Supplemental Information When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signalling Lan K. Nguyen1,*, Walter Kolch1,2, Boris N. Kholodenko1,2,* 1 Systems Biology Ireland, University College Dublin, Dublin 4, Ireland Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland * Corresponding authors: [email protected]; [email protected] 2 1 Mathematical Models for the investigated Motifs In this supplementary information, we present in details the reactions, parameter values, and ordinary differential equations for the models of all motifs investigated in the main text. Motif 1 and 2: Figure S1. Kinetic schemes of the Motif 1 and 2 analysed in the main text, with reactions numbered. The two motifs differ only in the magnitude of the E3-mediated ubiquitination rate of S* and pS, as indicated by the thickness of the highlighted blue arrows (thicker line means stronger rate). 2 Table S1. Reactions and reaction rates of the kinetic model for Motif 1. Concentrations and the Michaelis-Menten constants (Kms) are given in nM. First- and second-order rate constants are expressed in s-1 and nM-1 s-1. Maximum rates Vs are expressed in nM s-1. Reaction number 1 Reactions Reaction rates Parameter values Ø→S k1= 0.0001 2 S → S* v1 = k1 k Signal S(t) v2 = 2 K m2 S(t) 3 S* → S V3 S* (t) v3 = K m3 S* (t) V3= 0.01, Km3=100 4 S* → pS* k 4 Kin S* (t) K m4 S* (t) k Phos pS*(t) v5 = 5 K m5 pS*(t) k4= 0.001, Km4=100 Kin = 100 k 6 E3 S* (t) v6 = K m6 S* (t) k6= 0.001(*), Km6=100 E3 = 100 k 7 DUB S* -Ub(t) K m7 S* -Ub(t) k E3 pS*(t) v8 = 8 K m8 pS*(t) k DUB pS*-Ub(t) v9 = 9 K m9 pS*-Ub(t) k7= 0.01, Km5=100 DUB = 100 v4 = 5 pS* → S* 6 S* → S*-Ub 7 S*-Ub → S* v7 = k2= 0.001, Km2=100 Signal = 10 k5= 0.005, Km5=100 Phos = 100 8 pS* → pS*-Ub 9 pS*-Ub → pS* 10 S*-Ub → Ø v10 = k10 S* -Ub(t) k10= 0.1 11 pS*-Ub → Ø v11 = k11 pS*-Ub(t) k11= 0.1 12 O → O* v12 = k8= 0.1 (**), Km8=100 E3 = 100 k9= 0.001, Km9=100 DUB = 100 k12a S* -Ub(t) O(t) k12b pS*-Ub(t) O(t) k12a= k12b =0.001, Km12=100 K m12 O(t) K m12 O(t) V13= 0.01, V13 O* (t) Km13=100 K m13 O* (t) (*,**) Note that everything is the same for the model of Motif 2, except we have: k6= 0.01 and k8= 0.001 instead to reflect the weaker ubiquitination rate of the phosphorylated pS* compared to that of S*. 13 O* → O v13 = 3 Table S2. Ordinary differential equations of the kinetic model for Motif 1 and 2. The reaction rates are given in Table S1. Left-hand Sides Right-hand Sides d[S]/dt d[S*]/dt d[pS]/dt d[S*-Ub]/dt d[pS-Ub]/dt d[O]/dt d[O*]/dt v1 –v2 + v3 v2 – v3 – v4 + v5 –v6 + v7 v4 – v5 – v8 + v9 v6 –v7 – v10 v8 – v9 – v11 –v12 + v13 v12 –v13 Initial Concentrations (nM) 100 0 0 0 0 100 0 4 Motif 3: Figure S2. Kinetic schemes of the Motif 3 analysed in the main text, with reactions numbered. Here the ubiquitination-triggered degradation of the active protein S*is not dependent on phosphorylation. For convenience, we retain the same reaction numbers as in Motif 1, 2 for the remaining reactions. 5 Table S3. Ordinary differential equations of the kinetic model for Motif 3. The reaction rates are given in Table S1. Left-hand Sides Right-hand Sides d[S]/dt d[S*]/dt d[S*-Ub]/dt d[O]/dt d[O*]/dt v1 –v2 + v3 v2 – v3 – v6 + v7 v6 –v7 – v10 –v12 + v13 v12 –v13 Initial Concentrations (nM) 100 0 0 100 0 6 Motif 4: Figure S3. Kinetic schemes of the Motif 4 analysed in the main text, with reactions numbered. In this case, the motif output is the active form of the E3 ligase, which subsequently forms a negative feedback to the upstream protein S*. 