future. AI Magazine, 23(1):13–22. 125, 126 Baltes, J. (2000). A benchmark suite for mobile robots. In Proceedings of IROS-2000. 124 Belle, V., Deselaers, T., and Schiffer, S. (2008). Randomized trees for real-time onestep face detection and recognition. In Proceedings of the 19th International Conference on Pattern Recognition (ICPR’08). IEEE Computer Society. 153 171 172 BIBLIOGRAPHY Bishop, C. (1995). Neural Networks for Pattern Recognition. Oxford University Press, Inc., New York, NY, USA. 99 Bradski, G. R. and Pisarevsky, V. (2000). Intel’s computer vision library: Applications in calibration, stereo, segmentation, tracking, gesture, face and object recognition. In CVPR, volume 2, pages 796–797. IEEE Computer Society. 120 Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation. xii Bruyninckx, H. (2001). Open robot control software: the orocos project. In ICRA, pages 2523–2528. IEEE. 120 Bulacu, M. and Schomaker, L. (2006). Combining multiple features for textindependent writer identification and verification. In Proc. of 10th International Workshop on Frontiers in Handwriting Recognition (IWFHR 2006), pages 281–286, La Baule, France. 36 Bulacu, M., van Koert, R., Schomaker, L., and van der Zant, T. (2007). Layout analysis of handwritten historical documents for searching the archive of the cabinet of the dutch queen. In Proc. of 9th Int. Conf. on Document Analysis and Recognition (ICDAR 2007), Curitiba, Brazil. IEEE Computer Society. 82 Caillault, E. and Viard-Gaudin, C. (2006). Using segmentation constraints in an implicit scheme for on-line word recognition. In Tenth International Workshop on Frontiers in Handwriting Recognition, pages 607–612, La Baule, France. 77, 81 Calisi, D., Iocchi, L., and Nardi, D. (2008). A unified benchmark framework for autonomous Mobile robots and Vehicles Motion Algorithms (MoVeMA benchmarks). In RSS Workshop on Experimental Methodology and Benchmarking in Robotics Research. 124 Changeux, J., Courrege, P., and Danchin, A. (1973). A theory of epigenesis of neural networks by selective stabilization of synapses. In Proceedings of the National Acadamy of Sciences USA, volume 70, pages 2974–2978. 19 Changeux, J. and Danchin, A. (1976). Selective stabilization of developing synapses as a mechanism for the specification of neural networks. Nature, 264:705–712. 19 BIBLIOGRAPHY 173 Clark, A. (2003). Natural-Born Cyborgs: Minds, Technologies, and the Future of Human Intelligence. Oxford University Press. xiv Correa, M., Ruiz-del-Solar, J., and Bernuy, F. (2008). Face recognition for humanrobot interaction applications: A comparative study. In Proceedings of the International RoboCup Symposium 2008 (CD-ROM Proceedings). 153 Dasarathy, B., editor (1990). Nearest neighbor patter classification techniques. IEEE. 22 De Jong, K. A. (2002). Evolutionary Computation. The MIT Press. 6, 7, 11, 21, 39 de Landa, M. (1991). War in the Age of Intelligent Machines. Zone Books, New York. xiii, xiv, 2, 4, 10, 11, 27 De Landa, M. (2000). A Thousand Years of Nonlinear History. Zone Books. 12 Deacon, T. W. (1998). The Symbolic Species: The Co-Evolution of Language and the Brain. W. W. Norton & Company. 17 del Pobil, A. (2006). Why do We Need Benchmarks in Robotics Research? In Proc. of the Workshop on Benchmarks in Robotics Research, IEEE/RSJ International Conference on Intelligent Robots and Systems. 124 Deleuze, G. and Guattari, F. (1976). Rhizome: Introduction. Les Editions de Minuit, Paris. 56 Deleuze, G., Guattari, F., and Massumi, B. (1987). A Thousand Plateaus: Capitalism and Schizophrenia. University of Minnesota Press. xiv, 2, 4, 65 Doostdar, M., Schiffer, S., and Lakemeyer, G. (2008). Robust Speech Recognition for Service Robotics Applications. In Proceedings of the International RoboCup Symposium 2008, LNCS. Springer. 153 Drury, J. L., Yanco, H. A., and Scholtz, J. (2005). Using competitions to study humanrobot interaction in urban search and rescue. interactions, 12(2):39–41. 