The vicinity of the phase transition in the lattice Weinberg – Salam Model and Nambu monopoles M. Zubkov ITEP Moscow 2010 1. 2. 3. 4. B. L. G. Bakker, A. I. Veselov, M. A. Zubkov, J. Phys. G: Nucl. Part. Phys. 36 (2009) 075008; A.I.Veselov, M.A.Zubkov, JHEP 0812:109,2008; A.I. Veselov, M.A. Zubkov, proceedings of LATTICE2009; M.A.Zubkov, arXiv:0909.4106 Phys.Lett.B684:141-146,2010 Abstract The lattice Weinberg - Salam model without fermions is investigated numerically for realistic choice of bare coupling constants correspondent to the value of the Higgs mass M H ~ 300 Gev . On the phase diagram there exists the vicinity of the phase transition between the physical Higgs phase and the unphysical symmetric phase, where the fluctuations of the scalar field become strong. In this region Nambu monopoles are dense and the perturbation expansion around trivial vacuum cannot be applied. Out of this region the ultraviolet cutoff cannot exceed the value around 1 Tev. Within the fluctuational region the maximal value of the cutoff is c / a 1,4 Tev (The data is obtained on the lattice 203 24 ) 2 Fields 1. Lattice gauge fields (defined on links) U SU ( 2); ei U (1) 2. Fundamental Higgs field (defined on sites) , 1,2 2 Lattice action 1 1 S (1 Re Tr U plaquette) (1 cos plaquette) 2 2 tan W plaquettes Re xU xy e links i xy y (| x | (| x |2 1) 2 ) 2 sites Another form: 1 1 S (1 Re Tr U plaquette) (1 cos plaquette) 2 2 tan W plaquettes ~ ~ 2 ~ ~ i ~ | x U xy e xy y |2 ( 2 | x | | x |4 ) links ~ / 2 sites 2 2(4 (2 1) / ) ~ 4 / 2 3 Phase diagram at constant W (U(1) transition is omitted) lines of constant physics Physical phase Transition surface c ~ 2 4 / Unphysical phase M 2H ~ 2 Tree level estimates: 2 M W tan 2 W (1 tan 2 W ) 4 1 1 1 22 4ng nh 1 1 1 log g 2 ( ) g 2 () 8 2 3 3 6 g 2 ( ) g 2 () 8 2 1 1 N 8 log ~ ~ ( ) ( ) 8 2 ~ M ~ 2 M 2 2 H 2 W Along the line of constant physics if we neglect gauge loop corrections to ~ 20ng nh log 9 6 1 1 1 2 2 4 g g M 2H 1 2 M W 3 ( M Z ) log MZ M 2H 2 ~ M W () 1 4 8 M 2H log 2 2 2( M Z ) 8 M W MZ 1 1 ( ) 2 4( M Z ) 8 22 1 1 log MZ 3 6 6 ~ (M Z ) 1 / 128 W 30 o One loop weak coupling expansion: bare and are increased when the Ultraviolet cutoff is increased along the line of constant physics 5 Realistic value of Weinberg angle W 30o sin 2 W 0.25 The fine structure constant tan 2 W 1 2 (1 tan W ) 4 The majority of the results were obtained on the lattices The results were checked on the lattices 123 16 203 24;164 6 phase diagram const line of constant renormalized renormalized const Physical phase c 1,35 Tev 1 ( ) (at ; ~ 1 / 128) 0.25 ( 0) Condensation of Nambu monopoles Unphysical phase 0.4 15 ( ; ~ 1 / 128) 7 phase diagram c 1,35 Tev (at ; ~ 1 / 128) 8 The renormalized fine structure constant Right – handed lepton Wilson loop WC Re e e2 4 2 i xy xyC W [R T ] V ( R ) log lim T W [ R (T 1)] The simple fit V ( R) R R const V ( R ) R U ( R ) const approximates V(R) better than the lattice Coulomb potential U ( R) L3 p 0 sin 2 eip3R p1 p p sin 2 2 sin 2 3 2 2 2 9 The potential 83 16 W [ R 3] V ( R) log W [ R 4] 12 W 30 o 0.009 0.277 V 1/ R 10 The potential 15 W 30 o 164 1 V 11 Renormalized fine structure constant 12 W 30 o 0.009 1 / renormalized 83 16 12 16 3 12 Evaluation of lattice spacing MZ phys 1 1 91 Gev lattice units a MZ 91 Gev a 1 MZ lattice units 280 Gev Z – boson mass in lattice units: Z sin[arg U ] 11 Z xy x Z y e M Z lat|x0 y0 | e M Z lat ( L |x0 y0 |) (the sum is over “space” coordinates of the Z boson field) x0 , y0 are imaginary “time” coordinates 13 Ultraviolet cutoff along the line of constant renormalized renormalized 1 / 128 c 1,35 Tev Condensation of Nambu monopoles 1 Tev Unphysical phase Physical phase c 0.9 1.2 14 MZ 0.009 12 W 30 o in lattice units Fit for R = 1,2,3,4,5,6,7,8 Z xy x Z y e M Z lat|x0 y0 | e M Z lat ( L |x0 y0 |) 123 16 1 Tev