7 Table S4. Reactions and reaction rates of the kinetic model for Motif 4. Concentrations and the Michaelis-Menten constants (Kms) are given in nM. First- and second-order rate constants are expressed in s-1 and nM-1 s-1. Maximum rates Vs are expressed in nM s-1.This parameter set was used to simulate the oscillatory dynamics as shown in Fig.3 in the main text. Reaction number 1 Reactions Reaction rates Parameter values Ø→S k1= 0.00005 2 S → S* v1 = k1 k Signal S(t) v2 = 2 K m2 S(t) 3 S* → S V3 S* (t) K m3 S* (t) V3= 0.0083, Km3=25 v3 = 4 S* → pS* 5 pS* → S* 6 S* → S*-Ub k 4 Kin S* (t) v4 = K m4 S* (t) k Phos pS*(t) v5 = 5 K m5 pS*(t) v6 = 7 S*-Ub → S* 8 pS* → pS*-Ub k 6 E3* (t) S* (t) K m6 S* (t) k2= 0.0025, Km2=3.35 Signal = 50 k4= 0.0005, Km4=50 Kin = 100 k5= 0.0004, Km5=50 Phos = 100 k6= 0.0045, Km6=1 E3 = 100 k 7 DUB S* -Ub(t) v7 = K m7 S* -Ub(t) k7= 0.0025, Km5=5 DUB = 100 k 8 E3* (t) pS*(t) K m8 pS*(t) k DUB pS*-Ub(t) v9 = 9 K m9 pS*-Ub(t) k8= 0.00002 , Km8=10 E3 = 100 v8 = 9 pS*-Ub → pS* 10 S*-Ub → Ø v10 = k10 S* -Ub(t) k10= 0.000001 11 pS*-Ub → Ø v11 = k11 pS*-Ub(t) k11= 0.0001 12 E3 → E3* 13 E3* → E3 k9= 0.007, Km9=30 DUB = 100 v12 = k12a S* -Ub(t) E3(t) k12b pS*-Ub(t) E3(t) K m12a E3(t) K m12b E3(t) k12a= 0.00001, k12b =0.0016, Km12a=20, Km12b=5, v13 = V13 E3* (t) K m13 E3* (t) V13= 0.05, Km13=10 8 Table S5. Ordinary differential equations of the kinetic model for Motif 4. The reaction rates are given in Table S4. Left-hand Sides Right-hand Sides d[S]/dt d[S*]/dt d[pS]/dt d[S*-Ub]/dt d[pS-Ub]/dt d[E3]/dt d[E3*]/dt v1 –v2 + v3 v2 – v3 – v4 + v5 –v6 + v7 v4 – v5 – v8 + v9 v6 –v7 – v10 v8 – v9 – v11 –v12 + v13 v12 –v13 Initial Concentrations (nM) 100 0 0 0 0 100 0 9 Motif 5: Figure S4. Kinetic schemes of the Motif 5 analysed in the main text, with reactions numbered. We consider two cases when a positive feedback from pE3-Ub to the Kinase is present (dashed line) or absent. 10 Table S6. Reactions and reaction rates of the kinetic model for Motif 5. Concentrations and the Michaelis-Menten constants (Kms) are given in nM. First- and second-order rate constants are expressed in s-1 and nM-1 s-1. Maximum rates Vs are expressed in nM s-1.This parameter set was used to simulate bistable dynamics as shown in Figure 4 of the main text. Reaction number 1 Reactions 2 pE3 → E3 3 E3 → E3-Ub v3 = E3(t) k 3 E3(t)+k 3a E3-Ub(t) k3= k3a = 0.01 4 E3-Ub → E3 (*-see note below) k DUB E3-Ub(t) v4 = 4 K m4 E3-Ub(t) k4= 0.01, Km4=50 DUB = 100 5 pE3 → pE3-Ub 6 pE3-Ub → pE3 7 O → O-Ub 8 O-Ub → O 9 O-Ub → Ø E3 → pE3 Reaction rates v1 = k1 Kin E3(t) 1 k f pE3-Ub(t) K m1 E3(t) v2 = k 2 Phos pE3(t) K m2 pE3(t) Parameter values k1= 0.01 kf= 0 (no feedback) kf= 0.05 (feedback) Kin =100 k2= 0.01, Km2=100 Phos =100 v5 = pE3(t) k5 pE3(t)+k5a pE3-Ub(t) k5= 0.01, k5a = 0.1 k 6 DUB pE3-Ub(t) K m6 pE3-Ub(t) k E3-Ub(t) O(t) k 7a pE3-Ub(t) O(t) v7 = 7 K m7 O(t) K m7 O(t) k6= 0.01, Km6=50 v6 = v8 = V8 O-Ub(t) K m8 O-Ub(t) v9 = k 9 O-Ub(t) k7= 0.01, k7a = 0.01, Km7=50 V8= 0.5, Km8=50 k9= 0 (for no degradation, 0.01 for degradation) (*) For derivation of the kinetic expression for auto-ubiquitination, see (Nguyen et al., 2011) 11 Table S7. Ordinary differential equations of the kinetic model for Motif 5. The reaction rates are given in Table S6. Left-hand Sides Right-hand Sides d[E3]/dt d[pE3]/dt d[E3-Ub]/dt d[pE3-Ub]/dt d[O]/dt d[O-Ub]/dt –v1 +v2 – v3 + v4 v1 –v2 – v5 + v6 v3 – v4 v5 – v6 v8 – v7 v7 – v8 Initial Concentrations (nM) 100 0 0 0 100 0 12 Reference: Nguyen, L. K., Munoz-Garcia, J., Maccario, H., Ciechanover, A., Kolch, W., & Kholodenko, B. N. (2011). Switches, excitable responses and oscillations in the Ring1B/Bmi1 ubiquitination system. PLoS Comput Biol, 7(12), e1002317. 13
© Copyright 2026 Paperzz