127 Duda, R. and Hart, P. (1973). Pattern Classification and Scene Analysis. Wiley. 7 Elman, J. et al. (1996). Rethinking Innateness: A connectionist perspective on development. Bradford, MIT Press, Cambridge, Massachusetts. 16, 17 174 BIBLIOGRAPHY Feil-Seifer, D., Skinner, K., and Mataric, M. J. (2007). Benchmarks for evaluating socially assistive robotics. Interaction Studies, 8(3):423–439. 124 Fikes, R. and Nilsson, N. J. (1971). Strips: A new approach to the application of theorem proving to problem solving. Artif. Intell., 2(3/4):189–208. 6 Fogel, D. (1994). An introduction to simulated evolutionary optimization. IEEE Trans. on Neural Networks: Special Issue on Evolutionary Computation, 5:3–14. 7, 21 Fontana, G., Matteucci, M., and Sorrenti, D. G. (2008). The RAWSEEDS proposal for representation-independent benchmarking of SLAM. In RSS Workshop on Experimental Methodology and Benchmarking in Robotics Research. 124 Francke, H., Ruiz-del-Solar, J., and Verschae, R. (2007). Real-time hand gesture detection and recognition using boosted classifiers and active learning. In Advances in Image and Video Technology, Second Pacific Rim Symposium (PSIVT 2007), LNCS 4872, pages 533–547. Springer. 153 Gabor, D. (1946). Theory of communication. Journal IEE, 93:429–459. 95, 97 Gerkey, B. P., Vaughan, R. T., and Howard, A. (2003). The player/stage project: Tools for multi-robot and distributed sensor systems. In In Proceedings of the 11th International Conference on Advanced Robotics, pages 317–323. 120 Gibson, J. J. (1977). Perceiving, Acting, and Knowing: Toward an Ecological Psychology, chapter The Theory of Affordances, pages 67–82. Hillsdale, NJ: Lawrence Erlbaum. xii, 2 Goodale, M. and Milner, A. (1992). Seperate visual pathways for perception and action. Trends in Neuroscience, 15:20–25. 93 Grey, W. (1950). An imitation of life. Scientific American, pages 42–45. xii Harvey, I. (2000). Robotics: Philosophy of mind using a screwdriver. In Evolutionary Robotics: From Intelligent Robots to Artificial Life, Vol. III, pages 207–230. AAI Books. 5 Heisele, B. et al (2001). Categorization by learning and combining object parts. In Neural information processing systems (NIPS), pages 1239–1245. 94 BIBLIOGRAPHY 175 Hendriks-Jansen, H. (1996). Catching Ourselves in the Act: Situated Activity, Interactive Emergence, Evolution, and Human Thought. MIT Press, Cambridge, MA, USA. xiv Holland, J. (1975). Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor. 6 Howard, A. and Roy, N. (2003). The robotics data set repository (radish). 124 Hubel, D. and Wiesel, T. (1962). Receptive fields, binocular interaction, and functional architecture of the cat’s visual cortex. Journal of Psychology, 160:106–154. 94, 97 Joachims, T. (2005). A support vector method for multivariate performance measures. In Proceedings of the International Conference on Machine Learning (ICML). 82 Joachims, T. (2006). Training linear svms in linear time. In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD). 82 Johnston, J. (2008). The Allure of Machinic Life: Cybernetics, Artificial Life, and the New AI (Bradford Books). The MIT Press. xiii Jones, J. and Palmer, L. (1987). An evaluation of the two dimensional gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58:1233–1258. 95 Kahn, P. H., Ishiguro, H., Friedman, B., Kanda, T., Freier, N. G., Severson, R. L., and Miller, J. (2007). What is a human? toward psychological benchmarks in the field of humanrobot interaction. Interaction Studies, 8(3):363390. 124 Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., and Matsubara, H. (1997). RoboCup: A Challenge Problem for AI. AI Magazine, 18(1):73–85. 5, 125 Kitano, H. and Tadokoro, S. (2001). RoboCup Rescue: A Grand Challenge for Multiagent and Intelligent Systems. AI Magazine, 22(1):39–52. 5, 127 Knox, W. B., Lee, J., and Stone, P. (2008). Domestic interaction on a segway base. In Proceedings of the International RoboCup Symposium 2008 (CD-ROM Proceedings). 