Dynamical heterogeneity at the jamming transition of concentrated colloids P. Ballesta1, A. Duri1, Luca Cipelletti1,2 1LCVN UMR 5587 Université Montpellier 2 and CNRS, France 2Institut Universitaire de France [email protected] Heterogeneous dynamics correlation 1.00 0.75 0.50 0.25 0.00 -4 -3 -2 -1 0 1 2 3 10 10 10 10 10 10 10 10 t (arb. un.) homogeneous 1.00 1.00 0.75 0.75 correlation correlation Heterogeneous dynamics 0.50 0.25 0.00 0.50 0.25 0.00 -4 -3 -2 -1 0 1 2 3 -4 -3 -2 -1 0 1 2 3 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 t (arb. un.) t (arb. un.) homogeneous heterogeneous 1.00 1.00 0.75 0.75 correlation correlation Heterogeneous dynamics 0.50 0.25 0.50 0.25 0.00 0.00 -4 -3 -2 -1 0 1 2 3 -4 -3 -2 -1 0 1 2 3 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 t (arb. un.) t (arb. un.) homogeneous heterogeneous Dynamical susceptibility in glassy systems Supercooled liquid (Lennard-Jones) Lacevic et al., PRE 2002 c4 ~ var[Q(t)] Dynamical susceptibility in glassy systems N regions c4 ~ var[Q(t)] c4 dynamics spatially correlated Decreasing T Glotzer et al. c4 increases when decreasing T Outline • Measuring average dynamics and c4 in colloidal suspensions • c4 at very high j : surprising results! • A simple model of heterogeneous dynamics Experimental system & setup PVC xenospheres in DOP radius ~ 10 mm, polydisperse j = 64% – 75% Excluded volume interactions Laser beam Experimental system & setup CCD Camera CCD-based (multispeckle) Diffusing Wave Spectroscopy Change in speckle field mirrors change in sample configuration Probe d << Rparticle Time Resolved Correlation lag t time tw < Ip(tw) Ip(tw +t)>p degree of correlation cI(tw,t) = -1 < Ip(tw)>p<Ip(tw +t)>p fixed tw, vs. t 2-time intensity correlation function g2(tw,t) - 1 2-time intensity correlation function f = 66.4% tw (sec) n42 1194 4400 7900 14900 21900 44083 54800 0,04 0,02 1000 n500 ts (sec) g2(tw,twt )-1 0,06 n1000 n2000 n3000 n6169 n7700 500 0,00 1 10 2 10 3 10 t (sec) 4 10 5 10 0 0 40000 80000 tw (sec) Fit: g2(tw,t) ~ exp[-(C:\lucacip\doc\papers\WorkInProgress\2004Ja t /ts (tw))p(tw)] C:\lucacip\doc\papers\WorkInProgress\2004JapanMeeting2003\Figures\Pierre40pcr03042 • Initial regime: « simple aging » (ts ~ tw1.1 0.1) • Crossover to stationary dynamics, large fluctuations of ts 2-time intensity correlation function f = 66.4% tw (sec) n42 1194 4400 7900 14900 21900 44083 54800 0,04 0,02 1000 n500 ts (sec) g2(tw,twt )-1 0,06 n1000 n2000 n3000 n6169 n7700 500 0,00 1 10 2 10 3 10 4 10 5 0 10 0 40000 80000 tw (sec) t (sec) Fit: g2(tw,t) ~ exp[-(C:\lucacip\doc\papers\WorkInProgress\2004Ja t/ts(tw))p(tw)] C:\lucacip\doc\papers\WorkInProgress\2004JapanMeeting2003\Figures\Pierre40pcr03042 Average dynamics : < ts >tw , < p >tw Average dynamics vs j 10 4 10 3 fresh old reinitialized ts (sec) ts ~ |jeff- jc| -1.01 jc= 0.752 0.64 0.68 0.72 jeff 0.76 Average relaxation time Average dynamics vs j 1.5 4 ts ~ |jeff- jc| -1.01 p ts (sec) 10 fresh old reinitialized 10 1.0 3 jc= 0.752 0.64 0.68 0.72 jeff 0.76 Average relaxation time 0.5 0.64 0.68 0.72 jeff 0.76 Average stretching exponent Fluctuations from TRC data lag t time tw < Ip(tw) Ip(tw +t)>p degree of correlation cI(tw,t) = -1 < Ip(tw)>p<Ip(tw +t)>p fixed t, vs. tw fluctuations of the dynamics var(cI)(t) c (t ) Fluctuations of the dynamics vs j j = 0.74 0.4 c* 0.02 0.2 0.01 0.1 0.00 0.0 2 10 var(cI) 3 4 5 10 10 t (sec) 10 c4 (dynamical susceptibility) g2(t)-1 var(cI) 0.3 Fluctuations of the dynamics vs j j = 0.74 c* 0.02 0.06 0.4 0.2 0.01 c* 0.04 g2(t)-1 var(cI) 0.3 0.02 0.1 0.00 0.0 2 10 var(cI) 3 4 5 10 10 t (sec) 10 c4 (dynamical susceptibility) 0.00 0.64 0.68 0.72 jeff Max of var (cI) 0.76 A simple model of intermittent dynamics… A simple model of intermittent dynamics… r fully decorrelated Durian, Weitz & Pine (Science, 1991) Fluctuations in the DWP model Random number of rearrangements g2(t,t) – 1 fluctuates r Fluctuations in the DWP model Random number of rearrangements r g2(t,t) – 1 