Phys.Lett.B684:141-146,2010 Phase transition 16 4 1.4 Tev 20 24 3 M 270 Gev 0 H 15 W 30 o MZ in lattice units Fit for R = 1,2,3,4,5,6,7,8 15 Z xy x Z y e M Z lat|x0 y0 | e M Z lat ( L |x0 y0 |) The results yet have not been checked on the larger lattices 8 16 3 1.4 Tev Phase transition M H 800 Gev 16 Higgs boson mass in lattice units H x Z xy y 2 H H H e xy x y x 2 M H lat|x0 y0 | e M H lat ( L |x0 y0 |) (the sum is over “space” coordinates of the Z boson field) x0 , y0 are imaginary “time” coordinates 0.29 12 0.009 Higgs boson mass in physical units: M H 265 70 Gev 17 Phase transition at 12 W 30 o 83 16 renormalized 1 / 100 1.4 Tev M H 300 40 Gev M 0 H 270 Gev 1 Tev M H 265 70 Gev c 18 Phase diagram at constant W lines of constant physics M H 300 Gev M H 800 Gev Physical phase c 1,35 Tev c 1.4 Tev ~ ~ 2 4 / Transition surface Unphysical phase 19 Effective constraint potential W 30 o 12 0.009 H V (0) V ( min ) 0.29 0.279 c 0.273 min Potential barrier Hight H V (0) V ( min ) W 30 o 12 0.009 c 0.273 c 2 0.278 H fluct V ( min ) V ( min ) Minimum of the potential at W 30 o 12 min 0.009 c 0.273 c 2 0.278 c 1,4 Tev c 2 1 Tev NAMBU MONOPOLES (unitary gauge) Standard Model L NAMBU MONOPOLE M 1 Tev R 0 NAMBU MONOPOLE Z string v 0 1 200 Gev i A dx Z dx 2 N , N Z , A A su ( 2) i 3 L L 2 A dx dx 4 N sin W em Aem 2 B 2 sin 2 W ( A3 B ); Z A3 B; W A1 iA2 23 Worldsheet of Z – string on the lattice Z arg[ U ei ] A [ Z 2 ] mod 2 * 1 1 [d Z ] mod 2 d Z A [d A] mod 2 d A Z 2 2 * NAMBU MONOPOLE WORLDLINE 1 jZ Z d [d Z ] mod 2 2 * 1 j A A d [d A] mod 2 2 * j A jZ 24 12 0.009 W 30 o Susceptibility H Hx 2 x Nambu monopole density 2 Phase transition 83 16 123 16 25 15 W 30 o Susceptibility H Hx 2 x 164 Nambu monopole density 2 Phase transition 26 Percolation Transition Nambu monopoles Nambu monopoles C c c c C Line of constant renormalized fine structure constant Ultraviolet cutoff C ac 27 W 30 o 15 Excess of link action near monopoles Excess of plaquette action near monopoles Phase transition 164 28 Phase diagram at constant W lines of constant physics M H 300 Gev M H 800 Gev Physical phase c 1,35 Tev c 1.4 Tev ~ ~ 2 4 / Transition surface Unphysical phase 29 Previous investigations of SU(2) Gauge - Higgs model Lattice action 1 S 1 Re Tr U plaquette 2 plaquettes 2 Re xU xy y (| x | (| x |2 1) 2 ) 2 links sites At realistic value of Weinberg angle W 30o sin 2 W 0.25 The fine structure constant is tan 2 W 1 2 (1 tan W ) 4 For 8 we have 1 110 30 Cutoff (in Gev) in selected SU(2) Higgs Model studies at 1/ 110 M H , Gev c / a Publication Joachim Hein (DESY), Jochen Heitger, Phys.Lett. B385 (1996) 16 242-248 345 F. Csikor,Z. Fodor,J. Hein,A. Jaster,I. Montvay Nucl.Phys.B474(1996)421 34 880 F. Csikor, Z. Fodor, J. Hein, J. Heitger, Phys.Lett. B357 (1995) 156-162 35 440 Z.Fodor,J.Hein,K.Jansen,A.Jaster,I.Montvay Nucl.Phys.B439(1995)147 48 880 F. Csikor, Z. Fodor, J. Hein, K.Jansen, A. Jaster, I. Montvay Phys.Lett. B334 (1994) 405-411 50 600 F. Csikor, Z. Fodor, J. Hein, K.Jansen, A. Jaster, I. Montvay Nucl.Phys.Proc.Suppl. 42 (1995) 569-574 50 880 Y. Aoki, F. Csikor, Z. Fodor, A. Ukawa Phys.Rev. D60(1999) 013001 85 820 Y. Aoki Phys.Rev. D56 (1997) 3860-3865 108 940 W.Langguth, I.Montvay,P.Weisz Nucl.Phys.B277:11,1986. 480 1260 W. Langguth, I. Montvay (DESY) Z.Phys.C36:725,1987 720 1480 Anna Hasenfratz, Thomas Neuhaus, Nucl.Phys.B297:205,1988 720 31 1480 Conclusions We demonstrate that there exists the fluctuational region on the phase diagram of the lattice Weinberg – Salam model. This region is situated in the vicinity of the phase transition between the physical Higgs phase and the unphysical symmetric phase of the model. In this region the fluctuations of the scalar field become strong and the perturbation expansion around trivial ? vacuum cannot be applied. M H 300 Gev 12 16 3 max 1,4 Tev 32
© Copyright 2026 Paperzz