153 176 BIBLIOGRAPHY Koza, J. R. (1989). Hierarchical genetic algorithms operating on populations of computer programs. Proceedings of the Eleventh International Joint Conference on Artificial Intelligence IJCAI-89, Vol. 1:768–774. 6, 12, 21 Koza, J. R. (1992). Genetic Programming. MIT Press. 6 Kugler, N., Kelso, J., and Turvey, M. (1980). On the concept of coordinative structures as dissipative structures: I. theoretical lines of convergence. Tutorials in Motor Behavior, pages 1–49. 2 Kuhn, T. S. (1962). The Structure of Scientific Revolutions. University Of Chicago Press, 1rd edition. xiii, 3, 77 Kurzweil, R. (1999). Age of Spiritual Machines: When Computers Exceed Human Intelligence. Penguin USA, New York, NY, USA. 4 Lambert Schomaker, Marius Bulacu, K. F. (2004). Automatic writer identification using fragmented connected-component contours. Proc. of 9th International Workshop on Frontiers in Handwriting Recognition (IWFHR 2004), IEEE Computer Society., pages 185–190. 59 Lauer, F., Suen, C. Y., and Bloch, G. (2007). A trainable feature extractor for handwritten digit recognition. Pattern Recogn., 40(6):1816–1824. 78 Lavrenko, V., R. T. and R., M. (2004). Holistic word recognition for handwritten historical documents. In Proc. of the Int. Workshop on Document Image Analysis for Libraries (DIAL), pages 278–287. 77, 80 LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324. 59, 78 Liwicki, M. and Bunke, H. (2006). Hmm-based on-line recognition of handwritten whiteboard notes. In Tenth International Workshop on Frontiers in Handwriting Recognition, pages 595–599, La Baule, France. 77, 78, 81 Loncomilla, P. and Ruiz-del-Solar, J. (2007). Robust object recognition using wide baseline matching for robocup applications. In RoboCup 2007: Robot Soccer World Cup XI, LNAI 5001. Springer. 153 BIBLIOGRAPHY 177 Low, L. K. and Cheng, H.-J. (2006). Axon pruning: an essential step underlying the developmental plasticity of neuronal connections. Phil Trans R Soc B, 361:1531– 1544. 16, 17 Meeden, L., Schultz, A. C., Balch, T. R., Bhargava, R., Haigh, K. Z., Bohlen, M., Stein, C., and Miller, D. P. (2000). The aaai 1999 mobile robot competitions and exhibitions. AI Magazine, 21(3):69–78. 127 Michod, R. (1989). Darwinian selection in the brain. Evolution, 43:694–696. 19 Mikolajczyk, K. and Schmid, C. (2003). A performance evaluation of local descriptors. Proceedings of the international conference on computer vision and pattern recognition, 2:257–263. 94 Mohan, A., Papageorgiou, C., and Poggio, T. (2001). Example-based object detection in images by components. IEEE Transactions on Pattern analysis and Machine Intelligence, 23:349–361. 94 Montemerlo, M., Roy, N., and Thrun, S. (2003). Perspectives on standardization in mobile robot programming: The carnegie mellon navigation (carmen) toolkit. In In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS, pages 2436–2441. 120 Munoz, N., Valencia, J., , and Londono, N. (2007). Evaluation of navigation of an autonomous mobile robot. In Proc. of Performance Metrics for Intelligent Systems Workshop (PerMIS), page 1521. 124 Pal, U., Roy, K., and Kimura, F. (2006). A lexicon driven method for unconstrained bangla handwritten word recognition. In Tenth International Workshop on Frontiers in Handwriting Recognition, pages 601–606, La Baule, France. 77, 81 Park, H.-S. and Lee, S.-W. (1995). Hidden markov mesh random field: theory and its application to handwritten character recognition. In ICDAR ’95: Proceedings of the Third International Conference on Document Analysis and Recognition (Volume 1), page 409, Washington, DC, USA. IEEE Computer Society. 77, 80 Pfeifer, R. and Scheier, C. (2001). Understanding Intelligence. MIT Press, Cambridge, MA, USA. 30 178 BIBLIOGRAPHY Poggio, T. and Bizzi, E. (2004). Generalization in vision and motor control. Nature, 431:768–774. 99 Poggio, T. and Edelman, S. (1990). A network that learns to recognize threedimensional objects. Nature, 343:263–266. 