Basic Equations of the Classical Plate Theory The Displacement Fields: w u ( x, y , z ) u 0 ( x, y ) z x v ( x, y , z ) v 0 ( x, y ) z Strain-Displacement Relations: u u v 2w 2w xx 0 z 2 xy 0 0 2 z x x y x xy 2 v w xz 0 yy 0 z 2 y y yz 0 zz 0 w y w( x, y, z ) w( x, y ) Stress Resultants: h/2 Mx z h/2 xx My dz h / 2 Nx Qy h / 2 h / 2 h/2 h/2 xx M yx M xy dz z xy dz h / 2 h/2 xz dz yy h / 2 h/2 Qx z h/2 Ny dz h / 2 yz dz h/2 yy N yx N xy dz Moment Curvature Relationships: 2w 2w M x D 2 2 y x xy dz h / 2 h / 2 Force Displacement (Derivative) Relationships: u v N x K 0 0 y x 2w 2w M y D 2 2 x y 2 w M xy D(1 v) xy v u N y K 0 0 x y 1 u0 v0 N xy K 2 y x Eh3 D 12(1 2 ) Equilibrium Equations: (transverse problem) K Eh 1 2 (in-plane problem) M x M xy N x N xy h h h h h Qx xz ( ) xz ( ) 0 xz ( ) xz ( ) 0 x y 2 2 2 x y 2 2 M xy M y N xy N y h h h h h Qy yz ( ) yz ( ) 0 yz ( ) yz ( ) 0 x y 2 2 2 x y 2 2 Qx Qy p1 ( x, y) p2 ( x, y) 0 x y Transverse Shear Forces in terms of displacement (no surface shear): 2 2 Qx D w( x, y ) Qy D w( x, y ) x y Governing Equations: (in-plane loading) 4 D w( x, y) p( x, y) 4 ( x, y) 0 p( x, y) p1 ( x, y) p2 ( x, y) Nx 2 2 2 N , , N y xy x 2 xy y 2 Stress Distributions within a plate: Flexural stresses (transverse problem) Mxz 12 Dz 2 w 2w 3 3 2 2 h / 12 h x y Myz 12 Dz 2 w 2w 3 3 2 2 h / 12 h y x Membrane Stresses (in-plane problem) N x K u0 v 0 h h x y N K u v yy y 0 0 yy h h x y N M z K 1 u0 v0 12 D1 z 2 w xy xy xy 3 xy 3 h 2h y x xy h / 12 h Transverse shear stresses in flexural problem(from equilibrium-no surface shear): 2 2 3Qx z 3 z 2 xz 1 1 D w( x, y ) 2h h / 2 2h h / 2 x 2 3Q y z 2 3 z 2 yz 1 w( x, y ) 1 D 2h h / 2 2h h / 2 y xx xx
© Copyright 2026 Paperzz