fluctuates r increases fluctuations increase Fluctuations in the DWP model 1 -1 r 10 4.6r0 -2 2.2r0 var(cI) 10 -3 10 r0 -4 10 -5 r increases 10 -6 10 -7 10 fluctuations increase -5 -4 -3 -2 10 10 10 10 10 -1 1 t (arb. un.) 2 10 10 Approaching jamming… partially decorrelated r partially decorrelated Approaching jamming… Correlation after n events r Probability of n events during t Approaching jamming… r Poisson distribution: Approaching jamming… r Poisson distribution: Random change of phase Correlated change of phase Approaching jamming… r Poisson distribution: Random change of phase Correlated change of phase Approaching jamming… r Poisson distribution: b 1.5 Average dynamics increasing j decreasing sf2 1.0 2.0 increasing j 0.01 1.5 1 10 0.5 p (s) g1 (t) 0.1 1.0 0.0 -2 10 10 -1 1 10 t (arb. un.) 2 10 0.5 -3 10 10 -2 10 -1 sf 1 10 10 2 Fluctuations r Moderate j : large sf2 Near jamming : small sf2 few events many events large flucutations small flucutations Fluctuations increasing j decreasing sf2 10 1 -1 var(cI) 10 0.1 -2 0.01 10 -3 10 -2 10 -1 10 1 10 t (arb. un.) 2 10 Conclusions 0.06 Dynamics heterogeneous Competition between increasing size of dynamically correlated regions ... c* Non-monotonic behavior of c* 0.04 0.02 0.00 0.64 0.68 0.72 jeff 0.76 Conclusions 0.06 Dynamics heterogeneous Competition between increasing size of dynamically correlated regions and decreasing effectiveness of rearrangements c* Non-monotonic behavior of c* 0.04 0.02 0.00 0.64 0.68 0.72 jeff 0.76 Conclusions 0.06 Dynamics heterogeneous Competition between increasing size of dynamically correlated regions and decreasing effectiveness of rearrangements c* Non-monotonic behavior of c* 0.04 0.02 0.00 0.64 0.68 0.72 jeff 0.76 Dynamical heterogeneity dictated by the number of rearrangements needed to decorrelate A further test… Single scattering, colloidal fractal gel (Agnès Duri) 0.7 0.6 0.5 q=7355 cm -1 q=9538 cm -1 q=12393 cm -1 q=16004 cm -1 q=20656 cm -1 -1 g2 (q,t) - 1 q=26506cm 0.4 0.3 q=37771 cm -1 q=42396 cm -1 q=52177 cm -1 0.2 0.1 0.0 -0.1 10 100 1000 t (sec) 10000 100000 A further test… sf2 ~ q2d 2 look at different q! A further test… sf2 ~ q2d 2 2.0 p 1.5 1.0 sf ~ (qd) 2 0.5 10 4 -1 q (cm ) 2 look at different q! A further test… sf2 ~ q2d 2 look at different q! 2.0 0.1 p c* 1.5 1.0 sf ~ (qd) 2 0.5 10 4 -1 q (cm ) 2 0.01 sf ~ (qd) 2 10 4 -1 q (cm ) 2 Fluctuations of the dynamics vs j 0.5 standard deviation(p)/p standard deviation(ts)/ts 0.5 0.4 0.3 0.2 0.1 0.0 (1/) 0.64 0.68 0.72 jeff 0.76 St. dev. of relaxation time 0.4 0.3 0.2 0.1 0.0 0.64 0.68 0.72 jeff St. dev. of stretching exponent 0.76 Average dynamics vs j 10 4 10 3 ts (sec) ts ~ |jeff- jc| -1.01 jc= 0.752 0.64 0.68 0.72 jeff 0.76 Average relaxation time Dynamical hetereogeneity in glassy systems Supercooled liquid (Lennard-Jones) Glotzer et al., J. Chem. Phys. 2000 c4 increases when approaching Tg Conclusions Non-monotonic behavior of c* 2.0x10 -3 1.0x10 10 -2 10 -3 10 -4 10 -5 10 -6 -3 c* Dynamics heterogeneous 3.0x10 -3 0.64 0.68 0.72 0.76 0.0 0.64 0.68 0.72 jeff 0.76 Conclusions Non-monotonic behavior of c* Many localized, highly effective rearrangements 2.0x10 -3 1.0x10 10 -2 10 -3 10 -4 10 -5 10 -6 -3 c* Dynamics heterogeneous 3.0x10 -3 0.64 0.68 0.72 0.76 0.0 0.64 0.68 0.72 jeff 0.76 Conclusions Non-monotonic behavior of c* Many localized, highly effective rearrangements 2.0x10 -3 1.0x10 10 -2 10 -3 10 -4 10 -5 10 -6 -3 c* Dynamics heterogeneous 3.0x10 -3 0.64 0.68 0.72 0.76 0.0 0.64 Many extended, poorly effective rearrangements 0.68 0.72 jeff 0.76 Conclusions 0.06 Dynamics heterogeneous Many localized, highly effective rearrangements c* Non-monotonic behavior of c* 0.04 0.02 0.00 Many extended, poorly effective rearrangements Few extended, quite effective rearrangements General behavior 0.64 0.68 0.72 jeff 0.76 Time Resolved Correlation lag t time tw < Ip(tw) Ip(tw +t)>p degree of correlation cI(tw,t) = -1 < Ip(tw)>p<Ip(tw +t)>p
© Copyright 2026 Paperzz