83 Powell, M. (1987). Radial basis functions for multivariable interpolation: A review. In Algorithms for Approximation, pages 143–167, Oxford. Clarendon Press. 95, 99 Prassler, Erwin and Hägele, Martin and Siegwart, Roland (2006). International Contest for Cleaning Robots: Fun Event or a First Step towards Benchmarking Service Robots. 128 Prigogine, I. (1977). Self-organization in nonequilibrium systems : from dissipative structures to order through fluctuations. John Wiley & Sons, New York, USA. 7, 27 Prigogine, I. (1981). From Being to Becoming: Time and Complexity in the Physical Sciences. W H Freeman & Co (Sd). 22 Prigogine, I. (1984). Order out of chaos: Man’s new dialogue with nature. Bantam Books. xiv, 4, 7, 8, 9, 10, 27, 116 Prigogine, I. (2003). Is Future Given? World Scientific Publishing Company. 7 Rabiner, L. and Juang, B. (1986). An introduction to hidden markov models. ASSP Magazine, IEEE, 3(1):4–16. 88 Rath, T., Manmatha, R., and Lavrenko, V. (2004). A search engine for historical manuscript images. In Proc. of the ACM SIGIR 2004 Conf., pages 369–376. 80 Riesenuber, M. and T., P. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11):1019–1025. 94 Ruiz-del-Solar, J. (2007). Personal robots as ubiquitous-multimedial-mobile web interfaces. In Proc. of 5th Latin American Web Congress (LA-WEB), pages 120–127. 152 Sabanovic, S., Michalowski, M., and Simmons, R. (2006). Robots in the wild: observing human-robot social interaction outside the lab. In 9th IEEE International Workshop on Advanced Motion Control, pages 596–601. 124 BIBLIOGRAPHY 179 Sarkar, P. and Nagy, G. (2005). Style consistent classification of isogenous patterns. IEEE Trans. Pattern Anal. Mach. Intell., 27(1):88–98. 85 Savage, J., Ayala, F., Cuellar, S., and Weitzenfeld, A. (2008). The use of scripts based on conceptual dependency primitives for the operation of service mobile robots. In Proceedings of the International RoboCup Symposium 2008 (CD-ROM Proceedings). 152 Schiffer, S., Ferrein, A., and Lakemeyer, G. (2006). Football is coming Home. In Proc. of International Symposium on Practical Cognitive Agents and Robots (PCAR’06). University of Western Australia Press. 153 Schomaker, L. (2004). Anticipation in cybernetic systems: A case against mindless anti-representationalism. Proc. of IEEE Systems, Man & Cybernetics (SMC’04), pages 2037–2045. 2 Schomaker, L. (2007a). Handwriting recognition using an image correlator. Proceedings of the ICDAR 2007. 63, 68 Schomaker, L. (2007b). Retrieval of handwritten lines in historical documents. In Proceedings of the International Conference on Document Analysis and Recognition (ICDAR). 82, 85 Schomaker, L. (2008a). Word mining in a sparsely-labeled handwritten collection. In Proceedings of the conference on Recognition and Retrieval XV, IS&T/SPIE International Symposium on Electronic Imaging. 80 Schomaker, L. (2008b). Word mining in a sparsely-labeled handwritten collection. In Proceedings of the International Conference on Document Recognition and Retrieval XV (DRR). 82, 86, 88 Schomaker, L. and Bulacu, M. (2004). Automatic writer identification using connected-component contours and edge-based features of uppercase western script. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 26(6):787–798. 36 Schomaker, L., de Leau, E., and Vuurpijl, L. (1999). Using pen-based outlines for object-based annotation and image-based queries. In VISUAL ’99: Proceedings of the Third International Conference on Visual Information and Information Systems, pages 585–592, London, UK. Springer-Verlag. 77 180 BIBLIOGRAPHY Schomaker, L., Franke, K., and Bulacu, M. (2007). Using codebooks of fragmented connected-component contours in forensic and historic writer identification. Pattern Recogn. Lett., 28(6):719–727. 80 Serre, T. et al. (2005). A theory of object recognition: Computations and circuits in the feedforward path of the visual stream in primate visual cortex. AI Memo 2005036/CBCL Memo 259, Massachusetts Institute of Technology, Cambridge. 84 Serre, T. et al. (2007). Robust object recognition with cortex-like mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3):411–426. 7, 83, 84, 94, 95, 102 Simon, H. A. (1969). The Sciences of the Artificial. MIT Press, Cambridge, Massachusetts, first edition. xii Sims, K. (1991). Artificial evolution for computer graphics. In SIGGRAPH ’91: Proceedings of the 18th annual conference on Computer graphics and interactive techniques, pages 319–328, New York, NY, USA. ACM Press. 37, 40 Spivey, M. J. (2004). The Continuity of Mind. Oxford University Press, Oxford, UK. 5 Steinfeld, A., Fong, T., Kaber, D. B., Lewis, M., Scholtz, J., Schultz, A. C., and Goodrich, M. A. (2006). Common metrics for human-robot interaction. In Proc. of HRI, pages 33–40. 127 Sutton, R. and Barto, A. (1998). Reinforcement Learning: an Introduction. MIT Press. 3, 7 T. Serre, L. Wolf and T. Poggio (2005). Object recognition with features inspired by visual cortex. In Proceedings of Computer Vision and Pattern Recognition (CVPR), San Diego, USA. 83 Takagi, H. (2001.a). Interactive evolutionary computation: Fusion of the capabilities of ec optimization and human evaluation. Proceedings of the IEEE, Vol. 89:1275– 1296. 37 Takagi, H. (2001b). Interactive evolutionary computation: Fusion of the capabilities of ec optimization and human evaluation. Proceedings of the IEEE, 89(9):1275–1296. 39 BIBLIOGRAPHY 181 Ullman, S., Vidal-Naquet, M., and Sali, E. (2002). Visual features of intermediate complexity and their use in classification. Nature Neuroscience, 5(7):682–687. 94 Ungerleider, L. and Mishkin, M. (1982). The analysis of visual behavior, chapter Two Cortical Visual Systems. Cambridge, MA: MIT press. 93, 94 Vailaya, A., Figueiredo, M., Jain, A., and Zhang, H. (2001). Image classification for content-based indexing. IEEE Trans. on image processing, 10(1):117–130. 76 van der Zant, T. (2008). Large scale parallel document image processing. In Proceedings of the International Conference on Document Recognition and Retrieval XV (DRR). 57, 82, 86 van der Zant, T. and Wisspeintner, T. (2005). RoboCup X: A Proposal for a New League Where RoboCup Goes Real World. In Bredenfeld, A., Jacoff, A., Noda, I., and Takahashi, Y., editors, RoboCup, volume 4020 of Lecture Notes in Computer Science, pages 166–172. Springer. 117, 122, 129 van der Zant, T. and Wisspeintner, T. (2007). Robotic Soccer, chapter RoboCup@Home: Creating and Benchmarking Tomorrows Service Robot Applications, pages 521–528. I-Tech Education and Publishing. 5, 117, 122, 129 Vapnik, V. (1998). Statistical Learning Theory. Wiley. 7 Varela, F. J., Thompson, E. T., and Rosch, E. (1992). The Embodied Mind: Cognitive Science and Human Experience. The MIT Press. xiv, 4 Weber, M., Welling, W., and Perona, P. (2000). Unsupervised learning if models of recognition. In European conference of Computer vision, pages 1001–1108. Massachussetts Institute of Technology. 94 Wisspeintner, T. and Novak, W. (2007). VolksBot - A Construction Kit for Multipurpose Robot Prototyping. 120 Xiu, P. and Baird, H. S. (2008). Whole-book recognition using mutual-entropy-driven model adaptation. In Document Recognition and Retrieval XV. Edited by Yanikoglu, Berrin A.; Berkner, Kathrin. Proceedings of the SPIE, Volume 6815, pp. 681506681506-10 (2008)., volume 6815 of Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference. 85 182 BIBLIOGRAPHY Yanco, H. A., Drury, J. L., and Scholtz, J. (2004). Beyond Usability Evaluation: Analysis of Human-Robot Interaction at a Major Robotics Competition. Human-Computer Interaction, 19:117–149. 127 Zelkowitz, M., Basili, V., Asgari, S., Hochstein, L., Hollingsworth, J., and Nakamura, T. (2005). Measuring productivity on high performance computers. In METRICS ’05: Proceedings of the 11th IEEE International Software Metrics Symposium (METRICS’05), page 6, Washington, DC, USA. IEEE Computer Society. 68
© Copyright 2026 Paperzz